Author Question: Why are moist and dry adiabatic rates of cooling different? What will be an ideal ... (Read 54 times)

skymedlock

  • Hero Member
  • *****
  • Posts: 561
Why are moist and dry adiabatic rates of cooling different?
  What will be an ideal response?

Question 2

List four primary ways clouds form, and describe the formation of one cloud type by each method.
  What will be an ideal response?



akemokai

  • Sr. Member
  • ****
  • Posts: 347
Answer to Question 1

ANSWER: If a parcel of air expands and cools, or compresses and warms, with no interchange of heat with its surroundings, this situation is called an adiabatic process. As long as the air in the parcel is unsaturated (the relative humidity is less than 100 percent), the rate of adiabatic cooling or warming remains constant. This rate of heating or cooling is about 10 degrees Celsius for every 1000 m of change in elevation (5.5 degrees Fahrenheit per 1000 ft). Because this rate applies only to unsaturated air, it is called the dry adiabatic rate. As the rising air cools, its relative humidity increases as the air temperature approaches the dew-point temperature. If the rising air cools to its dew-point temperature, the relative humidity becomes 100 percent. Further lifting results in condensation; a cloud forms, and latent heat is released inside the rising air parcel. Because the heat added during condensation offsets some of the cooling due to expansion, the air no longer cools at the dry adiabatic rate but at a lesser rate called the moist adiabatic rate. If a saturated parcel containing water droplets were to sink, it would compress and warm at the moist adiabatic rate because evaporation of the liquid droplets would offset the rate of compressional warming. Hence, the rate at which rising or sinking saturated air changes temperaturethe moist adiabatic rateis less than the dry adiabatic rate.

Answer to Question 2

ANSWER: Surface heating and free convection: Air in contact with the warm surface becomes warmer than its surroundings and rises. Example: cumulus cloud. Topography: Horizontally moving air forced to rise over a mountain range. Example: orographic clouds, which form on the upwind side of the range. Widespread ascent: Rising air due to convergence in low pressure systems. Example: stratocumulus and nimbostratus. Uplift along weather fronts: fronts lift the air, causing adiabatic cooling, condensation and clouds. Example: cumulonimbus clouds in the vicinity of a cold front.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Most strokes are caused when blood clots move to a blood vessel in the brain and block blood flow to that area. Thrombolytic therapy can be used to dissolve the clot quickly. If given within 3 hours of the first stroke symptoms, this therapy can help limit stroke damage and disability.

Did you know?

Inotropic therapy does not have a role in the treatment of most heart failure patients. These drugs can make patients feel and function better but usually do not lengthen the predicted length of their lives.

Did you know?

About one in five American adults and teenagers have had a genital herpes infection—and most of them don't know it. People with genital herpes have at least twice the risk of becoming infected with HIV if exposed to it than those people who do not have genital herpes.

Did you know?

There are over 65,000 known species of protozoa. About 10,000 species are parasitic.

Did you know?

Recent studies have shown that the number of medication errors increases in relation to the number of orders that are verified per pharmacist, per work shift.

For a complete list of videos, visit our video library