Question 1
Refer to the information provided in Figure 7.10 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACzAO0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooA8o+Nf7RPh/4IeJvhtomsL5tz4215NEtgsoQwbkP78gj5kEhgQ8jHnA54wfV6/Pf/goR+xl8Xf2nfjH4O1bwzr/h3TPD2l24s9Ng1G8uEmjuj5k80xCQMBkRRqMMf9WvTPH3n4YGr/8ACOaV/wAJALUa79li+3/YWZrf7RsHm+WWAJTfuxkA4xkUAatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkeKfFuieBtCutb8R6xYaBo1rs8/UdTuUtreLcwRN0jkKuWZVGTyWA6muFs/2o/g5qV9a2Vl8VfBd9e3UyW8Ftaa/azSyyOwVEREkLMSSAAAetAHqNFFFABRRRQBh+IP8AkLeGf+wg/wD6SXFblYfiD/kLeGf+wg//AKSXFblABRRRQAUUVhWOrvJ4w1jSiDtt7S0vFYj/AJ6tOmM/9sOnv70AbtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV7uxt9QiEV1BHcxrIkoSVAwDowdGwe6sqsD2IBHSvk7xFrXj2++Jc3/AAkHiTxfpWmXuuQQaJ4c0rQlmsblbXVZo5o5phas6Ry2aWc/mtMozLOQSsbIv094z+0f8IlrH2TTrvVrn7LJ5VhYXgtJ522nCRzF08tieA+5cHnIr5QtLXR/BnxLXwHBZ+LtR1b+2ZNQhsb/AOJ0IaeGS8a4ac2P2vzHiUOzbWiLOFO/cxLEA+yqaGB6HNOr5R1Txb4m+Enif9p3U08S6v4obw74P0/XdLtdYkR47WXydSkKRxxoiBSYUzhdxwMscCgD6tzj2ozzjvX57/Hj4peKv2YPCHgTUvDviHXNY1Lxp4Ovxqd1qGoTX6rqCQWrxahGkzukJVp5spGFjIdQVwi4+h/BOnXXwv8A2mbbwPpuuaxqPhnVvBs2ryWutancajJHeWt5BCZUlnd3XzUufmUELmJSADnIB7N4g/5C3hn/ALCD/wDpJcVuVxPjPxbYaNr3hyO+FzbRpfuz3TWsn2ZB9ln+ZpduxQM8kkAYPoa7QEEAjkHvQA6sTX3u01Lw8Ld2WBr5xdIP44/ss5Cn/gYjP4CrmmaiL83iZBktrhoHABGOAw6/7LKfxrP8aPPBo8VzbukTW97ayyPI2FWEToJyT/1yMlAG/XPybrPxzCUtx5eoaeyy3Jb7rwSAxxgd8i4mb/gFdBXNeOY/s+m2usLF5sujXK34G13IjCsk5VU5ZvJkm2rg5bbQB0tFNVgygg5B5BFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4t1/XD4U8Ua74Nurb4SRa3feMDq1hH4g8am3164llv1mtXaCOxlYOfkSLDEpEIlI+Q5+0q+TE8INper6x4m0DULO40W+8YLpevahqmkzecrxa3LPC9qQ4D+TPeT2plYYXykYfLCQwB9H/D+88T33heCbxjp+n6V4gM9ws1ppdw1xbJGJ3EJSRlUvmIRkkqvJPyr90cRov7Othpnj/xh4qvvFniLxB/wllqtjqujaqbN7CW3RZFiiCJbK6qizSgAPzuO8uea9booA8U079k/wAIrp7adr2oaz4x0yHQZ/DOnWmtzxFdM06ZUWWGFoYo3LMsUKmWRnkxEuHHzFul8AfBWy8E+KLnxNe6/rPi/wASS6fHpMeq688Blgs0cuIYxBFEoBdizMVLsQu5jtAHo1FAGF4hUNqvhoEZB1BwR6/6JcVnf2Xe+CfLbRrc3mgqdsmlJ/rLROxtvVV/54nsf3ZG0RvpeIP+Qt4Z/wCwg/8A6SXFVfiN8RvDvwl8F6p4s8WanFpGgaZGJbm7lBIQEhQAACWYkhQoBJJAAyaAOH0X42/DfQ/iBrGg3fj7w9a+INc1GK4tdIutRiiumzbwQBBEzBt5eFhswGzkYzXp+taTb6/o19ptyoktb2B7eVTyCjqVP6Gvxb/aT/4J8fG7xt+1Nr2o6PYQa3onjLXJ7/S/Eb6lEtusUpacK5Z948qPIwFORF8gIxX7FfD3UC3h2w0m8urifXNMtIIL9b/AuWcJt81wCQQ5ViGUlSQ2CcGgDQ8J6rLrPh+0uLgxm8VTDd+VnYLiMlJlXOOBIrj8K12UMpBGQeCDXM2sn/CPeMJ7KRwtlrA+02pcnC3KKBNGMnA3IEkVVGSVuGNdRQBy3g2T+x3ufDMuVOmKv2M4OJLNs+VyeCU2tGRkt+7DHHmCuprB8UaPcXiW2o6akJ1qwJe2MxKrKrY8yBmHIVwBzghWVH2tsAq/omsW+vabDe224RyZDJIMPG4JDI47MpBUjsQaAL9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm694gsfDOnrfalM1vam4gtvMEbPh5pkhjyFBIBeRQWPCgksQASPMLn4Z/DTxB4lXxM2r3M0Ueo/aG02LxFcrpT30U4HmPZiXyGlWdCfucyZYgv81eqarpNlr2m3On6laQX9hcoYp7W6iWSKVD1VlYEEH0Ir5C074ceF9L1+48S6Z4e+GmjaNpfi/wDslPDEnheFdSWUaiIhIt4JN8c7sVuIUWMLseFQMHzAAfZVFFFABRRRQBh+IP8AkLeGf+wg/wD6SXFfOnxHfVP2hvjTrPhrQ28Oal4Z8AW/kalYa68jxXGqXkMq7ikfUQW+9QW+UvcSfxQ5H0X4g/5C3hn/ALCD/wDpJcVuUAfN37KmuX3jj9kPwRNDPBf6/wCHYBp6tZTqRPNp8rQAeYQQBPHEMtjlJ8jqK9vn0zTfGljpms2c7wzeT51hqduNksaSBWONw5VsKSjAqcDIyAR0JGRg9K5fR5T4c8RXOizMBaXzyXunMc4DElp4c4wCGPmKC2SJHCjbEcAGbeXV5qUEeiay0GmeIlcPpuoRhvs9xMgLLJH824ZAO+AtuK+YuXTLnpfDeurr+miYxG1u4nMN3aMSWt5lxvQkgZ6ghsAMpVhwwqzquk2mt2MlnfQrcWzlSUbjBBDKwI5DAgEMMEEAggivN/EVxrPw01d9elkbUNBRAt1Of9YYB/z29HjySs4+VkLJKF2rNQB6XqGo2mk2M97fXMNnZwI0s1zcSCOOJAMlmY8KAOSTxXluk/E7wh4o8Q3uofDjxVofizVFiW51XQ9J1OGaS6gGEE6KrYWUDaoc4VwFRjxGycF+0zrOneKvGXwE0jV57eX4Y+IPEckmqXEkwW0uriK0km0+1lzw6SXCqdjDDNEoI7V7Ck3gjXPi1A8Ulpe+OtF0maIGBmeSzs7iWIssm35U8x7dCob5iI328b6AOr0nV7TXLCK9sZvPt5Oh2lSCDgqykAqwIIKkAggggEEVdrmtU8O3NlqU+saC8cF/Mv8ApNpMxW2vSOFL4B2SY+XzVBOMBg4VQtzQvE1trZeDZJZalCqvc6dcgCeDdnGQCQVyrAOpKkqcE4oA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACvDNQ8b/Co/FXS9V/4RFL/AMYz3F5p8fiO30KOW4tUtp47KaR7gL5iRCeYQbv+uhx5asw9c8V65b+GfDOqatd39lpVtZWzzyXuovstoAq53yNkYUdScjivjTTPEWn2/jjVbDXPFHwktPFN/wCJkjvo7TxHOdRYw6m8ltClqmFD/OD5WMPId0u5skgH3FRRRQAUUUUAYfiD/kLeGf8AsIP/AOklxW5WH4g/5C3hn/sIP/6SXFblABWT4j0JPEGmNb+c9rcxsJra6jPzwTL91x6+hU8MpZSCrEHWooAxvDWvPrNrIl1bmy1S2byru1OSEf8AvI38UbD5lbjIOCAwZRsEZGD0rA8SaHd3M8GqaPLFBrFsNoWfPk3cOctDLjkA8lXAJRucMpdHu6Dr1vr9m0sKyQTwv5NzaTgLNbSgAmNwCcHBBBBIYMrKSrAkA+Ff+Cknj/VP2WPhPD/whtjp1zofi+7bT7jRda0yK/02xlVTL58EcgKKzEH906vGdoZUUh98/wDwST/aA1P4x/DjxlomqeHtD0m48OXdq32/QtNh0+O++0LJzJBCixiRfI5ZVGQyjAK5P2V8TPhV4R+MvhSfw1410Cz8RaJMwkNreJna4zh0YYZGGSAykEZPPNcn4W/Z98P/AAd8NQ6f8JtOsfBZt3802aq8lrfnPK3OSXZscLLkumF+8gMbAHrFZms+HrLXRC1zGwuIDuguYXMc0J4zsdSCM4AIzhhwQQSK5rwh8ULXXtSfQtXs5PDniyBVM+j3bA787sPby8LPGdjkMvOFO5VYFR3FAHJPqeteE4j/AGjBLr+nRjJvrCHN0ihWOZLdfv8A3VGYQWZn4iUAmt7S9asdbieWwu4rtI3McnltkxuOGRh1VgeCpwR6VfrH1Twtpmr3Qu57YpfKFUXltI0FwFU5CeahDbM5JXO05OQc0AbFFcyLDxNpEYFpqFtryKoVYtVAt5mbcSWM8KFcBcAKIc8csaePFz2ZYalouq2n74QpLDbfa0lJ/iXyC7KvbMip70AdHRWNYeMND1O7mtLXVrOa8hOJbZZ182I+jJncv4gVs0AFFFY/ivxbovgXQbrW/EOqWuj6TagedeXkojjTcwVRk9yzBQOpJAHJoA2KK8I8d/Fiw+I3hu7X4c+Mi3iHTBdSy6DayxWN/dSR274gkN0ha3KPJDK2UzgKGG18H0X4S+KT4r+FPgvXbnURfz6potlevePCLc3DSQI5k8v+DcTnb2zjtQB2VFebfGfxd4g8K6Rpd5omq+HPDukm6Yax4l8SsHtdMtxE5R/L86HzC83kxD94NvmZw2MV5R4D+P3xA+Kdv4F0HSBoWkeIdbtNY1afXLzTZ5bObTrK7S2guLe089HH2rz4ZU3y4VN3L/KaAPqCivlfwJ+0b49+MuvQ+EvDY8O+HvE+j6VeXfiC8v7Ge/szdQalPp6QwRrPC6pJJaXEu9mYqmxcMSSPZvgB8XLX47fBvwr47tLcWQ1i13zWu7f9nuEdop4g38QSVJFz325oA9AdA6lWAIPY18tf8Juda8ZatBrnxH8a6TPB4kmsk0Xw/wCFvP0VYku9tvG93/Z8mS8flmZ/tC7XeRcptwPfPidYaNqfhCa21/XLnw5pT3Vn5l/aak2nyBhdRGOMTqVZBI4SIhWBYSFQQWrzXxT4f8M/CrTLfXNA8Xa9Hq897bW9naah4tvdTj1KSSZFW1WG7nlT97u2BkUMudwYYNAHutFFFABRRRQBh+IP+Qt4Z/7CD/8ApJcVuVh+IP8AkLeGf+wg/wD6SXFblABRRRQAVg6z4b+06gmrafItjrCRiEz7NyXEQJIilUY3qCWKn7yFm2kBnDb1FAGHoPiZNVlmsruBtN1e2GZ7OU54/vxtwJIzkYceuGCsCo3Kzda0Cz1+CJLuNi8EnmwTxOY5YHwRuR1wVOCQcHkEg5BIOQmrat4ZdYtYifVbDhU1WzgJkXLYHnwoCRwVzJGNv3iViUUAT+LvA+leNbHyL+AGZPmgulVWkgbIIK7gQRuVDtYFSVXIOK5bS7rxD4SvLPSbq6iuJJD5Nul/K/lXeNv+ouG3urhBJIYZvMYknbKURmHoVhqFrqtnDd2VzDd2syCSKeBw6SKejKw4IPqKbqWm22rWctrdwR3EEgwySLkcEEH6ggEHsQD2oAyLfxvp4mit9RE2h3krKiQamojEjsCQkcgJjkbAJ2o7Ed66HPOO9cbdXU/g63mh1p31Pw3gqL6Vd72sZwCtz/fQf89uy/6z7rSteTwZYwwxnRby70KMrGI10yVfIWNeipA4eFQR1KoCfWgDpaK5uRPFdiG8uTStYDTYVZBJZNHFx1YCYO3U/dQdOlTReIb/AO0yxT+HdQhijAIulkhkif2ULJ5n5oKANa7srfUIHguoI7mFxho5UDKw7gg9ay7XwToGn2zW9jo1lp0RXbixhW3IHsUwR+BqOz8a6ffGTbBqkGxgrG70q6gXPsXjAPTqOPeobz4l+E9MfZf+JtJsJASCl3exwnI68MR07+lADIfhzpMB+S613ru+bxBft/Ob9K4b47fCXW/Gen+A7nwtJYXN94R8Rwa8un+Ibuf7PfKkU0ex51WV0ZTMJEfY+GjXjpj0qTxdoUXh868+t6cmiBSx1JruMWwAO0nzc7cZGOvWvJPjf8UvE+k2ulXHw+1LQ9Vk1K0lXSLCOM3s2q6huiaGP5XVY7URGR5Jtw2DY2QOGAOW/Zn8GW/xT8O/EfWPiP4c0bXbvVfHV7epb3um+bbxrDBb2kLRLPGCyiODCy7QXU7sDcVHpPxU/Z+0D4ranp95qUGlsbKD7PGt74f0/UCF3ZwrXMMjIP8AZUgd8Zr1IYxkd68w+InxQ8RaJ440/wAJeFPDVnq2pT6VcazNfa3fTWGnwwwyRxGMTR2826UtKp2bRhQST0BAMe3+GPjL4YQ+G7T4eP4budAtWvP7V8P3tpFpEN0ZfLMM0clpauEeNo3BXy8OJmJbKrXn/wAPP2Z/G/wm1fSfF+hzeH9R8Svea7JqOg3d7PbabBbalcw3IhtJ1gdl8mS2jxmEB/NmOEJFX/BX7W+u/Fzw/p2oeAPASancDw1D4l1S11jVvsQgWWSeKG2t2WGTzpJGtbhlZgibQjEjeAEn/bIbXtA8R+K/BnhiLXfB/hbQrLX9eurzUDa3kUNxa/bDFbQiKRJZo7Yq7K8ka5dVB6kAFTwD+zh48+DniCPxZ4an8O674l1fSr208Q2mo3c9jZ/ap9RuNQSa3dIJnKRyXdxFsZVLLsbKkEH2T4BfCW1+Bfwd8LeBbSf7Yuj2nlzXQTy/tFw7NJPLt/h3yvI2O26u10nVbXXdKs9SsZluLK8hS4gmTpJG6hlYfUEGrlAGR4o8J6L440SfRfEOkWWu6PcMjTWGo26zwSlHWRNyMCrYdFYZHVQa5zwt8C/ht4H1dNV8OfD7wtoGqopVb7TNFtracAjDASIgbkEg885ruqKACiiigAooooAw/EH/ACFvDP8A2EH/APSS4rcrD8Qf8hbwz/2EH/8ASS4rcoAKKKKACiiigApCMjB6UtFAHO3vg6Jb2W/0i5k0TUZSWke3G6C4bk5lhPysScZcbZCAAHAqL/hIdU0T5Na0t5oVOP7R0lGnjb7oBaAZlQkk/KokVQMl66eigChpWs2Gu2n2mwvLe9gyVZ7eUOoYcMpI7g8EdqwJNEv/AAlctcaDEbvSnBM2i7gvlkc77YkgKSMgxEhCcEFDu8zU1bwlpOs3Juri0CXpjWH7bbO0Fz5atuEfnRlXC5527sHJyDVePR9d0+ZWtNcF9b7nZ4NUtg7nP3ESSMpsA9WWRj60AaOh65Z+ItPjvbGYTQOSpyCrIw4ZHVgGR1OQVYAggggHitGvmf8Aa6+K/in9n74K+IviTo3hpV8TafDEZHtLhbjTZC80cI+1K3lSuFEgZWRAw2YLhCwb5J/4J3f8FFPiL8Ufi/feEPinrVhqujXdnNeQ6vPbwWX9nyIVwrMgRDG24qNwLbigB5NAH6m4z70Y5z3qrY6paanCstndQ3UTfdeGQOp/EVZBB6c0AeDftBeFfEFx8TPhr4wtvDJ8aeF/DH9o3N7pAvre3NvePHGLW/23DpE4hAuFyW3J525QSOOD/ZQ+DPg/4r/s/eHfFXiHQ4W1DXn1e+lTS9QuIbcwXupTztBtidA8RHlAq68hFBHy4H1nLEs8TxyIskbqVZGGQwPUEd65bxf8QPC3wtstPj1a7XTxeSGCw0+ytZLi4uXALMsFtCrSSEDLEIpwMk4FAHG/Ej4O6z4y8US6pZ6tNaQNGiCJPEWtWY4/6Z2l5FEPqEye5PWvPfjH4H+IGsw+GPAn/CJ6v4q+HEVk0viB9H16OO41aXfiOxklvboT/Z9u5pTvZpAUTcFMgPbeHvitaeN/jX4IuvC/jAa54J8Q+FtbuktYBE1s9zaXunRLLG2wSbh9ouEYFivy8KME17Gb63Bx9oiBzjG8daAPmvTdF+I/grxFqvizTfhdFJL4k8J2Okr4e0jVrRF0S6s5LsQRO8jRIYWjukBaENsMTAKwKmvPPC/7Mvj34MfDL4gfD3w/o3/CSr438LafpUetW11BDb6Xfx6YunzvcCaRZGhGyOZfKSRiC6lQQM+56f8AGjXtF+IvxY03xfZ6VZaB4P0Ky121k02aWWWSCU3xcys4UBttmDtVcKSfnbIx5bq/7WXjT4YeBfCPjzxlaaJq2h+MPDN9rdjpuk28ttNp11FY/bobWSV5ZBOrxLIhkEceHQHbhsAA+ovBHhW28C+DNA8N2btJaaPp9vp0LsOSkUaxqT+CityvFPA/jzx5oPxY0XwP8QLvQNSuNe8PXGs2l1otpLZ/Z57aWCO5tmWSaXzR/pUbI4KnCPlemPa6ACiiigAooooAKKK47x58U9C+Hl5o9hqRvbvVtYeVNP0vS7OW7urjyk3ysI4wSERcbnOFBZRnLKCAaviD/kLeGf8AsIP/AOklxW5XFaR4r074k6L4V8UeGZjq2kPdPcCRF8t1AhniZWSTayush2MhAZWBBAINdUbyUf8ALjOfxj/+KoAt0VT+2y/8+Nx+af8AxVH22X/nxuM+mY//AIqgC5RVP7bL/wA+Nx+af/FUfbZf+fG4/NP/AIqgC5RVP7bL/wA+Nxn0zH/8VR9tl/58bj80/wDiqALlFZQ1e64/4kt99C8H/wAdo/ti5x/yBb7r/ft//jtAGrXhf7a2t6ron7O+uDQtQ1PS9c1C+0zTLG60eSVLyOW4v7eHMXlfOzYdvkXJb7uDnFewf2vddP7Fvs/78H/x2vOvjP8ADKT4y6d4etpbvxL4cbRdXt9btptIewJe4gJaLeJvMVlVvmxjkgZz0oA8p+Dt0Nf+P3i3wTcT+JYfBy+FUa48JfEK5kvrjVTLcYF7Cs/mH7MI98LqZMlpFV4k2gt6p8Pv2Vfhd8JYdQ/4QXwnaeEL28k81tS0zP2tGzkbZH3EID/yzOYzyCpBIqLwB8JE8GeONR8a6nc+KPGPi68sE0s6rrctgptrNZDJ5EUduIo0UuQxO0sSoy3Femf2vddP7Fvs/wC/B/8AHaAOTurXSNR1e103xtoek3WpMCllqc1kjwXTDkqhfcYpP4vLLHIyVL7X29JP4O0maBIUtnso0ztXT55LQDnP/LJlpNQuP7VspbW88PXVzayja8UrW7K3PcGX1rB0zU9Y8LX1npc+m6nqum3DtFa3VxcQNcwEKziOUmX94uEYCTlz8obccuQDTHw60lelzrg/7mC//wDj1eU/GXwR4v8ADPjvT/iZ4RudMvI9D8KX+izWmvPdzPbK8kMwuoFhSSS4l/cbWi+VpMIA4Ne0/wBsXJA/4kt9z0/eW/P/AJFo/ti5AP8AxJb7jr+8t+P/ACLQB47+yh8JdG8OfAb4W3mp+H7R/FltoUE8uoX+nqt9BPOGnnXcy70Pmzy5XjBZuOaY37IHhQ+Jhre7Thci7+2DHhPRA4ffv/1v2LzM5/i3bu+c816h4s8VX+ieFtY1CDRbsz2dnNcRiVoCu5ELDIEuSMgdK+AP2XP+Crvi74satB4f1z4Nat4l1EL+9vfAcbT7csAGe3lOEXnlzNgenNAH1enwm8a678YviHqfiGx8NHwR4v0SDw/LHaajPJfRwQfbNkhRrdUJkF3hk34XHDPXCan+yP4r+JPgrwt4H8b6ro9n4e8I+Gr3QdNvtGeSae/mmsvsMV5NFJGggMcJdvKV5AzyffAQbvq+2ma4topXhkt3dQzQy43oSM7TtJGR0OCR71NQB4x4H+HXjnVPinpHjf4gt4fhvNE8PzaJZW2hTzXKzy3EsElzdM0sUZiz9liVY1DYDPlzkV7PRRQAUUUUAFFFFABXgfxb1my+H37Rnw+8aeI5ksPCY8P6xosur3JC2un3cs1jPD5r/wAHmLbSoCxAJAXOXAPvlFAHi/7JmkXum/Cm5vLyK7tU1rxDretWdreQtDJDaXWp3M9vmNsMm6ORZNpAI8zkZzXtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJePviZovw5j0pdT+2XN9q1ybPTtN020kurq7lEbSMqRoCcKkbszHCqBkkVxi/tK+ANXs9GureXUdQ1W41S70610O306ZtSS9tkYXUb24G5DEjfMzYUCRME70zg/ta/F3SPhJpfhS6ewtZfFt5fSw6Hq19p0t3BorGFkuLxxErPhYpCmxMGRpFXKqWdfF/hRf+DPh1448CeOrK/1bU/BM0XiPTta8deI7JrFbjWrqbT7lr2QOieXHL9mmgRtqoGjEYPK7gD6Sn/aU8Ff2dol1p8mq69Lq9tcXtvYaRpNxc3aQW8gjuHlhVN8XlSMI2VwG3/IFLDFd94V8UaX428NaX4g0S8TUNH1S2jvLO7iztlidQyMM8jII4PNfC3wAB+Cnxo1b4keOJbjQ/BvjPT9bl0e71K2lhWEtr1zdxW5VlyjzwTxzRoQrPhgFJWvpP8AYy8Haz4D/Zn8D6Rr9jLpeqi3mupLCcFZLZZ7iWeOJ1P3XRJUUr2KkdqAPZru1hvraa2uIkmgmRo5I3GVdSMEEdwRxWZ4V8H6F4F0eLSPDmjafoOlREmOx0y1S3hQnqQiAAZ78Vs0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxnhv4saB4u8S+MdA0w382qeE5Y4NUik0+eNUkePzUWN2QLKShVvkLcOp/iFXfhx8RNE+K3g3TvFPhyee50bUPM8iW4tpLaQ7JGjbMciq64ZGHIHTNeFaX8ZPB/wB+MHxhsfiBqcPhSXXtZttf0i5v1KJqtr/ZdjasluwBMsqTW0qmJcv86kD5q8u8D+E5n1Xwr4a8S6z4n8GWc/gLV/EV1o1hrt3ph0921TzrQyCJ1Kyxw3M6sCfmMWHDeWMAH2Rd/EXw1p+talpV3rVpaX+mw2095FcP5fkpcSNHASWwPndGUc9R7iujzn3r82fGnjy5+Jfwmnm8QeJdZubn/hF/h1rd9b2uo3MJhuP7Ulj1OTy4WUKRE8TSAD5T5T4DKhHrvwC8Z3j/tLXmjW3iW/8a6VMmomO5XWNRMunWitEbZL6wud0QUrhYLuJladQXIfe7UAfZOce1cjpHxN0jXfiDrPg+xjvrnUNIiWS9u0tHNnC7LE4gM+NnnGOaN9mc7Wz2OPl/46eM5tM8bfFqLxF4r8T+H/ABXaWtv/AMK10rSL24gj1BjZqym3t4mCX07XnmpJFKsgVEjyFViT2/7JFojeOfjJfajdXB8WS65Ztqtl/ak9xbQzPpNiZvLjdygAuEuY1ZRwsOwHaigAHuvgbx3pXxD0SbVdIac2kV9d6e/2mFoXE1tO8EoKsARiSNwM9QM1Ho/xC0nW/HHiLwnb/ak1jQbezurxZ7Z4ozHciXymjdgBIP3EoJQkAqRnIIHw1qfj+0vBa+GR4in8IQ3HibxlJ/b327U4onuv7WaSGzitrGe3e6upI51kjVpMbdxVJC2BT0zxpbeLdBtvE/jvxf4m8PeLfEPwv0dNGuNGvbrTpdV1u2k1JbmONIdv2m6illh/0chgfOJ8tgeAD9FjjucdutISrcZ7/wCf5V8E+KPGvinT9A8Zj4jeKfFGg/Gq10fT28FaLpN5PDDfXh0yB2+z2sBEN9I2oG5SZXWQKioCEQhj7H+y1bXurfEb4q6rrXizWtV1nTNZbTf7Fm1eW4sLCOW2tLiURRE7SBdfao0cglVjKKQARQB9KY4xTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAKQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooA+Rvir+074s8C/tG+JvAd58Qfhn4F8P2Xh+31zT7zxTpNxLc3UkjvH9lULqMPmsDEzZjXdhlURk8n0z4aftB2t38OvG3i3xxruiW2neG9buNNuLnTtPv7QW4jWECKWG6jWVpzJJjEasG3xhdxJp9r8A9aX9pPxB8S7zxPpV9oGt6HF4fufDEugsWa2jLuhNwbkqW3yPuzDtKHbtB+evLvip8L9W+DX7PXxk/tfX9J8Qr4t1/+2Y5n8NlbTS5riaFS90JLqQfZozHGzTgq0Kq8gDMqgSm0l6P7+Zcq/8AAb67ed73qMVKWr+0vu5dX/4F/VtvULf9sf4Wz+J4fDr6h4hs9ZkvbXTvst/4P1m1Mdzc5+zxyGW0URmTDFd5GQpPQE1a1T9rj4V6F4e/t3VfEV1pOjrrb+HZr3UNFv7eK1v127op2eAeQPnX55NqHnDcHHyN8GPA/wASvi9r934eg8SfDOax0+7sPFg+IPgm91PxQjanazqILK8ub66Z5/3XmEQrMpiUq2QHCv7dffsceMp9Bv8AS4fihpUq3PjtfHi3Go+E2uHW5Dq/kMBeojRb1GPlBC8dcEaKO13a7/Dmgm7eS5352i+tme7t1/4EmvvfJ977XPVLf9qj4YXf9jPb+I5bm21VbRob2DS7yS1g+1bTbLczrCY7VpA6FVnaMkOpxgg155+1J8Rv2hfhzqM+qfDqw+HU/hJEs7S3g8TLfSanf6hPN5Sw26W7hCCzRAb9uMsSdoJFvW/2PLTUfjpqvxGV/Bmr/wBsSWU97Y+LPBkeqzW80ChGksbr7RG9vvVVOGEoVhuA7V6x4s+G8vi/4i+DPEF3qi/2P4aNzdR6KbXcJ76SPyorhpC3HlRvMFXb1lLZG0VFuaz21f3fdr5Oy1tdLUnq+1vx/r9dWZfxa+Inin4T/B288TReHbXxZrml6ZJeailvdiwskMNu0s0m5/MkCExsqKqyNlkDEDc6+e618fPGmt2vw10HwpHoNh4v8T+EJvFl1e6vZT3NjEsUMBMCQxzxvmSW4GHMh2Khyrlhjs/iR8KfHPjvwz8R9Bj+INlBpniq3FhY2994eE66PavA8VyqGO4haZ3L71d2whGNrCuOP7MPi220z4d3lh4/0m08ZeD9HufDg1VvDUj2d9p0sUaBJLX7aGWVTDE4kE23cG+TDYCd3Gdt3a3l7svyk439H03pWioW31vf1jb8Obbuvl6f8B/iVL8Yvg34Q8aXFimm3WtadFdT2cb71hlIw6qe4DBsH0orT+Fnw7sPhL8OvD3g7S5p7mw0azS0inudvmy7Ry7bQBknJOABzRWs7czsZQTUUpbnVUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z)
Refer to Figure 7.10. At Point C the slope of the
q
2 = 200 isoquant is
◦ -2.
◦ -1/2.
◦ -1.
◦ indeterminate from this information.
