Consider the three situations shown below. In each case two small carts are connected by a spring. A constant force F is applied to the leftmost cart in each case. In each situation the springs are compressed so that the distance between the two carts never changes.
Question 2
W2RXG0A3UPKMYlKi9SKDPbtzuKMBf/9bADT74X5GSy+fNaqqAsBttchpSoeTvx9XJT7BzhbggXDhhRemg9Npo37scrQWiyMc9Gkivmiic4rfJrFF8ku2S8zCoG2qFmSsgrP/GjDCfQ5fvk/GVGJBjrYGfGOjQ5t8zea0aJJsunbhMeOoNwMXTdPCKhdDJif2VnXP24RJYO+9906eBsxSBuW2iC2facFgy42Mqxm7r7yBrf9tNHEf3ht8ztl8HQhvUKYVz3fqayPGfBfSTC8/UKVRAlbarBVyix+0IB1TJ+CnadpqGnjAAQckwLYLzRbztonGTQtzNgWgZXag4eLHc4BrkAAcNGBTZwDBPMKM4hjIQotLAKCRl/pjsrH4yh+XuYE7It9pGrDFOfLWFuxEZJLgTw2Q2yQzFQunbL1mYuy87MHMYTELYmpSbtlVAAAKuUlEQVSg9TqYiJcG33UDiR2PhapqoI0YRWAzWwJA1rkLdsKxCwJcpgZkmsobgjaqE9Ay2/J86CQV+TEpMINYWDNVNfU0hbYib6CwSOOZjosnC3WFukuA+cH0HegxMbDFhjsf2dpuDqj52CIeFGzF4yL2Z7Z+fuXaHZc0dc/kxSRFAWB2uOqqqxI4z3fPh7weCgDn0mjhHtCMuqNsGDZM6eRNM+ITCoTZBU1VEU2FZsJUYapqc4bOMc6VaAsy7JLAwi4uHdTKOTBgijAl1nn9z+2M+xqbdKHuEiBXMxdfWbFxhW3dIAf8tAOaLq1TndN8vRuXXNmAmbZotzwxbDcGuLRyefLAMPjj19VHVdU3rXw6iV16nINSv2UrANyvpPoMZwcSDQSw6Qwamiu7p5VsoOdZNFzhciAcJQ67KbcgXgQaGK0yPBzk7z2Q1vC810H6yRuP0vEblF8LNTRcfMViYcgAD567snHiN7wf8nzyvEOW0uokq1H47aeM9bw1jUnyaxDDJ9s+XrQnz9Qtcu+Z+qaFkmsuq7b5lY/8KB7qVruSH5mgaHfagh9+urW7cctXe3P+iUF/uqn4AbdYAxqeKT87HLIgwhWLTU6DsyDFNscHVmPVEGkn4cAuDrBit7W6TZNhT4043Hk0dItm4ljE8L/n0mT3BWQ0JO8tkpiSItNUmgl+ADTtiAYqbXzhrxO/eBRH+Wg2g/JL86aN40GnVEZ8hIaug+KN3LxDNHfv5UdO5KWM+AUqQKZtfgEaEOsmX4MXftWPMuDXwGpRqm1+DUa02qb2IO/w69YOyC9cvfBkMZasgE1b/Gpb6l491NsDk4c6iY1A2qL2q67EwQ++1CVN2LNov9qi8uC3Tfl24lc+BjCmEh4b00lFA25R+laogSHQRECNhueKgE9oKjqXnw6vkwDSPI5wOrZfxKFVIGHzOJ5Lpx4nzzviCJfnLU5oKrOFXzKhJRV+x9Me5oN8mUYMuDxKeO1MFxUAbkHywI1tlZaGAIMRlsZoygUI/e85DYBmII6GTjvxDBAiAOm9uICyHgfwAF/aj7j+z+MAY/HEl453SPryEUe+8vc+8p5N/JJJlHE2yLfwu7DNj6P9jiJffdbCNG+N6aDiBzyi1FUg9x/XAFQaJeBjCjDSRgMBdp65AjxA6j0gFMfPvWfeCZPHCUD2XjryqMfRwAF+5AOQ/SId74SJfCLvbvwC85nEbww6neQ7LL/KqK4Gla843eQ7LL8xSHZqD4XfBX1nWPnqO8xv/OG5RE4HFQ14BKnrGFaiQ/PtpM2OSwMG0gh4AlLAM6wGnKdT51e5NNYYYIDNMBp7W/wCPOAT5S78LpgRFfku6AeDtgftm33abj4+ypOkAsBDShsYMTtYQAAIyEgMGFxR3LvW3zc9ayNOP3nX8+knTuG3/7ot8l0gq2HafD9tcRzyNbukSPm6zCQX5ooJQm0OSLRB55wCXxWn0bh67oo8o416FuAFtD1zRfU4Tc/qcaQlTelEY62nE3mLK7xfpNMrTjd+I+8oY+F3vPJVV/W6jXp0RVEnM6E9zGZ+ydHiuU0udm5OigoADyFpWy9tnUWm4irP9N+CkKtOQyu2UOZZvuCWL56ZKnlvSi+On/tYWNKgTY8ijk4nLe89k4c4kXdMvfDkfdh3gap7z0bh15R/JvBL3v3Id1B+yXsY+YattpN8h+VXGbu1h8Lvgv7Wpny5wbEJh1lxCHgYKEoxQQwkrgWBuZoxP6h44BaA26uzAEgLRwGetBb3nnmH2PE8C/AMQMgXYgBuLLLhIY8jPKAWP+JIN89bvv107jxOgL0yTie/yhVlzAcnYDQKv1EnMaANIl91EHUinVy+hd9mhaEuX23V4B51m7ffScoX8Noev/zyy6d+vaDHj+9vAeAhZcsRnd8v0kCAHpDSgHRiz9zTOF3977l74YQHGu5pajotAuj9xhFXGt3ylh6Svnz6iVP4XVAn/chqPsk3b0Ozof0Owq/y8At2ip9v3E2KigliSEmbqjj/FLACwbhGcvkz74Lye88iXP7es5zyOJFPXCNcU5z8WeQTzyK+qx8yQES4SNczJEy8j2fxPNKMOJFe/t6zPFx+n4eLNOp8eJ7HifdxjXid8s7f5+l43ilOHi6/jzj5M/d5OsI0vY9wETZk6f9cvv5vehZ5uyJhIs16fi8HWSRcPIs48b9rPX6edrz3LKj+3vN4FmHiWfwf7+Maz/O8I07+bNz8mtVOGnyVswBwtIAhrrZf+sx3NA5TYOYAoynNyL2pqZFY5/LetJkmqgHSdD1zFT60Y9N8caQrvveuqcJethN7Jp16HOlEmtKRj597Gp14pnq2BXvuik/vbKf1jG+kBQk8KyNeTBk99164prw78SuscuONbEIueBFHGbzHtzzrshImZBBx+pEvvskt6qSet7IEb67+FyfqSR7yFj/qpJt88SauMOQZMve/9L33DPWSrzyFjzqxrVY6Te0hyuB9vYxN8s3LKO50yncm8KtOfFV6kppvagQGrB+TfqGRJBA2YYmwZbFfARFmCqDlmf+BjGmOzqfhAx5gKLzPzagK/oj22js/QniatnMHnMfA60Inc1aBcweAo//l7719+IBS5xXfGQL5WRCOp/QlA+kCCHwJjxcdAR94xhNedHbv2TWBgTK498x5rv7HUy9+ndkgL2WRjwbvjAD2NrwCBO+d/wDAkOee4UUZ8Shfz4IX6UjTFXhGHO9Dvt6TuXQQ/uWtnDEg4UOdyBt/8iFTcQPUHDDeSb5kBSidMeB8A/zg0zkW6k7a8rJwq058qcTXP+TXSb5NcvD1Y3WPD2krlzbUj3yVV7nxhtS1+FFG+eGTLLSPfttvLl91oNyDyLdTe2jiF28xEA3SHtQ9OalL99LWVvDrHvD6TNZ0UAHglqSuYTtwnA8h0FPZQNWnYICjBuC5Q0kcnAKYdQIuL76pFcdG6swaRk69nvV6H2k1hYt3w16b0qw/O/XUU9MXEoARsKV1O7/WASw6FdkBpvvvvz/JSefPwUkcAAY8daAYMKIzkaOO7Llwvr4rD0BioHIIfHitGLTiCxLSA0IOLVInOjfwdpCMg4Hwi8RfZZVVFhFRvYxeNj3LI8X7uObvBrmvx+9XvtoiANe+DNC+VEE+5Ag0yYAsDD5kWW+/DgYiC+GEr8sXX9IfRL7RHsSRd94emvi95557kqjUUz/tIQY4+fhpawHi+JWONrDeeustVseD1MmwYQsADyu5Eq91CTignXYIRGmUQJp2rdMAhTpQAkiA4CqOQYyW/8EPfrB13kqCM0MCTz75ZNJamwbOpvZQH+i1p9tuu21qAxUQRgZoHwPwHb1JUgHgSUq75FUkUCQw7RIAtjR/MwGDthkPbR+A+1jBJKkA8CSlXfIqEigSKBLIJFC8IDJhlNsigSKBIoFJSqAA8CSlXfIqEigSKBLIJFAAOBNGuS0SKBIoEpikBAoAT1LaJa8igSKBIoFMAgWAM2GU2yKBIoEigUlKoADwJKVd8ioSKBIoEsgkUAA4E0a5LRIoEigSmKQECgBPUtolryKBIoEigUwCBYAzYZTbIoEigSKBSUqgAPAkpV3yKhIoEigSyCRQADgTRrktEigSKBKYpAQKAE9S2iWvIoEigSKBTAIFgDNhlNsigSKBIoFJSuD/A0ATzcvAdIWiAAAAAElFTkSuQmCC />
Which of the following statements must be true regarding
the compression of the spring in each case? Assume
the springs are identical.
1.Compression A = Compression B = Compression C
2.B = C < A
3.A < B = C
4.A < B < C
5.B < A < C
6.C < A < B
7.A < C < B
8.None of the above
9.Cannot be determined"