This topic contains a solution. Click here to go to the answer

Author Question: The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and ... (Read 13 times)

oliviahorn72

  • Hero Member
  • *****
  • Posts: 579
The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and can even be on the order of MeV. Which of the following statements best describes why the energies are so much larger than from atoms?
  a. Energy levels within the nucleus are spaced farther apart than atomic levels.
  b. The spins of the paired protons and neutrons within the nucleus are aligned within energy levels.
  c. The higher energies of the gamma rays are higher in probability of emission because they must tunnel through classically forbidden regions.
  d. All nuclei are only metastable, increasing binding energy exponentially when the nucleus is in an excited state.
  e. The Coulomb attraction within the nucleus places it lower in energy, therefore greater excitation energies are necessary.

Question 2

Alpha decay occurs in some radioactive nuclides with A > 150. The probability of an alpha particle being emitted depends on the energy of the alpha particle. Why is this so?
 
a. Wave functions for the alpha particle must decrease to zero when the strong force potential goes to zero.
  b. Alpha particles must pass through classically forbidden regions with high potential barriers.
  c. The Coulomb potential for the alpha particle depends on the energy of the alpha particle.
  d. To emit the alpha particle, the nucleus must be hit by a gamma ray that has energy inversely proportional to the probability it will strike the nucleus.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

s.meritte

  • Sr. Member
  • ****
  • Posts: 306
Answer to Question 1

Energy levels within the nucleus are spaced farther apart because of the stronger nuclear reactions. Atoms experience excited states as well when they absorb a photon, but the Coulomb interaction is far less potent than the strong nuclear reaction. This is why gamma rays that excite nuclear energy levels are so much greater.
a.

Answer to Question 2

b.
Many of the alpha particles emitted in nuclear decay do not have the classically defined energy to surmount the potential barrier of the strong nuclear force. Higher energy particles, however, do have higher probabilities of getting out due to the decreasing potential over distances. They have less of the classically forbidden region to pass through.




oliviahorn72

  • Member
  • Posts: 579
Reply 2 on: Jul 28, 2018
Wow, this really help


JaynaD87

  • Member
  • Posts: 368
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

The B-complex vitamins and vitamin C are not stored in the body and must be replaced each day.

Did you know?

Though “Krazy Glue” or “Super Glue” has the ability to seal small wounds, it is not recommended for this purpose since it contains many substances that should not enter the body through the skin, and may be harmful.

Did you know?

Lower drug doses for elderly patients should be used first, with titrations of the dose as tolerated to prevent unwanted drug-related pharmacodynamic effects.

Did you know?

Never take aspirin without food because it is likely to irritate your stomach. Never give aspirin to children under age 12. Overdoses of aspirin have the potential to cause deafness.

Did you know?

Anti-aging claims should not ever be believed. There is no supplement, medication, or any other substance that has been proven to slow or stop the aging process.

For a complete list of videos, visit our video library