A block of mass m is on a rough surface, with a spring attached and extended. As the block moves up the incline a small distance, how many forces are exerted on the mass?<--EndFragment--> the switch is closed?
Question 2s9BhNjXV4Xv1KWs8ILVEGSU2pfJeXlytA6bdNfU9PKcQ+KOdZXLhewY6KjEaCKQlWW4ZQbfHcdGLMNf75z19hZNSlQcI8XqrVKhKcBYVFb5A5MKrsaG/Di+dPMT/vYqRhvi/elICYWCNiY+NBRmv3wbQBGayfP32Kzs4uoSdTtpPwwWg04c7duyIxSmqt+vo6uMNxjo7OsL17iKPjd8OSlHP+Iy9VB/iP/On/0GdXSoyk3CILDNvIvS/g7euFxCQd9NGhsGZcwJZhREluNDo6xtHUSaKBEXCaRkfEKjF5/khqkJmZDqvVJqzJ5CXkNJj6JRys9jKqaW3rwubGBto7OrEa8T0YAAAgAElEQVSycqUH4uEBVlFt6Zn4p3/6HXJz894Js9k/OBBqre++e46FBUd/Mh0sSQsyM6yi+xEY5ICR8Fptba3o6GgTmMzxkYMii/fEtrrKykpkZ9vBIsjNsbe3h6GhEVRXv5SKNrez8puYYIQ5xaFcR5iQ+yDJ68TEJJ6/qEZzcyvm5udFk5v7ULSeMJsnn32GouJCpFrMWFqYwdLSnJA4KHjE89cXOD1lu6qrqON+DfW1ywKqA3TZQn31f2oBRoOKM2Q0SIforYF/kC8SggBjfDzu5kejL98K47NBfPc8ECNDw8KQ/K//9v8hNCQUabYUPHpYhQePHmNjY0fwfIcH+84K8MnJKfr7h0Wjg7yDCp0UbzksLBwFRSWorKxC1YMHMMRe79pwfyzRCJmZwfDwGPr6h5zAZ2r/kri1tKQQVJfj4BR2dHQEz55+J9NfxfnRiTH3l2PPlqmvuwaJci3mDB3C7fPCAKOIqnMqLzT4GWkIDwtVdncuZ2dn8aL6Jerrm9He0eUUZCLxa1ZWLr744jf49NNH0tnCiHlleV7ISNyjXRaMfLy9rlWinRdQX1yzgOoAr5lDffODLaAUSdhbzOHlAS8/b3gFhMCeHwj/EH9kpmrR1GTA01fDGBgaw/r6Crq7DwQIvLN3hItLT6yurknL29nZhYCgGRlRD4SO5fVVVKjca1JSMn73z/+M0uJixBkMyupblyxGjAyzcDLrdH7ckZyFFH0vLCpxCqoTuExq+7r6BkxPu3JwVJ9jlbigIA9ZWVm3drSsrCxiapLC9ItQnJ/jOsHIyS1ATk6eOG73m2TUS07B6uoajIyNOZ0f9+Ez/l//9x/w6OEDWK0WZ7pgfXMXC0sb1yjp/P28odX6w9/XxY7tfh31tcsCqgN02UJ99WNYQIkEOf3iHx3i8TngfQovPw3S0iJhSwxGaooekTGxeFodgcHBSayubeHVq3o0t3aDXRgkWGAkc37u0BYmByCV59wHKbXY30st4JLiQmRk2Nw33/qaecj6unqMj7uYW6j2RuH4yKhoJCVbJPdHDkI6o67uHkxNzQi1l3JCCi999tmnyM3JFRZnZb37cmpyEk+fPhX1O2U9izSJiSYYDEYkJlkEC6hs2z84RGtbB+rrG/H8+XOcnrqelZhECsXfvVOG9LRU6TfmcfwxoNbIxOQs1t3a68JCtTAZDdCFvxlhKtd725I/NIx8Gan+IwzVAf4jfMo/1zMKePqKf/CMGqpUrNPAw99X8oLa8GCkJsTg6xeDqG3sF/Ggk6N9rBztO7/k/DLeNsjoQgEnirZXVJSBmiDvMyhN2TcwImzXyv4kOrBZzYjRRzulMRcWFwRg3dnV7YTIKPunpFhQWlouBRBlnfuS0/OJiRm0tnZeo+NPSUlCYWEOEkwGBAVdb0GlXjN1izu6uq45P+YmKdlZWlqC5KQkp114PdJ9bW9tYWVpEaQcU0ZUdDQoERAR+f4YQPYVE6IzNTUlhScq+ZGmjH+8h1/rUB3gr/WT/SU8l/v3hthBYuAIn/H2gre/DxLM0YjWBkOrC4fFFovp4Qn0DMxgZGL5ql/WpS2sPI5WGyxQl5QUMyruVuLhg4dISkoARdXfNdh9QYcxN78gEZ1Cd89jkpOTUVJSIjKZfL+0tIjm5ia0tDSjv7/PScJKwoG8PGqJFMNmS7tVG2Rvbxe9vd0Yn5jA1PQsGEkqIyszWyK5+HiTsgrnZ6dYWlpAa0sjqqurr4koMbdIoPSDB/fADhOtG28inWxvTzeWl+axtbmGM7bEyfBEfHwCEhOTERbG9rp3D6YfZmdmRc2PPzbz83PiAKOjo0GIT7zRIFEr8YQazfVq9bvP/HFsVR3gx/E5ffx3Kc7wyiMqRKyeHvAP9EJZcRxy8vXYW0xDddMM/v5iAF29Q2ALGDkFr/rwxAaUwLRYLPj888/x6WefCSvM+7CgHB8fSz8uhYrY0eE4LxUNgXBdhBCWJiYl42B/X5zfs+++xfzcNPb3XJi/mJgY3L9fhbt37+BtFHBsqat99Qptrc1OiQA+dWBQiAg4paVnyVRb+UA3NtZRW/sSLc31mJudwP6eg4af2xnx3a+qREV5GUymBGfej9voqF69eoX29lbXdTw8EKINRUhIKOjA3jWN5Q8C+Qzr6l6itbUNTc2dmJujBvKJUImRciw0NBwV5cWSXiCvYZzxTRkB5Tk+1qXqAD/WT+5jvG8lImSV+IKdJBDuQf8gb/j7BkEXFYpPw8Kgjw1Dfm8k2ton0N43i5npeSYS5YnJEUg6qaPDQ5Hy1Hi9u+ihmIlsLNQI2dnelKIEHQDZzbWhOsQnJAv8hlXVqelpNDU2oae3F9tXokg8B2E62dmZwiptNpud/cHK+ZXl+voG2ts70dXd7YwcScfPFrnUVDOMxnjnNJZ5zvn5BbyqbUBfbx/29/YEY86KdEhoOKxpmXj48DGSU9hbfJ0qi8Lt7H8mMYOSJggNCUFiUgIMsXqwUPO2cXR8Ir3EbAF8WfMM1D/u6u5zAsqV4+gQz8+Osbm5Ke11wSHhQuuvbP81LFUH+Gv4FD+2Z1CiQS4Jm9m/cHSVeHsjJsYf0WGJyLWFwppqgr5uAvWNvZgcH8PB4TG2d3bly+rv74uFhRk8/vQJ8vKKJKemkBbcZg5Of8fGxgRjp+iKBAQGiB4J2WrYNbK1vSUVWKXjQ3EsnPoyB8fuEk6Xb2+vuxRoDnGF0zNz0pmh3AeZZR4/eoD0NOu13N/M3Dw6unoE3tM/MCzOj8ewG6WwuFSqxZbUNPj6+iunEtkK3qfjOrOgI1QGo1Iq5MXHx0mvtbLefcnCCaE9NTV1+H/+9d+EaZvMO28b1FdZ39iQnmqTKRFBaWlvOOO3HfsxrFcd4MfwKf2a71FgM1SqY1RI/KAXPP29oY+PQAWlO01RMCdH4+UrA/qHHHKdx8f76O7pxcrqMmbmV/FgekmwdQkm41vzXsyZTU3PYXF5xRkx+fl6w5aagDRrskRr1C1+9uy5iK8rzo+m18cYcLeyCuXlZWCB4bZBbeSRoX7Mzk4KgYH7Poa4eJSUVcBsSXVKdx4eHaO1tQOdXT0g9s/9etQ7efSgCqUlRQgNvZ7H49SdxK1zvM6miw2G1wsPD0dGZqZEmYwibxvEJjY3Ngh7NqUGbjo/Msk4fkjI5OOIuknmwA6eifERGI0GiU5vO/fHuE51gB/jp/ZrumclGuQzkYma1PykhvfRIDzCH+GhBkSGhyBGH4WevjgMD0RjYHgG84vrGBgYxez8OrZ39oWdhXT7xOWZEhKgDQ66lgMjzf3S8irW1zevIi0PhIeFI9WcgqCgACFd/eabv0kh4vDQlYdLTEzBg/v3Yc/JhcWSCh+f2+Eh2zs7aGtvx7OnT7G97aAD47SVYOfEBBP0+lin4yBzy9DQkLC8PH/x4pojE9bsrDTYszNhMSc78eXKR761vY221jYhSSCXIQdp+NmWF6aLhCHOiOhb9I5Z4WX3TX1dHb766s/CLLO54eikYQ41Li4O5hSLYBM3NtdFGJ6VcMJiNBovyTlS8Y5FHk7Pfy1DdYC/lk/y1/AcTtjMFS3/wYlolMTp/fCg0oTCXB1mx5NQ2zqPupYRDA6OYGNzA10dbZiZnpCcHtmmHz58AHNKItLT0pzVYXL/8Qu/s6PARTwkyc/iBLtC2H1BQXN350dw9J07Fbj/oAppNtsbNFfuJl9aXEZ3zwBaWjtATB8HKb/YWZKTm3mtaEL9kZrn36G3ux2z05NOOVESr5aUFOJ+1R3JF95W2aZmSVd3v8iEKgw2fv7+SEgke3WaVKcpwH5zsLL93bd/FwdP0agdN9Eo0vFz6vzkyeeIiYlFX38vvv7rKdbWV8UBvr64wNHhMfb3D6XF7ua5P+b3qgP8mD+9X9u9u0eDrBSTCcbDAx5+3giP8EG4PgIJ0WGIjImBOc2AiUETGpsH0dw5gtGRYbEGAcGcukXoQlFaXILMrAyEhYbg5PgAjLxYeFDG1jajtm5haH756uU1Wi0WLsgoXVlZgfLSUoSGhiiHvbEk08vS8oJg/nZ2XFXjkJAwKWIUFBQ6j2eVl+wube2dmBbn5xCO4j1SJIr0/WXlFW/olxAIzi4W8hCSAn/HTYCKlfGyslLk5uZIG+DNggkFowYHekXAaWhoGGSL4QgI8BcGG9KM/e5ffoe7dytF0GlzewuBwVp4ezPaPYQHtbK8POGl8YLn99D2v2GcX/gK1QH+wj+gf9jbE2fo6SBi5dSYXSXErHh4wpIcCFOKGUf5etjMRkToY9Da1oeF+QVsrq/i67/8RaZt/b19uHu3HAmmOKGxYhToGqS4mgTxgMTQUdhdGeyrNackS/RG+n1CSt422OY2NDiAlzXPsTDvEkVnF0uMPgYGowkWi02U4TgNpfPr7u5HU1M7qBKnDKvNisKCAuTmFcBkSobnjarv8ckJhoYHhRl6aYlVcddgMScpIR72rHRxaq4tkIi2v7cHr169FE5BijkpQ6eLQFZWJr788kuh9GK+kQ58aXkdG5u7zqIMe5+12iCZzpOR59c0VAf4a/o0f23PIk7wioBVaaujiLu/BgEBvggI9kOlfyDCo4KRnxWF/r5pdA0uoKNrBK/PtwUmcnxyiODAAHE27tEZTUV9D/65D+a7CvJzhOTg8SefgNjAm87IfX9yCQ4MjuDFi5eYv9ITZudESnISsrLSkJBgEsYbHrO4uIyXtfUydZ9fWMDl5VW/tIeXUGo9ePgIFov11uvt7e5hYmIaTc1tWHZToQsICBTAMqE5bNG7Gf1R47iuvlHIFVg5Zk6PXTRkjaZk55df/haVlXedxRZWy1dXV6Uwc3zsAHHz+UPDdIiKjhVWb/fn/9hfqw7wY/8E/xHuX5kac0lHeHjq6Cjx0SAswgd3S4zIMGsxlpOM9N4VxBuj0dHZja2tQzQ1d+HyQumSeLexdDqddD7cuVOO+/cpLJSFwHeoq5FZZnFxXpThBofGnISnrMCys6S8vMSZ+6MQUnd3N2pqakTrWHF+pMZPTkqBNZW8gnkICXlzqs3rLCzMY3p6VnSF9/YV2AopvBJgTkmBIc7gbONTnpIOr66uEfUNLWhobMEFsZeA5EqLS0px584dVNy5K5opyjEslGxtrGN1eRHnVzKnvj6+Ig8aazCC2iPvO1hhPn/9GgSh80chKCj4nXnU9z3vj7mf6gB/TGuq5/owFmB7sKJdzF5hjSd0+jAEhoUiNj4KObYwdHQaUNcyi1fNI1hfcU1N33aDwcEhKC8rgT07A59+9gSpVra6vVtakv23ZHyhoLo72zOPo/MsKCwBNYyPjw7R09Uu3R4DfT1YXnHpCJtMRlTdr0CO/XqhxP0+yV49NzOBmZkpEYlStjFaJUt2URFzf9d1i8li3dTULLyCg0ODTufHYyMjowSXyK4Wd/acw4MDkMOQ+iiK8+P+5EaMiTEIi/W7sJbKfXG5ubmKgf4+Yduem1uQyJTEt3Fx8TAYDL+Y/mLVAbp/aurrX74FlGkx7/SMhZLXUikmbIb6xfEmLeINFpiTo2BKXoIx3oi2zhFMTc9jZXUNr8+U6Mn1qJGREaBGyeeff4ay0lJYUm3weo++V+bwevsGMDPrYntmJdcQG4NovR5JSY6OEbbfPX/xHG1tLVhbWxZJADovEg1kZmTgTkU5zJYUJ0bQdWeOVzMzs6ira5DI8fVrB0Gst4+viKKzLbC8rAy6cBc0hZIDJDVgP/PT777D3p4DLsOzsdBSXl4hbNLpadfZc9gn3dLSJi1xyj34+voJ2SyJa4kz/D5iBKYExsfH0dZKzeQR6YVWHCDJXaOjY6SvmZGrNiRUpuPKtX6OpeoAfw6rq9f8cSxAZ0joDDVK6AgJpGbHmEaD6NgwVAX5w5oQhTy7DbXNo2hp68D42CgOr7SDlZswxsUiK9OGjIwMpFjez/nx2LmFZfQOjL3BLENaLgKGqfVBgHNPbx9qaxtFuJ0awRx0fvl5eSgrK0NhYSkiIm4vtPDxRscm0NzaifmFJeWWERWlR1KKGelZOUjPyL42tVxcnENNzTMMDw9cFXcc+CJPDw9hlH78+CEsZovzXHzB++R1aKNFtxwjHVZsnFGE12+q3V07ASDC76QP+9Of/gf1ta+k6u6aAnvKjwWn+CvLC6iquou8/GIw8v45h+oAf07rq9f+4RZQqJqYG2RbHZ2i5hLw1UAb7i+A6Ai9HnEJYbCnadHeEYfOvhmMjc/i8MABByEchqJD3V3dCA+PkqiRfcLvGhRGYgfH4MDgtba3mNhYoclnZMbqcmtrO+rrmxzAY7feYgpBffbkibDDcFpImMnNwUhucWkBY2OjoqzHfmZlsOhx/8ED2LNzJKenrOc+fX0DeP78BSYnJp1EEqTfio6KErU85jjDwq93mLBTZn5+HqMjo1IEUc7HyDQ3JxtxcW+ftrKwwnxjbW092tvb0dTUhKHhIeUUzuXamqPSzg4cOtxYg0l1gE7rqC9UC/wQC9DxOZ3ha+D4wsGf4OWFiDANygojUJiah/ysFDyrn0DNqzaBxrCDg1oj8wvLWFxaleinrLwc8UaTYOQCg65rdvAW+eUlU83y4rxocuzu7MjUkNXV4GAtUq026CIiRQv4f/78Ff78P//j1ATh8ewtTk21IS0tHWnpGbc6P+7HTo+W5kaMjQ4LiQMlQglJIcSGuiIlRflISnJRa7HbhQzWr2rrUd/QDMp+KoMSpOQVtNuzhUHHfSpLRz05OYHlpUVRr9sXLWYHU05UZCSKCvMQb4xTTnVtSVvwh+Dp02f4+uu/SXeLO5icn4nGSyNECySg4Ojo7EJQcCjKK+4hISHpZxVvVyPAax+n+uZXYwFGhMrwuoS3jze8o4KRGxiM4DB/JMV5o7MrCr1Dq2jrGsHW5pJM0TTe3jLVjIqKQnlZMcoryqHVhl8TcWc/LgHJx0f7IFSEX2y2yAlDtcUiLXNr65uoflmLjo4OTEyMOyMxhqisvrIAkZ6Rca1dT7ldZbm8soa6+mbMzFIYyVHJJh8i6fgz0m1gDs/Pjbl5dW0N9fUNIqa07IYxZL4w256L3/72n5CRmYWb9GFra6vo6e4CFfJEIJ7P4+sHQmzi4ozIzspyArmVe1OWy0sOxbzvvnsm4lGuThvHHhSx53R/bXUFm5vr4ghPT8+wsLgISgCQaYY4S3eHrJz7QyxVB/ghrKxe48NbQIkGmRc8ZkToKJZo/DSwWUJgjE5Dus2AroFNGI0RQkywtLKDlrZucSAUX5+fmwKZksmDxyknu0EIcfHABfZ2N7G2tuL84hI8zXxZREQUtjY30dXTi3//j//EzJTL+XEayqnk3TsV0q7H6Oq2QYdK+n9GZT29AxgeGnGCkllVvl91X3qew3U65+G85sAAAdZNaGtrc67nfWXbc4S+n5EpK8A3x8ryqjhqTl8VbWEWc+JNJsQZHdVfRp43B0HkdfX1+Pbb7/Dtt9/i5MTRAsj9+ANCSi57bqF0lPT2dAkNmThYACfHh5iaGofNapGul5tO+ea1fqr3qgP8qSyrnveXYwGZeZFt5qq9ztsLQWFBsAUFISo2EhkWLUpz9ahtnkV14zDmpkcxNz+H+nqAokPE6BUV5SMrIw3pmXawN/bg8FBa6JRpnYenJwKCgrG5tYXnL56itaUNQ/29OHST0SRtf05OFopLCsWhvg1S4piSjmJkeEDa8xglKYO5u2y7HVZbmpOYgTi7rq5OtDQ1YmRkCCcnLhZqRldV9ypRWFQg8BPlPMqS9Fhra+sYGhqV6q2ynroiGWlmJCfGiwKesl5Z0lEODg7h+YsaiTrdnR8LG2WlxcjLs+P+/U+wur6F/d1tiQL39neF0otdMft72zg42BWRK9UBKpZVl6oFfmwLCHRG/nEAqKlP4uMFb19v6A0B0OsTkZIYAVNSEhISjGhqN2F4ZBIzswuYmf1WIkKyQw/2p6J8cQ3evj6YmVvG5uau5AN5uywEbG9torenB8MDHsI96MilEXjsB7JJ55Nw4PPPYLO+m1jh8OBQSFVHRkZlSkogNGEzoaGhSDSR7j4J0dEO3B9zcGSHbmxswF+//qsAphXzMWIlESvlPq2pqdcqxdyHmsvMZa6uLcuUlHrJymAxh2JTpOR3VJaULQCpvCjYXt/QiGfPnmJ2dsq5MTJCh5zcXFGvq7x3F1ZbFkZGx0Q5jzZyhrJyBPOMkrx1Hv+hX6gR4Ie2uHq9n9kC/MJRn+QKNsPmfo0XQnRBKCn2gTleh5xsK2qaxtDQ2IbBgQHs7mzjRfUrYWDp7BlGjCEO29tbmF9cxWtqnQAyZZ2bncLa6pLUYtj5oYzIyEhkZKSjsvIeyssrwY6Tdw2SFXR09qG9s0cYWLgvSVhz7Hbk5eVIe50SPbLq297eIeQKjMiUXCEhKyx4lJWWgGQHt+mDkIG6p7tT6Pu3rnELeiI2Ng4JiWaYTBRiuj79nZycwld//QZtLS1SOFGehcUZmy0Vd8qLRTbAbHbgDHluFnS2tjYkX8r9fbx9EBoWIcUQkiz8XEN1gD+X5dXr/jwWuAoEoYg08T2ZZ3w1CAj2QXyKP8IiI6E3hiInLQQdHfFo6hhHd+8otrdnsLN3KB0R52dngrFjBMbBJQsiSv+s8nAxsXGCLfzNb34rLC+35eCUfbkkuQKn3xMTExgdHXPm5OjQSstKUVhYhKgoB2bw8uJS4DuMxuj8KB6vDFahHz36RFhiyPV3W5Fhc2tbpDhfVNdg90r7hGQHiYkJSLOlgpVjFlCUQUaa+bkZdLQ1o/bVS5H8VHKGISHByExPQ2XlHXz66adITrHAS+MNShhQGIodJhIBXp1MGxICqutFRkbDy+vn0y9WHaDy6arLfywLyMzryhvSiR2fAScEUnshOEiDguwQ5KZkoSArASkWM/TREejp6cf29q7Q85+duXR73zScB+hIQsPCkJ6RicrKKtyreiDEqG/u61pDlMjCAqvRfVhdW8HhFVEDCU+DgrSIjo6V3B+dIfOQ4+MTaGxswrffPhVHqJyJHRZ2ew6ysuzIzrZLNVfZpiw5/aVGcv/ACIaGRnDBYhEgkeLDB1XIy8tG+C1YweamRtRUP8PM1Jjk9XgMnas+Wi/0YVVV95GeYYfPFY0/RaIGBxVAtuPqXl4aBGtDZUpO2jGlXuXY+mH/VR3gh7W3erVfqgXEAVC7mNViwFOjgWeIH9LSAhCg9UdCnA86O6LQ2beAtu5xLC+52t9uPhK7HRhBcTpYdf8R7Dn5INPz9w06pYGhEYyOToI09MrQRUTBaEqCMd7kFGJne9nX33wr0BMCpZUWOR7DqS+F1NPT095CrvAaJGWdnZkQSU7F+fFYnS4KpaUVApsJuoGBnJ6eQW1dA9o7uqCAsol9jIzSw2LLRNX9x3Kcr59Dw4TR4ezMFMbGRmQKzPPTWUZGx0Cnixb1OmUqrzzrh16qDvBDW1y93i/TAhIMejha604U2AwAXx8kmAIQG2GBzaxHhn0LySlGtLS0Y25+Hasb+zg9ceX7+HBkkqaCXOXdcnzxxecICHq/di9OFdmRQiwfKamUQdGmvLw8JCQkSj6OUpqEu3z9zddCBKsQMbBQQhbp3By79Nvq9W9CXnhOVo37+vrwt799g4UFFz8gCVL1ej0iIqMRG0v1Olfub3ZuDs3Nzeju6QNF3JXBKJeSmaWlpcjOyRWWbWUbiyrMF/b39Qvmj+t5TkoEJCbGQxvyJnO1cuyHWqoO8ENZWr3Ox2cBzgpZufTwgk+QP5JS/KHT65CWEoLS3Cg0tM3hZdOkTCFPj10RG70op6ns+CCw+n0H29HI/DI/N4u9XQeztMNhxKOkuACJCfESSdXX1aL6xVOB2aytu1ThWGyxWa3IzcmBzWZ18hDevP76+jqGh8fR2NSO1VVHexp5BC1mM6ypZkRG6qTbRDmOUBllqs0oUBmM/pKTU/DJo4eSn7xJHLuxvi4Kef0DQ0K0yuMY8SUmxCHdlozw8Pf7YVCu91MsVQf4U1hVPefHb4Gr9KAUSFgw8Qa8fL0RHumH8AgDkkyhMCYnwJhoQnNLLAYGJqSlbn9vHXRK3d090vWwvrErouucAtNBvW0wiluYn8buzhZ2d7fkWIKu2ZNMQHJhQT4CAwPQ29uDZ8+fo6uzQzorLl67KP5TrVb8y7/8Hvn5+SJudNu19vd2MD01Lgw21CR2hLwQxury8jsoryh1chjyeIogDQ8Noba2FjUva0D1O2XY0lj0uCv3lmpJUVbL8vTkCFuba1hbXRUxJmUjWWXIvJPB6fkt2iXKfh9qqTrAD2Vp9TofpwWUDL3AZlgs8QC8PeEX7I/c3DgkxUcgJ9OMVw3jaGruRH9/PyiO3tbeJdPFZy9qUXWvSjSFCwryRbKSLDE3x9bmugi3M2dGIDRHUHAwDLEGYXpmZwXzbozEKLw+ODSCM2qmXA3y9dntucjKtiPlBtOLsg+XlMWsr3uFsVGSFTgKH1xPqqsUsxnFxaXQ6VyOmtXor776Cn09XQIHUs7FiDHHno3SkmIY49/sE6YIU0dHK+bmppVDJP8XGhouU+x4U9I1EgfnTv8HL1hdZlsdQekUhGL3y/sO1QG+r6XU/f6xLcAiCavF9BmvPQU24+OvQZRBi7LgUERGBSHLFozuLgMa2ibQ3jmM7e1VcVrEvJE8tb2jExRIKikuQqwhBho33Q92e0xPT4N9ucoI0QYh156B5ESTRGIvX9aipuaVcP0pinDcl9RYhNlQvpN4w7cVFogRJKs0iRIoy6kMtqwRAM4olSLuSu6PZArEQdY3NFzjPGQ/MoHdJFdgtHmzWMLzjk9Mob6+Ra6nXCcqKkLIG/T6GISLk1XCbGWP//0lCy100n39g9JeZ7OakZ2dDR/fd7P5KFdSHaBiCXWpWuBdFlCKJFwSr3JC2MyZkLH6emuQaQ1ARpIV+RnxSB+TE4UAACAASURBVCZsRh+BjvZurKwy3zaC3t5eBGlD0NXdK1PCNJtVKsW6iAhpaTs8PMHq2ha2tl2qcr7SXxwpLXekmvqv//pvUXY7cOMzpDNi0aOqqhKFhQW3Vn35WIyOWDyholz/wLBoJCuPm2pJRXFRAeIMsU7nR2aZnp5etLV3CMOMezteSkqKyIXm5NjFESoOUzkfnTO5BTu7+q5RhfG4HHsWDAa9dLYo+/+QJWm4nr+oFvbrne1NZGVaRWc5IyMH4bpwAZC/6/yqA3yXddRtqgXeZgHin+kILy8AT4q5a+Dh7w1TUjgeB/ohPkaDvLQIdPUvobF9BFOTo9jf3cLgQB9wcYbnzwIlgnr06CFsaek4Oj7H1u4h1tYV3WKqgl5gaW1bCBrIusL8n7vz460xN1hxp0T6bt+VY6Q+x8z0OFZXlrC15eot9vDwQlpaBh48fIyk5GTn05K7r7r6pURWLM4oPc9+fgHIys7Bp58+EYzjzR5eTkeJL5yfm8Pi4sI1neX4eBPy8gvA5Y81+vsH0dTYjI7ODmysr2J5aQHd3QMoLCrGvaoqWFMt4qTfdj3VAb7NMup61QLvsgAjQSU/SGp+0lVxna83YmJ8EB2WiJQEHdKydpGYbEBTUzAmp5awsLyN6uoXcuYZ6gKfnYhi3eTUAhaXVkD1N2WQdLW7uw89PQNYX1sWYXdlW1hoKJKSEnH//j3p2Y3RX9cEUfZTllR76+joRE9vD05PHazUzJXpwiOEAJZOkCStHMJm09mBpuYmEXJiFZjD19dXGKUJybFYUm8ttFB5j4JUi0tL4vx4rJdGI0UWsl6TA5FynD908BmWl5fQ3dUJajqz4kxbOiLVXkzNzEn3yUiqWeRGmd8kvddNh606wB/6SajHqxZwt4AUJjzh6esNY0IEwqLDkZqsRVleFBpaZvCsbgztHX14fbaHsfFJ/Ocf/4TaumacnJxjbn7WWQDhKXd2toWO6+L1hbTIuRct0tOtuFNRhkePHsFqS/9eucqFxSU0t3RiaHgcZGLhCA8LQ3Z2huT/IiIczo+teK2tLXj+/CkmJ8bAPl4l+iPMpaKiXCLX2NgY96d2vqY0KDGSY+MTUBwneRKN8YkwJSQhzmi8tS3PeYL3fMFor662Bv393dhYX8PZ2WsEBATj7Pw12KZIKBGLNyGhWgwM9OHJkycwxSciIZHFFz/nVVQH6DSF+kK1wA+wgOQIr2Q7r2AzHn7eCA7xQXBoNBIMIYg1GRGfbILNmoCeHtLcT2NwcFD+eGXCXthvqwx+kfnnPghWzsnJBnU9Pnn8iTBK+/m9XaqSMJnt7U1hlaYoOztIroiZhYePjC9paWkCoKaj4/S1sbER7R0dMlVW7idCFy6kCiRXIDfibZXW/f194TAkNdfwsAssHRkRgXuVlUhLT4M2+O1Ke6sri+L0CZUJCg6RfCbbAG8bKytrUhAaHR3F+flrGI0m2DNTEBbsJRRmvUNzInzPYw/298EfkaRkM5ISE8XpxxriwOm86gBvs666TrXA/6kFlGkxGamPrsgJNF4SEaanRyHBGIas9BTUNVlRV98uU8zFxSWhplLgL7ddmlM3TkEzMtLw6OF9fPrJp8jMtMPnqu3stmO47uT0FCMjwxgaHMDa6rKzv5gtacFarTA+k56fg9Pk5uZWqVazAKKQK5CJhtXeiooypKamCi3XzesRksOuD2IGZ6YnnNN1XodVZrM5EazQ3qxQU75zfX1N8nfdXW1YWFxAiDZURNiN8Qlg4YTQFp5HGWwTHB4ZR3fPIKjHTMB5cWEWfvOkEKYYH6ys76OmcQrVL5sxMT6O+flF/K9//6NM8TPSLLhXWYHiknIkJplVB6gYVV2qFvhRLcAwiywzhM1In7EGXn5e0EYEIN8/GOG6QKSnBqK/Ow4NbZNo7xrFwgJ59VzYPOV+yMjCqIsKckWF+SgpKZJI5vucH49nNXdgaAwLS6twQGcuRX4zPCJSmK6pLEfKel53bGwCbW3tIuDE45RBBpsHDx+itLQEsYZYZfW1JVlfWOGemp4VyM7lxYV0wRDuYkpMEWhKbMz1PCWxe3Nz89L6t7AwK9hE0owR/B0cHApvX3/kFxTjXuUdJJjiQInO/YND1NU3obW9E1NTM5IySEgw4W5xCqoqzdDpfLC/fwpDfDSyUkPQ0mZCS9cCBgYnhK/x5HAPFKXfPzxH8uyK6gCvfYrqG9UCP6YFGLUwcHGHzXh5gvx35kRyDyYj3xYrsBlDvB7dHSGiX7y5c4iTY3ZcOKbDQiAQGSUwl6qqKgFGv+9trm9sYnh0Eh1dfUJLxeMYSVJNjqBp4v449Z2emkRra6t0mRCPqIzw8AjkFxQiM8uOjIysW8HLpAJjFEuxo6bmFijSn9QrcbDSZIseMXVTlMHpMvuRX72qw/MXL9De1iqOU9nOJZ3g4NAotre2UJCfA3t2Fmbm5vD1N9/gZU2N8AtqtaEoL7KhOM+AGEMA4OWBcF8vFIfEICtFC3tWIlKbZvG0uhvt7d1YWFrG2tNqTM+uIMlsUR2gu8HV16oFfjILMLCT5NsF4EFQNYR6KzImCHfLTUhODcbinQS8apoUMtah4Qns7TpA0edn51hfWxfND6vFDBYgGA193yDweW5uTui7WNAgCQIH84jZWRmC/dNHRwv4uq7uFbo62zEzPeWA9lydPDs7C+VlpdJj7IgU37wqI7nR0WGMDA1I4USpMpOYgbi/vFw7dFcVZh7N4sjY2BiePXuBv//9WwyPDL3h/Ljf3t42JsZH8de//AUD/T24e6cUBwf76GhvxsTEqERypQXJ+O1n2bBa9Q5N6NNzB9mtxhMBOi3s+UHQx0VCF+SFfarstW0LaezF61P4eXuoDvDNj1Ndo1rgJ7AAI0Elj3XO6THp4c8Aby/oIryhi4tDdqpeCiXRBj06OsLRPzCOqdl1ocUfHWXr2xHOTo7BSqsp3oR4UxwMBuPtN3t5if29Xexsr8vfgUhdOgotwdoQJCUnIi83m+5IsIkUNero6HISugYFBcAQG4uSkkLJ/UVFudrjbl5wanoGwyNjAks5OtyXzSwwRERGISU5CRlp1mu6IguLy+jq6kFLSwtaW5uunY5QFdpJ4UIkbpF/IyM6eQ4fby/MzU6DZLAGQyzu3clGWVEKAnVBwOHpleTBOaDxBPx94BPgj8hIL4SHBcP7ink6MEgr0fSXXzxRHeA166tvVAt8KAsoqT4WS9hRQufoo4EtPQpRkT4otuvQ0GLC8/oJtHcNYmN1HpNT0/jjf/0JTc0dSLUk4d69Cjx69Bhh4VFSKLh561tba6JdfHToUmsjfZXRGC+6ItrgIBFeYm9wa2ubVIiVcxDyUlyUj/KyEil8cNp82zg4OBSwdEtrO0jlrwxDXDxSrenCDB0VHe3sMGGxhFPl755VY2ycinmOwQo4p7MhoSESIW54AJwmK4NteY2NLcJSQ+Ep8haWlRYiJzcDusgrVhlGf6zA88eGUgfeXjjeO0Fn9xqqmyYwPknqLw9ER0UjMzMLJaXlqgNUDKwuVQt8UAsoRU0WSE7OAYKpfTXw8dUgxhSKmKgARMRGwZgYh1SLEW3tQxgemcLq6qJwBbKz5OhoH9vb+wgIDEJ6ug3ZWZkICyfImLlHDxFGpyYxp43KiI6KgD07HVGREcI9+Kf/+TPqG5qEifr07AxUtyP7tCXVhk+ffI6cnFwRe1eOd19SrGlhYV6m5i0tzVJkULZnZqaD5A+k11fAx+xiGRsdQWtLI2prX4rYu7K/1WoWR8vKNnkNhwb7BZLT1d2H/X0HOHzDTR0v3qDDnWIzbBa9/HCIxotoQXtIaoGAdPj44HBxHbW1vfjuRSuWV5ZhTkmE3Z4pWscUllJhMMonoC5VC/wcFhBHSCLWK0fIKIbTN40XUlJ0iI8JRYYtEWk2C+oaukQAaXZ2Hnv7R/j2aQ2qa5qkt7awIAdffvk5zBabaG2wMLG+voWl5XXsH7gorLTBgYiJjpSWsdraCfzpT38RYoTjE0d3SGBgEHLyClBSUoGi4nJE6w1vtcrm5rbQfk1NjEukyWIKCzas4rKvuKQoH1SJU8bC/DyePftONEVWlhdEHpPb2EucajHjN18+wb2qhwjwJ+1XF2pfvcLxyTn6+/uuKtiOMwUFhyPdGgd7WoREy2CnCivuHLSntxeg0eD8/BIz06tob+/B+PiYbGY1vaK8BIlJjnY81QE6zKb+q1rg57eAwjbDqPDSAx4aD/hqfZCeGgBtqD+slgCU5+rR0D6N9u4pjI6N4/hoE7u7mzg7PcL5+QVsaZNISxuHwRAD5to2t/ext++aAp+dX2JxeQN7B61C0DDOc1wVR2gACq9/+cXnqLx7B8a4d3dtzMzNo62jC0tLy04Ad7A2TATiScmVmZkpAGuelzAZ4gRbWjsxOjbmdH7+AUEIDQsXveXyirvOnCZ7ecky8/ryEr4+XmhsahHhKX//QDC6LCnJgdkcA58Ab+CYhQ/a7MoB+mikyDQxtYXqhmkMDM3g8uI1AoOCkZ6RLX3PZKThUB2gmEH9R7XAL8ACCmyGt8KWOmGj9hQNY2OsBkZDPHJSIpFsToHZOoWh/jgMDE2IRvH4xIxQUEVG6nGnohicUq6u72BpaUWcj/J0K6ubaGxqE1nPxYU5HLkJt5PiqiC/AIX5ebBnZ15jhVaOV5as5E5MTArsZWrSpQscF2cUXRBLqtUp/0mw89DwCHp6B9DV1YeZmXnlNIg3mlBaXi54v7g4F0mCv3+QsE2np1kxNTmJxuZWOSY6Kgr372SjqCQN4RFaB8aS6QP+aJDC38tT+BoPNg7Q2jiMr591Y25xDVHRemRkZCAnN09ykwqDjeoAnR+F+kK1wC/IAkqRhK1xbN2lPIeXF7Q6fxQVxCLRosVmmQEdPWl4WjuM+sZOrK/NY21tWQTLCTM5PD4FW8aOj1wRILtBNjfXcXR0iNesRF8N9utWVT1AZWWlMKiQ8PRdY2VlBQtzM5gYG5Zco7KvIVaPwoJcWMxuzDLr66itbxKSWHetEx5DvZMvPv9MAN5KrlA5F6fl6+ubV3T6NIAGVks87hbFw2IOhcaLBLXnV6w8nPrS+WlkOrw4v4rW5m50dPUKKUNWdqbwJdrtdmdBhtdRHaBibXWpWuCXZAElN8h7YmXzkF7wXL7k2hBvaKPDgPhQxMfHIcoYA2tqBPq6hjA4toipmZVrPHzuj+Ue8SnrqRtcWFiMzz77FEVFRQjXhSmbbl2yqDI0NCitdTtbnH6fgPog1D+JiIwU7F+s3qFdTI2T3p4uUMekpbkFh0eOggy5Dh1iT1nItWddyxXyoqcnJxgfn0RDYzMGBodweXGONGsSHt9LR1Z6FAKDPYH9U+CMTDU0FmULmDsFNpf30dg2h9bOUeztboEqdYlJyfJsCTfU+VQHeOtHrK5ULfALtQCdIWEznCJ7eEIf5YNH90woyY/A2IAV31SP4UVtD8bHxkRb5F1PwYJFcLAWpaXlePDgPsrLy2AwGPB90R+5Akl4QCd4fkWVRYYVymMyb2ixmOEfECD9zQP9vaiufoqhgR4sLy/g4mp/4grLyopQUpyPmxhDTq9J3Er6rra2DrDoE6oNwGf3M/HJ/TRERIc4HB9twUiZwaGkDzyBkwv0Dq7g6asJDE+sgTlDVrSt1nRYLJY3CFJVB/iu/yHqNtUCvxQLSER41U1yetVj7EXsoBeCw/0QHBGMmMhwBOl0sCTr0NMdi9auGfSPLuBwz0Wz73ocD1itNlSUV+C3//RPILuz/ipqc+1z+ytqnvT29qOru9tJeRUSooU9Ow1ZWWmIiXH0C9NRsjWuubkFJHQlMw2dLq+TmZmBhw8fIisr+432OsqDNjY1i/YJabw8PHyQkZWOigo7LNZYePpqgMOzqx5r4v48pGr++tIHK6tHaOlYQENLH3a315GcbMGTJ5+JDAF1VW4O1QHetIj6XrXAL90CSrGE0Q81jF8fAT7n8PDRIDczAlaTP3Izo5GYMoeI+mEM9Q8IZ97ewYm0jzke7xJRUdHIL8hHWpoVuvB3T3t5DGEuJ8fHWF5eFiICB7WWI1lJUaXSkiKZ/nLf46NjcXzUH2lsbJVokOsJeHYwy5QLs3RkFKuxindng8yZ0FjV1dahpqYGJ8cnSE5KQmVFPiypCfD08wHIZ6gIQtEWPl6Anw/2Ns7Q2LGEhtZhLMxNC/MMSWPZjpdjz8RtYlSqA3T8b1D/VS3wcVqA+EGpgjIiuoCHtxcCI4KRFeCHkKgIZGbEYnwkAU0tI9JjTKJQZczMzkiEFhYWAos5CdZUK3zexS14cY7FhRlsrK9gc2PdSZTK87GLIyPTLhhEQk6aW0iqWiO6IqTJVwZb3UpKynDvXtUV5MXl/LgPVeRaWxowNDwgou1enj6wmaNRkhsHY+yVkLqw7LgiPzo/+HhjdXEWz543oLWtE+fnp8ixZ6AwnyQONuE+VO7Bfak6QHdrqK9VC3xsFmAExEEM4RGromcyHdT4apCcHI7kxFCU5cYiJTkWushItLRHCzXW+gb1gafxx43/BkHJttQUVNypRLY9H5GREaJBfNMUpMginKW1rQ3bOw7tEi92jgQHg4WUqEg9fHz90dPbL0JFX3/zNSjzqYyIiAjk5xcKPtBmS3uDVPX09ERA2S9fvsTC/Bw8PTWIN8WjINeMdEs4AgM9gdOz66BnXw0uPTTYWT9Ge8e4RJsrK4vikO/ff4DSshLE3KDhUu6HS9UBultDfa1a4KO2gANADbaEnb52OEVvDQLCg1FckgJjjA7lxXY0dy+hqaVP9EH2dzdkqspOid6BMdytnBCt3+QkE+Lj469Z4+DwCCNjMxgZnQJfc5AZ2mazyhST5ATz80v4y9d/Q0tLK5YWKbzuGtl2O+7frxIHSBLTm4O5xeHhcQFLr66uS9RWVpqPgqIs6GPDheoKB4x0r2bN7Pf18cLR3gna2hfwtHYccwuOfKfJlAB7Tj6ysuwIDr7qFb55QdUB3mIRdZVqgY/VAko0yGkxIyV2t3mdS69scGgArPYgJCUlwJSSALM5HB1NIWhsH8bQyCw2N8cxNrmIw8NjYXOO0UeiuLgIGekZ0IaECnaO9PRr65uCLTzl+a8cYGpqivTYbmysorW9G998/VeMj4069U202iAhcK0oK8Hjx4+Ezuumial/0tvTLV0i41ckCXk5JnxWlYmMrHj4+Hk68n7Oft8rzJ+nB9aXNvCquhOvGvtAISm2u1VV3YPNlg59bBzeRqvPe1AjwJufhPpetcCvwQLuzpAFAzoOTw/4+GmQnR4Ic1I6imw6mBLj8V11N4aHR0XEnZi9keFBhIZpMTw8iC8+/wJJySmC2dvb3cX+3s6VxoZDKY71Cx9vjTC3vHjxDNU1tRga7AP3VQY5B4uK8kE9kZTk5Ddo8bkfHebTZ9+hu7tTDgvTRaEoLxkluVGIjvIGjk4cPH9KwYTtbl5eON0+xuDgjESNs7MOIlcKo5M1OyEh/pr4vHI/7kvVAbpbQ32tWuDXZAGlvkDnx8KBUERdwDvAGyHBQcgOSoSPVouE+BD09xnQNziP7oEZzM/PYH19VXZ/fX6JWIMBdns2Tk9OsbQ4j729HWdV9+z8HLNzi/D26RY+wMGBQeztUkfYYciQ0HCYren45JMnyLbnCD7wpokJl+nvH0D1i5eYnp5EcKAPHlTY8On9dBjjQ+HpdUkWVYcTpwP0vAT8vGQqPDq5herGaQwMzwnMJlwXhbT0LBQUFtyqXXLz2qoDvGkR9b1qgV+bBRgNKs6QnRN7l4DPhbSN2VLDkBibhvysaPSPbKO+dRJ19S2YmpzF3NwS/nXiP6DThSIrw4bQ0BCMjk1KtKdIXpJ1emBwFOMT01hfWxNVN8V81B0pKSnHnTt3kJdfJEBpZZuy3N8/QEdnJ1rbOoRU9eTkBDZrPD57mI2iwkR4+fs6CjtXDtXREuiJS2iwv3WMxo45VNePYml1D4Y4I3LzCmBLS0NsTOy1ljflejeXqgO8aRH1vWqBX7MF6Eikm+TcAST28YJfSAAs/n7QxeqRkhyJoqxwNLdN4GXLNLq7hqTlrbv7VBzg9s7ulUaxw0ivz19jZXkZF5cX13qLvbz9kJWVgz/84Q9SIImNvV1MiUwy1dU16O3tA52ft18IUq1psKUlIZgdHyzmkC9RhKWYtCPRqQYH+57oHzlAU8u4iDjh8v9v70yf2ryuMP7TvgACgWQwiwQyS8BsBmM227E9bibtOO6ndvpHph+azrSTuJPEG5vYMftiQKw2mC2AkEDqnCvkJh47tSF2ZuDeGY2Q0NX7vo+kZ86955znOaCkpJQ//fFLJcFvt/9/ywC5Ak2AZ/nLrq9NI/AmAj/fGxRiUfqDJpUoyfLYyMrMoTyQTnGJH1/RHIW+XIaeTbC88oL1n6m+JN9WiqOj0YSWoDxnFBtMTxZXrzVz9+4XtLY0ESjyqV7h5JzkfTi8pzw/ujq76O3twWQ2U1Hmp7Wpgty8Ywl+2b+U5buct6i9OKxK7+/Vwg6P26fo7h5mf3dTFXJXVpRRU32ZosJfZq+Tx3vbvSbAt6Gin9MInBcEVEQoZTOSKDlSYqyWNAeVVblcvOCiptzP4+7LPGobYKC/n/W1lV9FRmr9rt9o4a9/+RuV1TX4faIpKM26vxyiRDMzPcHgYC8LC/Ps7e3i9Xj5vDHA7aYCsr3ORIG3yvoe9/qK0KnForLBM5OzPHkaZHJyCpcrTfUVNzRIIXYAs9nyy4P9yiNNgL8Cjv6XRuBMI5DcF1TdJBINStmMpHXN2OxmcgszyPF6yCnIUWUzg5VeegZnGRkPsbS4JJotP4MnYbTe2NTEV/fvc//+VzjE4OgdY2trW+37iULM+toaKSkuqqovc/N6JRXlFxJlL1LULct1UTyQ87JbiBzEmZ3c4OHTUfqVefsuxSVV3Lv3Z+rrr+J2Z77jiG9/WhPg23HRz2oEzhcCr5fGwmtHiejLaMBoiVF2yUphQTHXq7209b3g2++H6OjsYXZuHuneiMWkJCauRA0KfH7cbo8yZLfZ7W+twRO5flGF7uzs4bv/fK/8iqurqvjDnUYqa0pxpDoTGV9Z/gr/ybkJAZoMrC1u8eDhJN8+HGZ5+YXqLS4r+0yZLwUulX5Q9CcfsCbA8/U111erEXg3AsmIUEnyH5fNEMNkN+N0WvE5s3FkuPF6bZQHHPQNhXg2vsLI2BSxw11VR9jX18/h4SGh+Xnq6mpVVPamh/H8/BxjoyOMj48jWWCb3UldTRFf3Ajg87shJnJf0skiKs8JpRfxSJHi7tDsMu3tQwwMjat+X3Gtu1JzGRE9EC+SDx2aAD8UMf16jcBZR0CIMBkRiteGtJ/JzWLGm2XmVnM+pf5UamrL6OgO8fipk7GxSTa3w7S3ddDX26cSH7du31RWmZKdFTN3MVY/OIjQ3R3k66+/Znx8TIn5lZSU0VhfSkVJOnZnHLaTUlfH52G3qEhwMbRJV880w8Nj7O1uqWWz1Ce2tDSS6c440aeiCfBEsOlJGoFzhIAyXBMz9yNVT2iyWyjwe0nPzqKo0ENDdQadwQCPuuZp6xohvL/O1PQ0BqOBUGiFS4Ei5WEsHRqbWztK66+9o4PNzS3Ef1hEUatqKrCnOUEsAGRPUpa+MoSMbSYONiMEB1Z58GiKmblVJcBQWFRMzZUG1fMrhkcnGZoAT4KanqMROE8IqKWxIbEkVQ5sYtRkxpUuZuYeSv1pBC7lU1C8QIEvj/7+UeZDywwPj6ibCKRub68rD+HtnT2CwW5evRJz8yyam2r58m4Nl0qyIR6F/cj/CFD2/cwmolELcwtbPOqYpqNngu3tTerqrtLSeoPqmloylRfyyT4QTYAnw03P0gicXwSkNCVZNiMubDYLJWUX8FzMoKrcT1tXOQ+fDCqiE/1AEVD917+/42lbJ+IQJ8ZIFotNaQfeuF5DwxUvXq8B9pP+vlLzl4j8MJpZWz2ks/cFPT3jrL1IKMzInt+tz69TVlJ8qs9BE+Cp4NOTNQLnDIFkokSWwyIIo/qLTZgcFjw5qXjS07lwwUMgkMG1Kg/Bvml6BmYIhWZYWVl9DZbT6cKR4iLdlYbLAQaLCJxaIGJMFD5LAsRphSOYn1nmh4cDjI5OYDbGyMnNpfJyuUqyiBT/aYYmwNOgp+dqBM4tAtJffLxRJxlb6dYwRcBkpjDPSF6Oj9bLmdRWf0b+D894/DiFyalp9sSEPR5jbz/M4vIq/f3j5KRHqK0pINPrxuawYrQaE8RqNLG3skVf7zCdXUFevlxWpku3b99U4gyyf3ja8fsSoKpxTO52nvZS9HyNgEbg0yJgSOzXyUElYpNyQHMMg82M1WnG43NzPTWNTM9x2cxAEYPjKww+myS8t8Hc8ykeHG4zPTFMXV0FDdeqqfosm4AvBVxOftqI8LRrie+fjDA9Pa0uzV9YxL17X1F/tQGR1z/t+KQEmGjnMyRUGmTvQDY5xchYD42ARuDsICClM2K6bjbh8lhocudS4k+htraUrr4l8nPTGRwcZu3VXkJhenKG3uFVxqY3ab7io7E+j8LifGbnd/nmwTOV+IhGI+TlXqSiopyS0lLy8wt+E7x+F/ZR2wjJAkexuNNDI6AROBsIJBd0ci8BjiQzLFay8jKpz3Tj83mor8wg2O3nx855nnSMsrEWYnVlgR8fhpkYG6P/WTE1tRVsbIbp6BpicXGR1JQUbt5s5UZrI/43pPpPA9wnYZ/kvmn0ME744IiIqFDIvoEApHr9TnMJeq5GQCPwuyMgP/Ik+cnJyGMVCaoiQqXkYnOayC9KJ/9iKUX5Xgp8hUptZmBogpnnIZaWlllfXyO0vMXI5Lqy8Jx5/hyL2YjPX8jtO3e4fecW7vew8HxfPD4BARqUGbIYIodFUXZ1ncmpBTxpUWw2E2GpK9JDI6ARqPqCjAAAAalJREFUONMIyO/faDJgUh0mcQ4PYwTybVjMJWRlubFYnezs7LG1tc7mxkuGdrcVh0YPo2RlZpGZlUV2dh4XsvNU98hvBdZHJ8B4LK7kcOLECe//xNjoKH8/2iDYmaKYPSLZIz00AhqBs4+ARIiSPDYYsIoQq9VE3ODk5Rbs7PxELJYMhuJEI+HXeIjggtQOtncEycv3Ewj4cWecrPXt9Zse//HRCdBsNmGzWbFarMSOIoRC8ywtLmA0GhTDCzHqoRHQCJwfBOSXL4GgEKEIJYiXcCQSJRzeVwlS1Ql3bCoiPLG7u8vs7Bz/+OafhA+i3GhtoqqynJyLF3E4HEpxRjQHk+3LH4LkRyVAk8mA02HH5XKp3j2LxarS5tHDGHExctZDI6ARONcI7IX3sduOMJmM2Gw2DAbHG3jEiUmJDQa2t7boDgZZf7lKsKudluZGrl67RlpaBikpqW/Me7+HH5UAheHtDiupqU5SnClYrXasVgsmk+m1a9T7naZ+lUZAI3A2EYgrLkhEhO+O4kR6P7y/S0d7G21PH3OltoKcbDfNLc2Ew+ETE+B/ASdGKhN51ZgeAAAAAElFTkSuQmCC />
1.1 force
2.2 forces
3.3 forces
4.4 forces
5.5 forces
6.6 forces
7.7 forces
8.More than 7 forces
9.None of the above
10.Impossible to determine"