Author Question: How to calculate the time it takes for an object to go from its maximum height it its landing position? (Read 1266 times)

xclash

  • Hero Member
  • *****
  • Posts: 681
I totally don't understand how to calculate this. Hint: Use potential energy calculation (PEgravitational=mgh) m=mass, g=gravitational field pull (9.8) and h=height, estimated mass, and kinetic energy formula (KE=.5mv^2). I'll try figuring this out again, but it's a problem I've been stuck on! Thank you in advance!



frankwu

  • Hero Member
  • *****
  • Posts: 549
OK:

At its maximum height, assume the object is not moving up or down.  The object posseses

(1)  PE = mgh

When it hits the ground, it will have lost all its PE, which will have been converted into KE:

(2)  KE = .5*mv^2

The force acting on the object as it falls is

(3)  F = ma, where the "a" represents acceleration imparted to m when the force F on it is converted into motion.  In the context of the earth's gravity, the "a" is what we symbolize by g:

(4)  F = mg,  where

 g  = 9.8 m/s^2 = 9.8 (m/s)/s, (meters per second) per second.

Velocity is meters/second, and acceleration is the rate of change in velocity, or velocity/second.

If you know the acceleration, then you know the velocity after t seconds:

(5)  v = gt

Putting all of the above together:

(6)  mgh = .5*mv^2      since KE = PE at impact.  Substituting for v from (5), we get

(7)  mgh = .5 * m * (gt)^2  = .5 * m * g^2 * t^2  

Canceling terms common to each side, we get:

h = .5 * g * t^2

Rearranging and solving for t, we get

(8)  t = ?(2h / g)   <<---ANSWER

Notice that the time is not dependent on the mass.
.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Illness; diuretics; laxative abuse; hot weather; exercise; sweating; caffeine; alcoholic beverages; starvation diets; inadequate carbohydrate consumption; and diets high in protein, salt, or fiber can cause people to become dehydrated.

Did you know?

Elderly adults are living longer, and causes of death are shifting. At the same time, autopsy rates are at or near their lowest in history.

Did you know?

Everyone has one nostril that is larger than the other.

Did you know?

In women, pharmacodynamic differences include increased sensitivity to (and increased effectiveness of) beta-blockers, opioids, selective serotonin reuptake inhibitors, and typical antipsychotics.

Did you know?

Vaccines cause herd immunity. If the majority of people in a community have been vaccinated against a disease, an unvaccinated person is less likely to get the disease since others are less likely to become sick from it and spread the disease.

For a complete list of videos, visit our video library