Picture Gallery

Search For: 

Optimization - CHE425 Midterm

Optimization - CHE425 Midterm
Previous Image | Next Image
Description:


        


Ryerson University
Department of Chemical Engineering
Process and Engineering Optimization - CHE 425 and CE 8210 - Midterm Test - February 25, 2013
Time allowed: 2 hours
-wn·te you r name ::ind the following code on vour test paper: CH600
P-1 (15) -
a)   Find   l and global optima of the following function on (i) (0, oo), (ii) (-oo, 0), (iii) (5, 10).
f (x) =x + llx
b)   Determine interval(s) on which/(x) is concave, strictly concave, convex or strictly convex.
*o
P-2   (25) -   1pany manufactures   .m;.w;ts   r   y week. ThwuapJity of:e   odi.ici: prndpced  d!J.cing the week is(i = 1, 2. 3).and L?• Ci = 1.2.3) js thv Wffii[jce peumi t of eaJ5rodi1ct Wlier.e:
p1 = 12 - q1   p2 = 18 -2q2   p3 = 20 -3q3
Weekly production cost is C = 7 + 2 (q1 + q2 + q3). The company's goal is to optimize its profit.
a)   Setup the objective function and the constraints.  Indicate the type of optintization problem.
b)   In order to achieve company's goal how many of each product should be produced weekly?
c)   Show that the profit is maximized.
d)   Classify the type of profit function as concave, strictly concave, convex or strictly convex.
.1::.
P-3 (30) - A man!Uac. 1 ·     r   produces    difforent m1Jij     ducts which al] m11st hp machi ned.     .s.bed,  and a   · T regients   p3dut,   v     lablstime     Qfycli.pD).Cest>,   Q.W.S.-   .

   Machining (hours)   Polishing (hours)   Assembling (hours)   Unit profits (S)
Product I   3   1   2   7
Product II   2   1   1   5
Product III   2   2   2   8
Product IV   4   3   1   9
Available hours per week   580   450   400   
Th_e finn hs a. ontract with .a _distrbutor tq_ prov.i_de 70 uni& of product I and @ units.J.?:f.Jwy ction of  products  II and  IU  each week.  Th£9ugh  other  customers, the  firm  can  sell  each     k as mauy units of products I, II, and III as it can .i;roduce, but can sell only 45 units op oduct
·Th-!l.tSJo   unitU2.Leach   qduct should manufacture eacp we to meet
.fill G.o. nwctual oblig'!ti.Q.us..and ma.x.i,wi e ·t tutal   ·

a)   Wri te the objective function and all the constraints but do not solve the problem.   
b)   Indicate the type of optimization problem .   2 :J

P-4 (35) - Solve the following linear programming optimization problem. Show all of your work.

 
Maximize: Subject to:
 
Z == X1 + 3x2 + 4x:.i
3x1 + 2x2 :S 13
x2 + 3x3 :S I 7
 
Picture Stats:
Views: 168
Filesize: 2.41MB
Height: 2448 Width: 3264
Source: https://biology-forums.com/index.php?action=gallery;sa=view;id=45224
Return to Gallery