Question 1
Refer to the information provided in Table 8.2 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAMADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8a2/ii60UReEL/SNM1Zpkzd63ZS3kEcWfnPkxzQs7Y4H7xRzk5xg+H/ALNfxX+JvxP0zWPEvi3XPBdv4c0bXNV0a9trDQ7qzmKWkkkYuBcSX0qKCyKxRo+FJ+fjJ+i7hZWgkEDpHMVIR5ELqrY4JUEZGe2R9RXgPw1/Zp8T+Bfg58QvA8/xFT7b4nutR1C01/QdJl0250u5vGd5HXN3KWCO4KYZCAuCxJ3BK8XJ+T+/T9L/APDikuZwXS+vpZ/rYyPiZ+2LpOlf8I3d+EtTt1s4vFemaH4ltPEeg39ndW9teBmjliWbyWUlUYq2yRX7dOdPxl+1Hb39v4I1L4e6hY6hYXvjmz8Ia9ZazpN3b3tq0zYdfLlaGS3lUc/vI2BDDj18qh/4J16xYa3catpnj7wvo91Nf6NqjW1j4G8u0N1pxkMbmL7dl/N8xmlLMWZyWDAYUeoeJv2UNR1ePTb7T/F2n2PiZ/F9p401vUrnQ5J4b+8to0jiiihW6TyIQqBQpeRsDly2WLUbPV6cy+68L/L49N/vsaSa+yvsv77Tt87uKvselR/HvwNN45h8Ix6xK+rzXcmnxSrp9ybF7uNWaS2F75f2czqEbMXmbwVIK5GK8i/ag/ak1b4HeMotJjv/AA54atTox1Owm8U2c7xeIblZSr6fb3KTRx2sijyiZJfM/wBep2bUYnR8Afse2Pw8+MOr+MLVvB2rWWoa1ca2jax4Nim1yxkmBLR2+qLOpVA5JXfE7BSVz3rX+Mn7NN78Uta8USWniaw07R/F2jwaHr1jqehLqMpt4nkZHs5TNGLeX985zIkyhgjhAVO6Y3tCUt+q6bbX7X7X9AXLzST+Hp33+XT09U7M9G8Y3fiy98O6bJ4Uu9F0a9nYS3Woa1bNf2trAImZsRxzwGQltigiQAAs3OADi/s5/EfXPiz8IND8UeINOs9P1C980btPZjbXcaSsiXUIYlljlVRIqsSQrj5m6nz74rfs3/Enxz4bv/DPh74zR+F/DEktmtpp1x4TttQ+z2kEQRrV2eVRPHKwDOJVYMBsIKlgfT/gv4M8ZeA/Ba6V458dr8RNZWd3TV00WDSQsOFCQiCElMLg/N1O72rVOLU9LbW/rXvbto97pmScuWN1r18vyv8AnttqjvKKKKgoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACIARoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3L9obwd4D+AnxC0TVJfgN8L9b+EyWvn+JHtPBUDatpMRcRi7VhlJYVZ1LqIgyqCQW/h3dT8FfAvwNqXifxR4r+H/wrf4W21lp13pt1o/w4Fzcqt3u2SSywiYPGdnDLCg/eLlhj5vovUPAusap8TTrd1qulXHhWTSJNLm0GbSGeabewZma4M+wrxjZ5PIJyeePHbD9h/TfD3wo+KXw90Dxdf6f4e8WuraRBcQC5Hh9AxkEEQZx5kImZ2CfIQrkbifnMR5lHXfX7rvT7tU+n4E2cp72V193Lv8A+Bbrr996PiDS/wBkvwrYeM73Vvhj4PsbfwbJbx660vw6bNn5+fKfaLPLxsAT5iBkAwSQCKyZdY/Yzt7u8tZ/AXgi3nsruCzu1m+HjR/ZWn2+RLKWswI4JN67LhsRPn5XNavi39jvxn4z0f4tWepfFLTpp/iPZ6db387eF2As5LVVQtAgvRhHUH5GLEMc7m5BXxR+xt4n8X6d8S7W/wDiJpCf8JrbaLEz2/hiVfskmmujRsAb471