This topic contains a solution. Click here to go to the answer

Author Question: Which of the following situations will cause an increase in the single-breath carbon dioxide (SBCO2) ... (Read 26 times)

Marty

  • Hero Member
  • *****
  • Posts: 553
Which of the following situations will cause an increase in the single-breath carbon dioxide (SBCO2) curve?
 
  a. Decreased metabolic rate and decreased ventilation
  b. Decreased metabolic rate and increased ventilation
  c. Increased metabolic rate and increased ventilation
  d. Increased metabolic rate and decreased ventilation

Question 2

A patient is receiving mechanical ventilation with a fractional inspired oxygen (FIO2) of 0.85 and a positive end-expiratory pressure (PEEP) of 5 cm H2O.
 
  His arterial partial pressure of oxygen (PaO2) is 68 mm Hg, arterial oxygen saturation (SaO2) is 88, and partial pressure of end-tidal carbon dioxide (PetCO2) is 32 mm Hg. Over the next few minutes his PEEP is titrated resulting in the following data:
  Time FIO2 PEEP (cm H2O) SpO2 () PetCO2 (mm Hg)
  0600 0.85 5 88 30
  0630 0.85 8 88 30
  0650 0.85 10 90 32
  0720 0.80 12 93 34
  0740 0.80 15 90 25
  At 0740 the single-breath carbon dioxide (SBCO2) curve shifted to the right. What action should the respiratory therapist take at this time?
  a. Increase the FIO2 to 0.90.
  b. Reduce the set tidal volume.
  c. Continue to increase the PEEP.
  d. Reduce the PEEP to 12 cm H2O.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Chocorrol77

  • Sr. Member
  • ****
  • Posts: 313
Answer to Question 1

ANS: D
The same cause for an increase in arterial partial pressure of carbon dioxide (PaCO2) will increase the single-breath carbon dioxide (SBCO2) curve. An increase in metabolic rate will increase the carbon dioxide (CO2) production in the body. This, accompanied by either no change in ventila-tion or a decrease in ventilation, will cause the amount of CO2 in the body to increase and thus cause the amount of CO2 exhaled to increase. The only combination that will do this is D, in-creased metabolic rate and decreased ventilation.

Answer to Question 2

ANS: D
The increase in positive end-expiratory pressure (PEEP) to 15 cm H2O seems to have decreased pulmonary perfusion because of overinflation of the alveoli. This is evident by the decrease in the partial pressure of end-tidal carbon dioxide (PetCO2) to 25 mm Hg and the right shift in the sin-gle-breath carbon dioxide (SBCO2) curve. Increasing the fractional inspired oxygen (FIO2) will not address this problem. Reducing the set tidal volume will increase the PetCO2 but will not im-prove the pulmonary circulation. Continuing to increase the PEEP will further reduce pulmonary perfusion and cause more dead space. Reducing the PEEP back to 12 cm H2O will optimize the PEEP and reduce overinflation.




Marty

  • Member
  • Posts: 553
Reply 2 on: Jul 16, 2018
Wow, this really help


nyrave

  • Member
  • Posts: 344
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

According to the CDC, approximately 31.7% of the U.S. population has high low-density lipoprotein (LDL) or "bad cholesterol" levels.

Did you know?

The U.S. Preventive Services Task Force recommends that all women age 65 years of age or older should be screened with bone densitometry.

Did you know?

Every 10 seconds, a person in the United States goes to the emergency room complaining of head pain. About 1.2 million visits are for acute migraine attacks.

Did you know?

A seasonal flu vaccine is the best way to reduce the chances you will get seasonal influenza and spread it to others.

Did you know?

When Gabriel Fahrenheit invented the first mercury thermometer, he called "zero degrees" the lowest temperature he was able to attain with a mixture of ice and salt. For the upper point of his scale, he used 96°, which he measured as normal human body temperature (we know it to be 98.6° today because of more accurate thermometers).

For a complete list of videos, visit our video library