This topic contains a solution. Click here to go to the answer

Author Question: The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and ... (Read 12 times)

oliviahorn72

  • Hero Member
  • *****
  • Posts: 579
The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and can even be on the order of MeV. Which of the following statements best describes why the energies are so much larger than from atoms?
  a. Energy levels within the nucleus are spaced farther apart than atomic levels.
  b. The spins of the paired protons and neutrons within the nucleus are aligned within energy levels.
  c. The higher energies of the gamma rays are higher in probability of emission because they must tunnel through classically forbidden regions.
  d. All nuclei are only metastable, increasing binding energy exponentially when the nucleus is in an excited state.
  e. The Coulomb attraction within the nucleus places it lower in energy, therefore greater excitation energies are necessary.

Question 2

Alpha decay occurs in some radioactive nuclides with A > 150. The probability of an alpha particle being emitted depends on the energy of the alpha particle. Why is this so?
 
a. Wave functions for the alpha particle must decrease to zero when the strong force potential goes to zero.
  b. Alpha particles must pass through classically forbidden regions with high potential barriers.
  c. The Coulomb potential for the alpha particle depends on the energy of the alpha particle.
  d. To emit the alpha particle, the nucleus must be hit by a gamma ray that has energy inversely proportional to the probability it will strike the nucleus.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

s.meritte

  • Sr. Member
  • ****
  • Posts: 306
Answer to Question 1

Energy levels within the nucleus are spaced farther apart because of the stronger nuclear reactions. Atoms experience excited states as well when they absorb a photon, but the Coulomb interaction is far less potent than the strong nuclear reaction. This is why gamma rays that excite nuclear energy levels are so much greater.
a.

Answer to Question 2

b.
Many of the alpha particles emitted in nuclear decay do not have the classically defined energy to surmount the potential barrier of the strong nuclear force. Higher energy particles, however, do have higher probabilities of getting out due to the decreasing potential over distances. They have less of the classically forbidden region to pass through.




oliviahorn72

  • Member
  • Posts: 579
Reply 2 on: Jul 28, 2018
Wow, this really help


dyrone

  • Member
  • Posts: 322
Reply 3 on: Yesterday
Gracias!

 

Did you know?

The human body produces and destroys 15 million blood cells every second.

Did you know?

Parkinson's disease is both chronic and progressive. This means that it persists over a long period of time and that its symptoms grow worse over time.

Did you know?

Vampire bats have a natural anticoagulant in their saliva that permits continuous bleeding after they painlessly open a wound with their incisors. This capillary blood does not cause any significant blood loss to their victims.

Did you know?

Addicts to opiates often avoid treatment because they are afraid of withdrawal. Though unpleasant, with proper management, withdrawal is rarely fatal and passes relatively quickly.

Did you know?

According to the Migraine Research Foundation, migraines are the third most prevalent illness in the world. Women are most affected (18%), followed by children of both sexes (10%), and men (6%).

For a complete list of videos, visit our video library