This topic contains a solution. Click here to go to the answer

Author Question: In which of the following cases would you expect degeneracy of the first excited state? Hint: Make ... (Read 35 times)

shenderson6

  • Hero Member
  • *****
  • Posts: 573
In which of the following cases would you expect degeneracy of the first excited state? Hint: Make sure to consider all three dimensions.
  a. A neutral helium atom initially in its ground state in a magnetic field.
  b. A particle trapped inside a sphere of radius R.
  c. A particle trapped inside a three dimensional box of lengths L1 > L2 > L3.
  d. Identical particles, with one in an infinite square-well potential and the other in a finite square-well potential with walls of potential V0 high but of the same width as the infinite potential well.

Question 2

A particle moves along the x-axis in the positive direction with energy E. It encounters a barrier with potential V > E at x = 0 and extending to x = L. Is there any chance for the particle make it to the other side?
 

 

a. Yes. The wave functions allow for a small probability for the particle to pass through the barrier.
  b. Yes, but only if the particle increases in energy so that E > V.


 

c. Yes. The particle will pass by unaffected in both classical and quantum mechanical consideration.
  d. No. An incoming particle would have negative kinetic energy within the potential barrier.
  e. No. The particle will transmit some energy but the particle will always reflect off the barrier.


 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

CourtneyCNorton

  • Sr. Member
  • ****
  • Posts: 317
Answer to Question 1

b.
In all three dimensions the lengths of the box are the same, therefore the energies of the first excited state in each dimension are the same. The state is degenerate.

Answer to Question 2

a.
The wave functions for a finite square-well potential allow a small probability for the particle to be in the classically forbidden region where the energy of the particle is not greater than the potential barrier, which is what would be necessary if the particle were to stay in classically defined regions.




shenderson6

  • Member
  • Posts: 573
Reply 2 on: Jul 28, 2018
Wow, this really help


JaynaD87

  • Member
  • Posts: 368
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Congestive heart failure is a serious disorder that carries a reduced life expectancy. Heart failure is usually a chronic illness, and it may worsen with infection or other physical stressors.

Did you know?

The U.S. Pharmacopeia Medication Errors Reporting Program states that approximately 50% of all medication errors involve insulin.

Did you know?

Patients who cannot swallow may receive nutrition via a parenteral route—usually, a catheter is inserted through the chest into a large vein going into the heart.

Did you know?

Atropine, along with scopolamine and hyoscyamine, is found in the Datura stramonium plant, which gives hallucinogenic effects and is also known as locoweed.

Did you know?

On average, the stomach produces 2 L of hydrochloric acid per day.

For a complete list of videos, visit our video library