Question 2
Refer to the information provided in Figure 7.10 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACzAO0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooA8o+Nf7RPh/4IeJvhtomsL5tz4215NEtgsoQwbkP78gj5kEhgQ8jHnA54wfV6/Pf/goR+xl8Xf2nfjH4O1bwzr/h3TPD2l24s9Ng1G8uEmjuj5k80xCQMBkRRqMMf9WvTPH3n4YGr/8ACOaV/wAJALUa79li+3/YWZrf7RsHm+WWAJTfuxkA4xkUAatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVkeKfFuieBtCutb8R6xYaBo1rs8/UdTuUtreLcwRN0jkKuWZVGTyWA6muFs/2o/g5qV9a2Vl8VfBd9e3UyW8Ftaa/azSyyOwVEREkLMSSAAAetAHqNFFFABRRRQBh+IP8AkLeGf+wg/wD6SXFblYfiD/kLeGf+wg//AKSXFblABRRRQAUUVhWOrvJ4w1jSiDtt7S0vFYj/AJ6tOmM/9sOnv70AbtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAV7uxt9QiEV1BHcxrIkoSVAwDowdGwe6sqsD2IBHSvk7xFrXj2++Jc3/AAkHiTxfpWmXuuQQaJ4c0rQlmsblbXVZo5o5phas6Ry2aWc/mtMozLOQSsbIv094z+0f8IlrH2TTrvVrn7LJ5VhYXgtJ522nCRzF08tieA+5cHnIr5QtLXR/BnxLXwHBZ+LtR1b+2ZNQhsb/AOJ0IaeGS8a4ac2P2vzHiUOzbWiLOFO/cxLEA+yqaGB6HNOr5R1Txb4m+Enif9p3U08S6v4obw74P0/XdLtdYkR47WXydSkKRxxoiBSYUzhdxwMscCgD6tzj2ozzjvX57/Hj4peKv2YPCHgTUvDviHXNY1Lxp4Ovxqd1qGoTX6rqCQWrxahGkzukJVp5spGFjIdQVwi4+h/BOnXXwv8A2mbbwPpuuaxqPhnVvBs2ryWutancajJHeWt5BCZUlnd3XzUufmUELmJSADnIB7N4g/5C3hn/ALCD/wDpJcVuVxPjPxbYaNr3hyO+FzbRpfuz3TWsn2ZB9ln+ZpduxQM8kkAYPoa7QEEAjkHvQA6sTX3u01Lw8Ld2WBr5xdIP44/ss5Cn/gYjP4CrmmaiL83iZBktrhoHABGOAw6/7LKfxrP8aPPBo8VzbukTW97ayyPI2FWEToJyT/1yMlAG/XPybrPxzCUtx5eoaeyy3Jb7rwSAxxgd8i4mb/gFdBXNeOY/s+m2usLF5sujXK34G13IjCsk5VU5ZvJkm2rg5bbQB0tFNVgygg5B5BFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4t1/XD4U8Ua74Nurb4SRa3feMDq1hH4g8am3164llv1mtXaCOxlYOfkSLDEpEIlI+Q5+0q+TE8INper6x4m0DULO40W+8YLpevahqmkzecrxa3LPC9qQ4D+TPeT2plYYXykYfLCQwB9H/D+88T33heCbxjp+n6V4gM9ws1ppdw1xbJGJ3EJSRlUvmIRkkqvJPyr90cRov7Othpnj/xh4qvvFniLxB/wllqtjqujaqbN7CW3RZFiiCJbK6qizSgAPzuO8uea9booA8U079k/wAIrp7adr2oaz4x0yHQZ/DOnWmtzxFdM06ZUWWGFoYo3LMsUKmWRnkxEuHHzFul8AfBWy8E+KLnxNe6/rPi/wASS6fHpMeq688Blgs0cuIYxBFEoBdizMVLsQu5jtAHo1FAGF4hUNqvhoEZB1BwR6/6JcVnf2Xe+CfLbRrc3mgqdsmlJ/rLROxtvVV/54nsf3ZG0RvpeIP+Qt4Z/wCwg/8A6SXFVfiN8RvDvwl8F6p4s8WanFpGgaZGJbm7lBIQEhQAACWYkhQoBJJAAyaAOH0X42/DfQ/iBrGg3fj7w9a+INc1GK4tdIutRiiumzbwQBBEzBt5eFhswGzkYzXp+taTb6/o19ptyoktb2B7eVTyCjqVP6Gvxb/aT/4J8fG7xt+1Nr2o6PYQa3onjLXJ7/S/Eb6lEtusUpacK5Z948qPIwFORF8gIxX7FfD3UC3h2w0m8urifXNMtIIL9b/AuWcJt81wCQQ5ViGUlSQ2CcGgDQ8J6rLrPh+0uLgxm8VTDd+VnYLiMlJlXOOBIrj8K12UMpBGQeCDXM2sn/CPeMJ7KRwtlrA+02pcnC3KKBNGMnA3IEkVVGSVuGNdRQBy3g2T+x3ufDMuVOmKv2M4OJLNs+VyeCU2tGRkt+7DHHmCuprB8UaPcXiW2o6akJ1qwJe2MxKrKrY8yBmHIVwBzghWVH2tsAq/omsW+vabDe224RyZDJIMPG4JDI47MpBUjsQaAL9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm694gsfDOnrfalM1vam4gtvMEbPh5pkhjyFBIBeRQWPCgksQASPMLn4Z/DTxB4lXxM2r3M0Ueo/aG02LxFcrpT30U4HmPZiXyGlWdCfucyZYgv81eqarpNlr2m3On6laQX9hcoYp7W6iWSKVD1VlYEEH0Ir5C074ceF9L1+48S6Z4e+GmjaNpfi/wDslPDEnheFdSWUaiIhIt4JN8c7sVuIUWMLseFQMHzAAfZVFFFABRRRQBh+IP8AkLeGf+wg/wD6SXFfOnxHfVP2hvjTrPhrQ28Oal4Z8AW/kalYa68jxXGqXkMq7ikfUQW+9QW+UvcSfxQ5H0X4g/5C3hn/ALCD/wDpJcVuUAfN37KmuX3jj9kPwRNDPBf6/wCHYBp6tZTqRPNp8rQAeYQQBPHEMtjlJ8jqK9vn0zTfGljpms2c7wzeT51hqduNksaSBWONw5VsKSjAqcDIyAR0JGRg9K5fR5T4c8RXOizMBaXzyXunMc4DElp4c4wCGPmKC2SJHCjbEcAGbeXV5qUEeiay0GmeIlcPpuoRhvs9xMgLLJH824ZAO+AtuK+YuXTLnpfDeurr+miYxG1u4nMN3aMSWt5lxvQkgZ6ghsAMpVhwwqzquk2mt2MlnfQrcWzlSUbjBBDKwI5DAgEMMEEAggivN/EVxrPw01d9elkbUNBRAt1Of9YYB/z29HjySs4+VkLJKF2rNQB6XqGo2mk2M97fXMNnZwI0s1zcSCOOJAMlmY8KAOSTxXluk/E7wh4o8Q3uofDjxVofizVFiW51XQ9J1OGaS6gGEE6KrYWUDaoc4VwFRjxGycF+0zrOneKvGXwE0jV57eX4Y+IPEckmqXEkwW0uriK0km0+1lzw6SXCqdjDDNEoI7V7Ck3gjXPi1A8Ulpe+OtF0maIGBmeSzs7iWIssm35U8x7dCob5iI328b6AOr0nV7TXLCK9sZvPt5Oh2lSCDgqykAqwIIKkAggggEEVdrmtU8O3NlqU+saC8cF/Mv8ApNpMxW2vSOFL4B2SY+XzVBOMBg4VQtzQvE1trZeDZJZalCqvc6dcgCeDdnGQCQVyrAOpKkqcE4oA2aKKKACiiigAooooAKKKKACiiigAooooAKKKKACvDNQ8b/Co/FXS9V/4RFL/AMYz3F5p8fiO30KOW4tUtp47KaR7gL5iRCeYQbv+uhx5asw9c8V65b+GfDOqatd39lpVtZWzzyXuovstoAq53yNkYUdScjivjTTPEWn2/jjVbDXPFHwktPFN/wCJkjvo7TxHOdRYw6m8ltClqmFD/OD5WMPId0u5skgH3FRRRQAUUUUAYfiD/kLeGf8AsIP/AOklxW5WH4g/5C3hn/sIP/6SXFblABWT4j0JPEGmNb+c9rcxsJra6jPzwTL91x6+hU8MpZSCrEHWooAxvDWvPrNrIl1bmy1S2byru1OSEf8AvI38UbD5lbjIOCAwZRsEZGD0rA8SaHd3M8GqaPLFBrFsNoWfPk3cOctDLjkA8lXAJRucMpdHu6Dr1vr9m0sKyQTwv5NzaTgLNbSgAmNwCcHBBBBIYMrKSrAkA+Ff+Cknj/VP2WPhPD/whtjp1zofi+7bT7jRda0yK/02xlVTL58EcgKKzEH906vGdoZUUh98/wDwST/aA1P4x/DjxlomqeHtD0m48OXdq32/QtNh0+O++0LJzJBCixiRfI5ZVGQyjAK5P2V8TPhV4R+MvhSfw1410Cz8RaJMwkNreJna4zh0YYZGGSAykEZPPNcn4W/Z98P/AAd8NQ6f8JtOsfBZt3802aq8lrfnPK3OSXZscLLkumF+8gMbAHrFZms+HrLXRC1zGwuIDuguYXMc0J4zsdSCM4AIzhhwQQSK5rwh8ULXXtSfQtXs5PDniyBVM+j3bA787sPby8LPGdjkMvOFO5VYFR3FAHJPqeteE4j/AGjBLr+nRjJvrCHN0ihWOZLdfv8A3VGYQWZn4iUAmt7S9asdbieWwu4rtI3McnltkxuOGRh1VgeCpwR6VfrH1Twtpmr3Qu57YpfKFUXltI0FwFU5CeahDbM5JXO05OQc0AbFFcyLDxNpEYFpqFtryKoVYtVAt5mbcSWM8KFcBcAKIc8csaePFz2ZYalouq2n74QpLDbfa0lJ/iXyC7KvbMip70AdHRWNYeMND1O7mtLXVrOa8hOJbZZ182I+jJncv4gVs0AFFFY/ivxbovgXQbrW/EOqWuj6TagedeXkojjTcwVRk9yzBQOpJAHJoA2KK8I8d/Fiw+I3hu7X4c+Mi3iHTBdSy6DayxWN/dSR274gkN0ha3KPJDK2UzgKGG18H0X4S+KT4r+FPgvXbnURfz6potlevePCLc3DSQI5k8v+DcTnb2zjtQB2VFebfGfxd4g8K6Rpd5omq+HPDukm6Yax4l8SsHtdMtxE5R/L86HzC83kxD94NvmZw2MV5R4D+P3xA+Kdv4F0HSBoWkeIdbtNY1afXLzTZ5bObTrK7S2guLe089HH2rz4ZU3y4VN3L/KaAPqCivlfwJ+0b49+MuvQ+EvDY8O+HvE+j6VeXfiC8v7Ge/szdQalPp6QwRrPC6pJJaXEu9mYqmxcMSSPZvgB8XLX47fBvwr47tLcWQ1i13zWu7f9nuEdop4g38QSVJFz325oA9AdA6lWAIPY18tf8Juda8ZatBrnxH8a6TPB4kmsk0Xw/wCFvP0VYku9tvG93/Z8mS8flmZ/tC7XeRcptwPfPidYaNqfhCa21/XLnw5pT3Vn5l/aak2nyBhdRGOMTqVZBI4SIhWBYSFQQWrzXxT4f8M/CrTLfXNA8Xa9Hq897bW9naah4tvdTj1KSSZFW1WG7nlT97u2BkUMudwYYNAHutFFFABRRRQBh+IP+Qt4Z/7CD/8ApJcVuVh+IP8AkLeGf+wg/wD6SXFblABRRRQAVg6z4b+06gmrafItjrCRiEz7NyXEQJIilUY3qCWKn7yFm2kBnDb1FAGHoPiZNVlmsruBtN1e2GZ7OU54/vxtwJIzkYceuGCsCo3Kzda0Cz1+CJLuNi8EnmwTxOY5YHwRuR1wVOCQcHkEg5BIOQmrat4ZdYtYifVbDhU1WzgJkXLYHnwoCRwVzJGNv3iViUUAT+LvA+leNbHyL+AGZPmgulVWkgbIIK7gQRuVDtYFSVXIOK5bS7rxD4SvLPSbq6iuJJD5Nul/K/lXeNv+ouG3urhBJIYZvMYknbKURmHoVhqFrqtnDd2VzDd2syCSKeBw6SKejKw4IPqKbqWm22rWctrdwR3EEgwySLkcEEH6ggEHsQD2oAyLfxvp4mit9RE2h3krKiQamojEjsCQkcgJjkbAJ2o7Ed66HPOO9cbdXU/g63mh1p31Pw3gqL6Vd72sZwCtz/fQf89uy/6z7rSteTwZYwwxnRby70KMrGI10yVfIWNeipA4eFQR1KoCfWgDpaK5uRPFdiG8uTStYDTYVZBJZNHFx1YCYO3U/dQdOlTReIb/AO0yxT+HdQhijAIulkhkif2ULJ5n5oKANa7srfUIHguoI7mFxho5UDKw7gg9ay7XwToGn2zW9jo1lp0RXbixhW3IHsUwR+BqOz8a6ffGTbBqkGxgrG70q6gXPsXjAPTqOPeobz4l+E9MfZf+JtJsJASCl3exwnI68MR07+lADIfhzpMB+S613ru+bxBft/Ob9K4b47fCXW/Gen+A7nwtJYXN94R8Rwa8un+Ibuf7PfKkU0ex51WV0ZTMJEfY+GjXjpj0qTxdoUXh868+t6cmiBSx1JruMWwAO0nzc7cZGOvWvJPjf8UvE+k2ulXHw+1LQ9Vk1K0lXSLCOM3s2q6huiaGP5XVY7URGR5Jtw2DY2QOGAOW/Zn8GW/xT8O/EfWPiP4c0bXbvVfHV7epb3um+bbxrDBb2kLRLPGCyiODCy7QXU7sDcVHpPxU/Z+0D4ranp95qUGlsbKD7PGt74f0/UCF3ZwrXMMjIP8AZUgd8Zr1IYxkd68w+InxQ8RaJ440/wAJeFPDVnq2pT6VcazNfa3fTWGnwwwyRxGMTR2826UtKp2bRhQST0BAMe3+GPjL4YQ+G7T4eP4budAtWvP7V8P3tpFpEN0ZfLMM0clpauEeNo3BXy8OJmJbKrXn/wAPP2Z/G/wm1fSfF+hzeH9R8Svea7JqOg3d7PbabBbalcw3IhtJ1gdl8mS2jxmEB/NmOEJFX/BX7W+u/Fzw/p2oeAPASancDw1D4l1S11jVvsQgWWSeKG2t2WGTzpJGtbhlZgibQjEjeAEn/bIbXtA8R+K/BnhiLXfB/hbQrLX9eurzUDa3kUNxa/bDFbQiKRJZo7Yq7K8ka5dVB6kAFTwD+zh48+DniCPxZ4an8O674l1fSr208Q2mo3c9jZ/ap9RuNQSa3dIJnKRyXdxFsZVLLsbKkEH2T4BfCW1+Bfwd8LeBbSf7Yuj2nlzXQTy/tFw7NJPLt/h3yvI2O26u10nVbXXdKs9SsZluLK8hS4gmTpJG6hlYfUEGrlAGR4o8J6L440SfRfEOkWWu6PcMjTWGo26zwSlHWRNyMCrYdFYZHVQa5zwt8C/ht4H1dNV8OfD7wtoGqopVb7TNFtracAjDASIgbkEg885ruqKACiiigAooooAw/EH/ACFvDP8A2EH/APSS4rcrD8Qf8hbwz/2EH/8ASS4rcoAKKKKACiiigApCMjB6UtFAHO3vg6Jb2W/0i5k0TUZSWke3G6C4bk5lhPysScZcbZCAAHAqL/hIdU0T5Na0t5oVOP7R0lGnjb7oBaAZlQkk/KokVQMl66eigChpWs2Gu2n2mwvLe9gyVZ7eUOoYcMpI7g8EdqwJNEv/AAlctcaDEbvSnBM2i7gvlkc77YkgKSMgxEhCcEFDu8zU1bwlpOs3Juri0CXpjWH7bbO0Fz5atuEfnRlXC5527sHJyDVePR9d0+ZWtNcF9b7nZ4NUtg7nP3ESSMpsA9WWRj60AaOh65Z+ItPjvbGYTQOSpyCrIw4ZHVgGR1OQVYAggggHitGvmf8Aa6+K/in9n74K+IviTo3hpV8TafDEZHtLhbjTZC80cI+1K3lSuFEgZWRAw2YLhCwb5J/4J3f8FFPiL8Ufi/feEPinrVhqujXdnNeQ6vPbwWX9nyIVwrMgRDG24qNwLbigB5NAH6m4z70Y5z3qrY6paanCstndQ3UTfdeGQOp/EVZBB6c0AeDftBeFfEFx8TPhr4wtvDJ8aeF/DH9o3N7pAvre3NvePHGLW/23DpE4hAuFyW3J525QSOOD/ZQ+DPg/4r/s/eHfFXiHQ4W1DXn1e+lTS9QuIbcwXupTztBtidA8RHlAq68hFBHy4H1nLEs8TxyIskbqVZGGQwPUEd65bxf8QPC3wtstPj1a7XTxeSGCw0+ytZLi4uXALMsFtCrSSEDLEIpwMk4FAHG/Ej4O6z4y8US6pZ6tNaQNGiCJPEWtWY4/6Z2l5FEPqEye5PWvPfjH4H+IGsw+GPAn/CJ6v4q+HEVk0viB9H16OO41aXfiOxklvboT/Z9u5pTvZpAUTcFMgPbeHvitaeN/jX4IuvC/jAa54J8Q+FtbuktYBE1s9zaXunRLLG2wSbh9ouEYFivy8KME17Gb63Bx9oiBzjG8daAPmvTdF+I/grxFqvizTfhdFJL4k8J2Okr4e0jVrRF0S6s5LsQRO8jRIYWjukBaENsMTAKwKmvPPC/7Mvj34MfDL4gfD3w/o3/CSr438LafpUetW11BDb6Xfx6YunzvcCaRZGhGyOZfKSRiC6lQQM+56f8AGjXtF+IvxY03xfZ6VZaB4P0Ky121k02aWWWSCU3xcys4UBttmDtVcKSfnbIx5bq/7WXjT4YeBfCPjzxlaaJq2h+MPDN9rdjpuk28ttNp11FY/bobWSV5ZBOrxLIhkEceHQHbhsAA+ovBHhW28C+DNA8N2btJaaPp9vp0LsOSkUaxqT+CityvFPA/jzx5oPxY0XwP8QLvQNSuNe8PXGs2l1otpLZ/Z57aWCO5tmWSaXzR/pUbI4KnCPlemPa6ACiiigAooooAKKK47x58U9C+Hl5o9hqRvbvVtYeVNP0vS7OW7urjyk3ysI4wSERcbnOFBZRnLKCAaviD/kLeGf8AsIP/AOklxW5XFaR4r074k6L4V8UeGZjq2kPdPcCRF8t1AhniZWSTayush2MhAZWBBAINdUbyUf8ALjOfxj/+KoAt0VT+2y/8+Nx+af8AxVH22X/nxuM+mY//AIqgC5RVP7bL/wA+Nx+af/FUfbZf+fG4/NP/AIqgC5RVP7bL/wA+Nxn0zH/8VR9tl/58bj80/wDiqALlFZQ1e64/4kt99C8H/wAdo/ti5x/yBb7r/ft//jtAGrXhf7a2t6ron7O+uDQtQ1PS9c1C+0zTLG60eSVLyOW4v7eHMXlfOzYdvkXJb7uDnFewf2vddP7Fvs/78H/x2vOvjP8ADKT4y6d4etpbvxL4cbRdXt9btptIewJe4gJaLeJvMVlVvmxjkgZz0oA8p+Dt0Nf+P3i3wTcT+JYfBy+FUa48JfEK5kvrjVTLcYF7Cs/mH7MI98LqZMlpFV4k2gt6p8Pv2Vfhd8JYdQ/4QXwnaeEL28k81tS0zP2tGzkbZH3EID/yzOYzyCpBIqLwB8JE8GeONR8a6nc+KPGPi68sE0s6rrctgptrNZDJ5EUduIo0UuQxO0sSoy3Femf2vddP7Fvs/wC/B/8AHaAOTurXSNR1e103xtoek3WpMCllqc1kjwXTDkqhfcYpP4vLLHIyVL7X29JP4O0maBIUtnso0ztXT55LQDnP/LJlpNQuP7VspbW88PXVzayja8UrW7K3PcGX1rB0zU9Y8LX1npc+m6nqum3DtFa3VxcQNcwEKziOUmX94uEYCTlz8obccuQDTHw60lelzrg/7mC//wDj1eU/GXwR4v8ADPjvT/iZ4RudMvI9D8KX+izWmvPdzPbK8kMwuoFhSSS4l/cbWi+VpMIA4Ne0/wBsXJA/4kt9z0/eW/P/AJFo/ti5AP8AxJb7jr+8t+P/ACLQB47+yh8JdG8OfAb4W3mp+H7R/FltoUE8uoX+nqt9BPOGnnXcy70Pmzy5XjBZuOaY37IHhQ+Jhre7Thci7+2DHhPRA4ffv/1v2LzM5/i3bu+c816h4s8VX+ieFtY1CDRbsz2dnNcRiVoCu5ELDIEuSMgdK+AP2XP+Crvi74satB4f1z4Nat4l1EL+9vfAcbT7csAGe3lOEXnlzNgenNAH1enwm8a678YviHqfiGx8NHwR4v0SDw/LHaajPJfRwQfbNkhRrdUJkF3hk34XHDPXCan+yP4r+JPgrwt4H8b6ro9n4e8I+Gr3QdNvtGeSae/mmsvsMV5NFJGggMcJdvKV5AzyffAQbvq+2ma4topXhkt3dQzQy43oSM7TtJGR0OCR71NQB4x4H+HXjnVPinpHjf4gt4fhvNE8PzaJZW2hTzXKzy3EsElzdM0sUZiz9liVY1DYDPlzkV7PRRQAUUUUAFFFFABXgfxb1my+H37Rnw+8aeI5ksPCY8P6xosur3JC2un3cs1jPD5r/wAHmLbSoCxAJAXOXAPvlFAHi/7JmkXum/Cm5vLyK7tU1rxDretWdreQtDJDaXWp3M9vmNsMm6ORZNpAI8zkZzXtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJePviZovw5j0pdT+2XN9q1ybPTtN020kurq7lEbSMqRoCcKkbszHCqBkkVxi/tK+ANXs9GureXUdQ1W41S70610O306ZtSS9tkYXUb24G5DEjfMzYUCRME70zg/ta/F3SPhJpfhS6ewtZfFt5fSw6Hq19p0t3BorGFkuLxxErPhYpCmxMGRpFXKqWdfF/hRf+DPh1448CeOrK/1bU/BM0XiPTta8deI7JrFbjWrqbT7lr2QOieXHL9mmgRtqoGjEYPK7gD6Sn/aU8Ff2dol1p8mq69Lq9tcXtvYaRpNxc3aQW8gjuHlhVN8XlSMI2VwG3/IFLDFd94V8UaX428NaX4g0S8TUNH1S2jvLO7iztlidQyMM8jII4PNfC3wAB+Cnxo1b4keOJbjQ/BvjPT9bl0e71K2lhWEtr1zdxW5VlyjzwTxzRoQrPhgFJWvpP8AYy8Haz4D/Zn8D6Rr9jLpeqi3mupLCcFZLZZ7iWeOJ1P3XRJUUr2KkdqAPZru1hvraa2uIkmgmRo5I3GVdSMEEdwRxWZ4V8H6F4F0eLSPDmjafoOlREmOx0y1S3hQnqQiAAZ78Vs0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxnhv4saB4u8S+MdA0w382qeE5Y4NUik0+eNUkePzUWN2QLKShVvkLcOp/iFXfhx8RNE+K3g3TvFPhyee50bUPM8iW4tpLaQ7JGjbMciq64ZGHIHTNeFaX8ZPB/wB+MHxhsfiBqcPhSXXtZttf0i5v1KJqtr/ZdjasluwBMsqTW0qmJcv86kD5q8u8D+E5n1Xwr4a8S6z4n8GWc/gLV/EV1o1hrt3ph0921TzrQyCJ1Kyxw3M6sCfmMWHDeWMAH2Rd/EXw1p+talpV3rVpaX+mw2095FcP5fkpcSNHASWwPndGUc9R7iujzn3r82fGnjy5+Jfwmnm8QeJdZubn/hF/h1rd9b2uo3MJhuP7Ulj1OTy4WUKRE8TSAD5T5T4DKhHrvwC8Z3j/tLXmjW3iW/8a6VMmomO5XWNRMunWitEbZL6wud0QUrhYLuJladQXIfe7UAfZOce1cjpHxN0jXfiDrPg+xjvrnUNIiWS9u0tHNnC7LE4gM+NnnGOaN9mc7Wz2OPl/46eM5tM8bfFqLxF4r8T+H/ABXaWtv/AMK10rSL24gj1BjZqym3t4mCX07XnmpJFKsgVEjyFViT2/7JFojeOfjJfajdXB8WS65Ztqtl/ak9xbQzPpNiZvLjdygAuEuY1ZRwsOwHaigAHuvgbx3pXxD0SbVdIac2kV9d6e/2mFoXE1tO8EoKsARiSNwM9QM1Ho/xC0nW/HHiLwnb/ak1jQbezurxZ7Z4ozHciXymjdgBIP3EoJQkAqRnIIHw1qfj+0vBa+GR4in8IQ3HibxlJ/b327U4onuv7WaSGzitrGe3e6upI51kjVpMbdxVJC2BT0zxpbeLdBtvE/jvxf4m8PeLfEPwv0dNGuNGvbrTpdV1u2k1JbmONIdv2m6illh/0chgfOJ8tgeAD9FjjucdutISrcZ7/wCf5V8E+KPGvinT9A8Zj4jeKfFGg/Gq10fT28FaLpN5PDDfXh0yB2+z2sBEN9I2oG5SZXWQKioCEQhj7H+y1bXurfEb4q6rrXizWtV1nTNZbTf7Fm1eW4sLCOW2tLiURRE7SBdfao0cglVjKKQARQB9KY4xTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAKQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooA+Rvir+074s8C/tG+JvAd58Qfhn4F8P2Xh+31zT7zxTpNxLc3UkjvH9lULqMPmsDEzZjXdhlURk8n0z4aftB2t38OvG3i3xxruiW2neG9buNNuLnTtPv7QW4jWECKWG6jWVpzJJjEasG3xhdxJp9r8A9aX9pPxB8S7zxPpV9oGt6HF4fufDEugsWa2jLuhNwbkqW3yPuzDtKHbtB+evLvip8L9W+DX7PXxk/tfX9J8Qr4t1/+2Y5n8NlbTS5riaFS90JLqQfZozHGzTgq0Kq8gDMqgSm0l6P7+Zcq/8AAb67ed73qMVKWr+0vu5dX/4F/VtvULf9sf4Wz+J4fDr6h4hs9ZkvbXTvst/4P1m1Mdzc5+zxyGW0URmTDFd5GQpPQE1a1T9rj4V6F4e/t3VfEV1pOjrrb+HZr3UNFv7eK1v127op2eAeQPnX55NqHnDcHHyN8GPA/wASvi9r934eg8SfDOax0+7sPFg+IPgm91PxQjanazqILK8ub66Z5/3XmEQrMpiUq2QHCv7dffsceMp9Bv8AS4fihpUq3PjtfHi3Go+E2uHW5Dq/kMBeojRb1GPlBC8dcEaKO13a7/Dmgm7eS5352i+tme7t1/4EmvvfJ977XPVLf9qj4YXf9jPb+I5bm21VbRob2DS7yS1g+1bTbLczrCY7VpA6FVnaMkOpxgg155+1J8Rv2hfhzqM+qfDqw+HU/hJEs7S3g8TLfSanf6hPN5Sw26W7hCCzRAb9uMsSdoJFvW/2PLTUfjpqvxGV/Bmr/wBsSWU97Y+LPBkeqzW80ChGksbr7RG9vvVVOGEoVhuA7V6x4s+G8vi/4i+DPEF3qi/2P4aNzdR6KbXcJ76SPyorhpC3HlRvMFXb1lLZG0VFuaz21f3fdr5Oy1tdLUnq+1vx/r9dWZfxa+Inin4T/B288TReHbXxZrml6ZJeailvdiwskMNu0s0m5/MkCExsqKqyNlkDEDc6+e618fPGmt2vw10HwpHoNh4v8T+EJvFl1e6vZT3NjEsUMBMCQxzxvmSW4GHMh2Khyrlhjs/iR8KfHPjvwz8R9Bj+INlBpniq3FhY2994eE66PavA8VyqGO4haZ3L71d2whGNrCuOP7MPi220z4d3lh4/0m08ZeD9HufDg1VvDUj2d9p0sUaBJLX7aGWVTDE4kE23cG+TDYCd3Gdt3a3l7svyk439H03pWioW31vf1jb8Obbuvl6f8B/iVL8Yvg34Q8aXFimm3WtadFdT2cb71hlIw6qe4DBsH0orT+Fnw7sPhL8OvD3g7S5p7mw0azS0inudvmy7Ry7bQBknJOABzRWs7czsZQTUUpbnVUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z)
Refer to Figure 7.10. At Point
A the absolute value of the slope of the
q
1 = 100 isoquant is
◦ less than 2.
◦ exactly equal to 2.
◦ greater than 2.
◦ indeterminate from this information.