This topic contains a solution. Click here to go to the answer

Author Question: In which of the following cases would you expect degeneracy of the first excited state? Hint: Make ... (Read 8 times)

shenderson6

  • Hero Member
  • *****
  • Posts: 573
In which of the following cases would you expect degeneracy of the first excited state? Hint: Make sure to consider all three dimensions.
  a. A neutral helium atom initially in its ground state in a magnetic field.
  b. A particle trapped inside a sphere of radius R.
  c. A particle trapped inside a three dimensional box of lengths L1 > L2 > L3.
  d. Identical particles, with one in an infinite square-well potential and the other in a finite square-well potential with walls of potential V0 high but of the same width as the infinite potential well.

Question 2

A particle moves along the x-axis in the positive direction with energy E. It encounters a barrier with potential V > E at x = 0 and extending to x = L. Is there any chance for the particle make it to the other side?
 

 

a. Yes. The wave functions allow for a small probability for the particle to pass through the barrier.
  b. Yes, but only if the particle increases in energy so that E > V.


 

c. Yes. The particle will pass by unaffected in both classical and quantum mechanical consideration.
  d. No. An incoming particle would have negative kinetic energy within the potential barrier.
  e. No. The particle will transmit some energy but the particle will always reflect off the barrier.


 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

CourtneyCNorton

  • Sr. Member
  • ****
  • Posts: 317
Answer to Question 1

b.
In all three dimensions the lengths of the box are the same, therefore the energies of the first excited state in each dimension are the same. The state is degenerate.

Answer to Question 2

a.
The wave functions for a finite square-well potential allow a small probability for the particle to be in the classically forbidden region where the energy of the particle is not greater than the potential barrier, which is what would be necessary if the particle were to stay in classically defined regions.




shenderson6

  • Member
  • Posts: 573
Reply 2 on: Jul 28, 2018
Excellent


vickybb89

  • Member
  • Posts: 347
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

The shortest mature adult human of whom there is independent evidence was Gul Mohammed in India. In 1990, he was measured in New Delhi and stood 22.5 inches tall.

Did you know?

Your skin wrinkles if you stay in the bathtub a long time because the outermost layer of skin (which consists of dead keratin) swells when it absorbs water. It is tightly attached to the skin below it, so it compensates for the increased area by wrinkling. This happens to the hands and feet because they have the thickest layer of dead keratin cells.

Did you know?

The human body's pharmacokinetics are quite varied. Our hair holds onto drugs longer than our urine, blood, or saliva. For example, alcohol can be detected in the hair for up to 90 days after it was consumed. The same is true for marijuana, cocaine, ecstasy, heroin, methamphetamine, and nicotine.

Did you know?

Coca-Cola originally used coca leaves and caffeine from the African kola nut. It was advertised as a therapeutic agent and "pickerupper." Eventually, its formulation was changed, and the coca leaves were removed because of the effects of regulation on cocaine-related products.

Did you know?

More than one-third of adult Americans are obese. Diseases that kill the largest number of people annually, such as heart disease, cancer, diabetes, stroke, and hypertension, can be attributed to diet.

For a complete list of videos, visit our video library