fawZflPzDDcc6JK6u9NL/AK/rYt2tpvr+lv1v6HA/C64/Z9l1zxL4c+Inwy+F9hrdl41ufCthcaZ4BWKzkwIzbieUxzRwSyFnCiSVN+35Rwa7vxTZ/sjeDdUvLDU/hr4M32ss1vJcWfw8N3ameJGeW3S4hs3iedFRy0KuZF2sCoINbXh79kO9h1vxPH4k8XWGt+Ete8VJ4xn0iz0I2dz9ujeJ40a6NzJugV4VbZ5YYkAbwu5Wwpv2Gf7O8S+N9S0PUfAxHiS9vb+G/wDEXgNNQ1jS3ukKyLBfx3cLFFZmKhlLAHbuNYvnVNKOsuX8VGOnzfNd3totrlvldSX8t/wbl+S5f+CdB8Jfh/8Asr/HXRbrV/Afw8+HHiPTbWSOKa5t/Cdqio7xJKEO+BfmCSLuHVTlWwykDkmvP2QJZZIbL4beDL6V4b2Wwkj+H2LXVTahjOllcmz8m7ZdjcQO5OCRkA1798G/hpd/Db4PeH/AusaraeIP7J09dM+22WnnT0mgRdiZiEsm1tgG4huTk4GcV4dpP7E2vab4a8JeGJPiRaXnhzwQb2XwtDL4cxc28k0UsMX2yZboC5SKOZxtjSAudpLcVtiY/HGg+mjfXz207pNeTel3FO1k5/1/Xe+nZ9H/ALM/wp+D/wAdPhdY+N7z4LfD6zg1fbcWunnwDHZPZxtGreUZJ48XeC3FzEqRv/CvBr1f/hk74If9Eb+H/wD4S9j/APGq1fgJ8NNQ+Dnwi8MeCNR1q28QSaDZpYQ6ha2DWQkhjG2PdG00vz7QMkNgnkBelegVdTl53ybdP6/r1ZEW2ry3PKv+GTvgh/0Rv4f/APhL2P8A8ao/4ZO+CH/RG/h//wCEvY//ABqvVaKzKPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA800n9mT4PaBqtlqemfCjwPp2pWUyXNreWnhyzimglRgySI6xgqysAQwIIIBFel0UUAFeMfHb43+KPhV4x+H2g6D4Q0jxIfGOoPpVvcajr8unfZ7hYnm+dUs58x7Iz8wOckDbjmvZ6+fP2rvgTr/xr1X4Zz6XoPhPxPpXhrWZdU1LRvF15JDb3qG3eJIsLa3CsMyFiWXjYuAc5XOfNpy91919fwH0l3s7ettPxPQbT4t2nhjwPDr/AMULzwz8Oy95JZ+ZP4iimsJGDME8u6lSHcXVC20orDBBHBq9bfGv4eXt5dWlv488Mz3Vo6x3EEWsW7PC5jeUK6h8qTHFI4B/hjY9FJHz98TP2ePih468J+HdB0yw8G+FfD9pp+p6bL4Z0bXr6zgs1mSNbWSK8gtEnlRMSl7UCCJwUVtwUEZ37M37KXjf4X+PX8T+OfDvgHX9TsvDOm6PpGqw6pc3V7az2cDQhkeWyXykmVvmKEsgUD5wcDaNpKUpaeXyd/ustL682mqaGrOKfX/gr8NXq+3Zpntmv/tJeEEl8IReFfEXhPxdP4h1W1so4rfxTZQt9mlkkje4hBc/aCrROoijyzlGA5U10dj8cvhvqmtW+j2fxB8LXer3N3LYQafBrVs9xLcx48yFYw+5pE3LuQDIyMgZr5Z8GfseePPB/wAPvCVja+F/hzaeK9N8dQ+KdV1az1a5R9Tt4riWeOOSX7BvaQec0YDDaoUEfeKjUP7KfxGOu+Jda+zeD/tt38UbDx5ZxnVrn57aBSjQySfY8pJtAI2h1/eOMjGWUVeVnor/AJ+z/Lmk/wDt1+ic1FJuL2Xbf4/ztFf9vL5/RfiP9oH4XeDtfl0LX/iT4R0PW4SqyabqWu2tvcoWAKgxvIGBIIIyOcitjwp8TvB3jvUdTsPDXizQ/EN9pb+Xf2ulalDdS2jZK7ZVjYlDlWGGxyp9K/PP4geI/Fvh3XPGXi3RfhLc+PvhLY+NLnV4GsPF1rYafNq/n/ZjM9tPanUDOtwxQpHKIWcDy0KYJ+m/2Q/2dfF3wNu9ak1zUXi0S5tILfTfD8viB9eGnBWdjHDcy2dvJDAgKqkGZVHzMXLHJcFeN5aO3p06rffbe6s7rVKai5JNLVX/AF+7azfZ3Wujf0vXkf7RHxc8XfBfwbrPizRfBml+JtB0PS59U1GW/wBffT5QIxny4US1n8xioJyxjA4GTk49crzH9pjwF4h+KnwJ8aeDfDCaYdX1/TpdNjk1e7ktreFZVKtIWjilYlQchdvOMZXrWNTmUW47/wBf1/wCo2vZnmfxH/ab+Jnww+DifEXVPhX4eudIxZzyix8YzuLe1uODNIW01SPLLJvAU8NkFsEDvfFPx3l8GeKZIdUsNGTwlp3heTxRrWuway8ktjEuQqpbi2xKshV9j+Ym4RyHblQrdF4d8Cz6x8F7Pwb41sLHzJtHGkala6ddvc27J5flHZK8UTHK88opBOOcZPmHwp/ZVvNI/Zv174Z/EHxG3ijUNbsJdGutXt8qyWKRm3tETcODHEFY5GPMZ/vZydKialU5enw+ejVr+tpeeuttHlRvKNN1NG9/vTv9119zs9Trvhz8UfiL46TQdauvhnaaL4P1r97DLJ4jEmr2tsys0E1zZ/ZxEm4BCyR3MjJ5gGGIYDM/aW/aPvf2cD4V1S68KLrfhDUb9LTWNWi1FoptIiLKDcmDyWEsahst86kccYyRN8GNA+MngfRNB8I+KP8AhD9Y0jR0Fn/wlVrfXS3t7axfLEX08wBI5WRVDMLplVssA33a2fi98PdV+JGs6HpUuj6LqvgqaC9tdcGoahLDc+VPCYsQxLbusnDE/NJH2xTq+7K9PVX08159vwf4Ci5W9/frbp3t3t87/ecn8aP2q4vhp8XPhz8OtD0CLxTrfi+5SOSeTUGtbbToXDmKSSRYZdzSCKYomBu8pjnAJFuw+Pfi74gav4p/4Vp4BsPE3h7w5fS6VcarrHiE6Y1/ewki4iso1tpxIqEKnmSvCrOSASql68b0T9jb4ieCrb4SJZavoni2/wDC3iNNZ1fV9c1O4tp7i3gt3s7O1hVLaRcR2zLliVy6ngly1eleAfhD8TPgJ4l8Y2XgZfC/inwJ4h1abXbW01/UrnTrzRrm4ctcRKYra4W4hzh1BMTAsykn71EErvW+9un8tl5fa1fVdmhtu90tLL/267Xf7OnZ7XufQ9vK01vHI8T27MoZopCpZCR907SRkdOCR7mvHfgh+0vpnx3uvHlhounCz1Xw1e+Rb217dBRqFrJEJLW8BVCVhmBOGCvwMjdnFdV8XdI8aa38L9R0jwkdJn8S30AtJLi/vJtOgRHG2aSN44p3R9u7YMHBIJY7efGPC37MfiX4UftJaF408AQWFp4PudEXSPE1rrfi3U9RvLkKwMJgFxDLgW+3CDzVDKxXEfUzF3m4vZq1+z3v+Fu3vO+w2+WCdrvR/LZrT1v0eml7l7wb+1h4k8TfCj4g+JrzwJpGj+JvCOtNoUnhibxM7PLch40VGm+xjYZTKnlAI4fcuSvOOqb45+K/EfjzVvBngjwVpWva14btrdvEt7qfiB7HTLG7mjWRLSCZLSaW4k2szEmGNVXbkhm2ClN+zhep+1HN8R7PWktvCWo2NvNq3h4Bs3erW29LW5PbasUrZGfvxRnB6rWb4P8Aj/4X/G/xh45+HLeHte0TxqsM+s+HPEd/Ppxtr6GNYkuLa5it7jKugIeNoxgqpDc4BD4VzPW34rT7nq//AAHpcq3vNL+k9dPTRdL69bX9afXfEsvgBdUt/C8aeKntVkHh+81JI40uDjMbXKK42A5+cIxIGduflryL4bfH74l/EH4g+MPDJ+G/hizHhHVLbTNWuYvGM8pzNCk3mQI2moJFVJASGaM8EDPGfddC/tT+x7U619kGqFN1wthu8hGPO1C3zMB03EDdjO1c7R4x8EPhf478B/Fn4weI9esvDq6X4x1KLUrAadq8888Rit47dI5Ve0jUBlj3llZtpO3DY3U9pu+1n96a/S/6Gbb5Y27697Wf62OS8Dfte+Ktf8Ka14x8Q+BPDXhnwZoWr6hpOqXv/CYST3a/YvM+0TQW7WEYmUCJyE8xXIUnbxivR/hz8UfiL46TQdauvhnaaL4P1r97DLJ4jEmr2tsys0E1zZ/ZxEm4BCyR3MjJ5gGGIYDxf4TfsL2k/gv4h6Z8UfCXg2PxB4j1HVru08TeGpnuNQhhvxMHieeS1hY+UJSFyWVuCUUqM+t/BjQPjJ4H0TQfCPij/hD9Y0jR0Fn/AMJVa310t7e2sXyxF9PMASOVkVQzC6ZVbLAN92qitPe3tH77e992n42uDva67yXnv7tvVb+i21Lv7RHxc8XfBfwbrPizRfBml+JtB0PS59U1GW/199PlAjGfLhRLWfzGKgnLGMDgZOTjntR/aQ8S+EfAmkaz4n8B2I1vxNPZ2XhTQ/Duvm+fVLq5jd1ilkntrcW4RU3O5Dqq5ILEbT1/7THgLxD8VPgT408G+GE0w6vr+nS6bHJq93JbW8KyqVaQtHFKxKg5C7ecYyvWuI+Iv7P/AIq+Inwe+HcEGo6V4W+JvgS5tdU0q5iklv8ATWureNovJlYxxO0MyHDEIGXdkBtuGmHXm2vH7rvm+5W/4cp8zklHtL0vZct/V3v+iPUvAuu+OdRv7618ZeEdK0BY4kltbzRNebU7eYksGjbzLa3kR1wp/wBWykN97IIq38TfHUHw08B6z4lntZL82MO6GxhIEl3OxCQwJ/tySMiLweWHB6VV8BXnxAvpJn8a6R4a0REjVYodB1W41IzP/E7PLbW/lgYwECuTnO8Yw3OfGL4eeIPib4k8JaX5Nt/wglrcte6vLbeIr3StTMyqwg8k2sYYqjHef30ZJC9lIaaidrLd/wBX7eevoxwaTcmrpf1b+vVXObvf2pob79kqb44eGdEttait9IOrXGi3Opm2MXlj/SIDMsMn7yMq6gFBkqAdmcjIvf2pvFfhfQNFvPEvw90oat4mis4/Deh+HvFP267vLy6VmhguBNa24t0CxyM02ZEAikxuIAbz7TP2U/ij4Y+D/wAc/hhocPhWLwf4ukum8MQXviW+uJdLFwAk/nySWTO4b5psbmIclSx3GSt+9/YqT/hVXg+fwrpPhH4afFzw1c2WrR3ugW7SaVe3tokqKtwFjhZ45llcO+wSLv6ybBu1upS57WTcdOyd+Zd9F+Pe5FpX5Vv73zaty39evrurHv8A4F13xzqN/fWvjLwjpWgLHEktreaJrzanbzElg0beZbW8iOuFP+rZSG+9kEVi/tFfG+1/Z8+F2o+L59Jn1+e3O230m1kCS3TBWkkCnB+5FHLKcA4WJj2zW34CvPiBfSTP410jw1oiJGqxQ6DqtxqRmf8AidnltrfywMYCBXJzneMYbifif8HtW+LvxHto/EdnBL8PbDTJ47VdM8Vajpl/LeSgK5lS2RA0Rj3R4MxGHclG3ALlNuNrf1119dvn06aQcb3le39LT8/vOj8RfEjXb/wPo3if4daJo/jDT9Qtft5n1LXG0+BLbyvMVleO3uC7NwAoUDrlh38u8FftearefAu1+L/jLwTZeH/Bl/p0d3p8Wia6+p6lcXEsyQw2pge1t1EkjPhSJGXI+YqOaufs5fCf4n/CH4A6x4C1uHw1f3FgbqLwzHba5cyxJaSF2itrid7NXHlbgokVHLLj5Vxg4vhn9k3Xdc/Yt0n4LeMdS0/Qte0iGCOx1zw/cSX0cU1vKs0FztlihOd64aPpjo+Tkaac0rbaNd0ne/k2tPn5GKc3yp+afa6tbzs9em3meweAfFfxK1bUrSPxh8PtJ8N6fdWhnE+leJf7SltJRtIhuI2toACQzDdC0y7kIzghj6JXnHw0ufi3L9ht/H+meDbNbe3Aub/w9qd1dvfTYxlYJbaEW6k/N/rJv7vfcPR6GrGnVnlX/Cm/F3/RdviB/wCAPh7/AOVVH/Cm/F3/AEXb4gf+APh7/wCVVeq0VIzyr/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP/AHw9/8AKqvVaKAPkXxn8Q5fBPjGbRLn4xfFu+sLLVLLRNU8Q2Ol+F20/S767CmCCbdp6ykkSREtHE6L5qBmByB7L/wpvxd/0Xb4gf8AgD4e/wDlVXh3jz4E+PtR8XfEvwvYeG3vfDvjXxbpHiaDxQL22jtrGKBbf7TDPE0nnmQG0+Ty4nVvNXcyYbH2NSjdxvJdv/SYt/c20n1CXxtLb/gvX5qzsfPK/sbacnjY+Ml8e64vi8uZT4gHhrwsL/eV2FvtH9j+Znb8ud3TjpXY/wDCm/F3/RdviB/4A+Hv/lVXqtFPZWDd3PKv+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqq9VooA8q/wCFN+Lv+i7fED/wB8Pf/Kqj/hTfi7/ou3xA/wDAHw9/8qq9VooA8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WigDyr/AIU34u/6Lt8QP/AHw9/8qqP+FN+Lv+i7fED/AMAfD3/yqr1WigDyr/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP/AHw9/8AKqvVaKAPKv8AhTfi7/ou3xA/8AfD3/yqo/4U34u/6Lt8QP8AwB8Pf/KqvVaKAPKv+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqq9VooA8q/wCFN+Lv+i7fED/wB8Pf/Kqj/hTfi7/ou3xA/wDAHw9/8qq9VooA+ZvjLq6fAjQ11HxV+0H8RkeVSYLGx0jQbi5m+dEyFXScIm+SJPMkKxhpEBYFhnE+MHje8+Dl/qNrefF74ueIG0fTU1nW5ND0vwvIuj2LyGNLifzdPjLKSkp2xCR9sTMVAwT3X7bHhnxZ49+A+q+FPBvhK/8AFesapcWjKtpdWdvHbiG6hnYytcTxcMsbAbA5zjIA5rzr4wfDP4ieJfFvj/VtD8CX91a/ErwPbeH3iub+whk0G9jknXN5/pBDRbLncWtzM2Y2AU5GZlfk9xXlrpstrrfu9G7/AHGiUbXfl+aT/B3XpfVDdC+KC+I/GuiaJY/Gb4tS6Rruo3OjaV4r/srwx/Zd7fQIzzW6H+z/ADww2SKGeFUYxttZhgn2z/hTfi7/AKLt8QP/AAB8Pf8Ayqr5z+B37Mvjz4d2Pw1+Gl3oEi+HfAHjC71+PxfJe2xttRsmSYwokSyGcTlrjayvEiARsQ5yoP3DWjSu7bdPNWTu+2t1byMbtyaa0/4LX5JP5/JeVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVXqtFSUeVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVXqtFAHlX/Cm/F3/AEXb4gf+APh7/wCVVH/Cm/F3/RdviB/4A+Hv/lVXqtFAHmmk/CfxRp2q2V3cfGfxxqlvBMksljd2ehLDcqrAmNzHpiOFYDBKOrYJwwOCPS6KKACiiigAooooA5jUfib4U0nxxpXg261+wj8Waojy2miiYNdSRqju0hjGWWMCN/nYBcjbnJAPT18s/F17HQ/2wvhBqeneEdee3sjq767q2j+FL6e2E11aQQ2zzXMMDJIT5QQtubYEG8qor6mp2XKmne+/3vQbVnYKKKKQgooooAKKKKACvLvjj+018Nv2brbSLj4jeIz4dg1Z5I7OT+z7q6ErRhS4/cRPtwHX72M84zg49Rrwv9pCz0PVbvT7TUbb4jprB028i0m88CLqcSieUxAJLcWOBG25IyouWWDqzZ25XOcnFXX9f8HsaQUW/fdl/VvlffyN3xD+1L8MvC2iaLq+peIZ4dO1bT4tXgmj0m8l8mylKrHc3ISEm1hYsAJJxGpIbn5Wx6pFKk8SSRuskbgMrochgehB7ivgTxd4H+JXh6y8Z6Z420PWPGXifx18LtO0CPUNE0ua+tpNXhNxHLBPJFGY4Mm5R/NlKRkBzu4NfcvgvS7jQ/B2g6bdnddWdhBbzHOcukaq3PfkGtpL3pW26desl+Fk/mtDDmd4q3TX1tF/q/uaNmiiipLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5e6+Kfguy8aweDrjxfoNv4unUNFoEupwrfyAqWBW3LeYRtBPC9ATXUV8PftF/tLfAy5+M+m/DTxH4rstEXRfEVlr2tyHT7y6nu9QiCi3toWhidUIKRebIzLtQLGobc5j+4acUpUo1E92/Tp19W16JP7VkSspcvl/n/AJfp0CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOeJ/iP4S8E6jpdh4i8UaLoN9qsvk6fa6nqENtLeSZA2Qq7AyNllGFycketdHXxH+2P4Y1mTxv46stDufDPirV/H/g228OWnhO81CVNZtSlxOVuba2jikMsG6Uu7s0Sx+SWL/LilrdJK9+nfR6fPYpJNNvpb80vwvf8D6m1j43/Dnw74tXwtqvj/wvpnidpI4l0W81m2ivS8gBjUQs4fLBl2jHO4Y6121fDXj/AMH+HrX4yaJqng7xH4d8ZfGDTde0i0vfCN3oumXVzb20UVvFcTmWSA30AjQGdZ1mSIHaApZ8v9y04tShzLu/u0af4kNrmt5J+j6r5NBRRRQMKKKKACiiigAor5A/ah8NaZ4e+Knw3+Imj+D9D1F7Xxpp1vqviPS78/8ACRPPIWthZpH5JDwgPEXj84fKHAjXl6+v6UWpQ5vO34J/qEvdny+Sf4tfoFFFFMAooooAKKKKACiiigAooooAKK81/aF8ba14F+GN9deHdP1O91q9mi063m0vS7jUXsfOcI920NvHJIywoXkwFO4oq/xV8OfCfxhqU3wL8NfD/wAK39/plr4g+K2p6Lf6p4j0+/hV7dp7ueOOV2ELzNKYFSWJZEdizRO0Zc1CcpT5Irt97aX3ar9E2KbVNKUtnf7km2//ACX/ADsfpbRXwrd/HWTQP2SNf0Xw0nhHwP4tsNffQJ7Xwkg022t7N9YFjLqUMCFpLeM72BkBbbIGw24DFXUfht8NfEnw6+Knh74seB/Dl5pHw08QLcongq2n0WHXbuaxi8nzUWd5WumacR5adtzSRk0cyceeOqtdea92+n/by+em97CabUet7em/X5P8+qPvSivI/wBlX4E6f+zt8E9D8I2dlb2N3899qUdszOn2uY7pFVmZmZU+WNSxJKRrkk5r1ytGrMSd1cKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHL2nwt8F2HjS58YWvhHQbbxdcqUn1+HTIUv5VKhSGnC+Yw2qo5boAO1dRXw58bf2prR/2qvAGh2fxG0/w34b8PeLE0bWNM/teK2e+kaxnkmkuU3hvs8bm2iXeArSmTqVQ19x1MHzR5lt0/B/rcTajUcOujf4r8LBRRRVDCiiigAooooAKKKKACiiigCrqemWet6bd6dqNpBf6fdxPBcWl1GskU0bAqyOjAhlIJBBGCDXGaf8AfhhpHh7U9Asfhx4RstC1Nke/0y30K1jtrtkOUMsQjCuVPQsDjtXe0UB28jlYPhR4ItrdoIfB2gRQPpo0Zok0uBVNgORaEBceSP+ef3fanaf8AC3wXpHhq08O2PhHQbLw/Z3C3dtpNvpkMdpBOr+YsqRBQiuH+cMBkNznNdRRTu07/ANb3/PX1D+v0CiiikAUUUUAFFeHftc+G9W1P4VatqWg23jbUtdsrG6WwtfBviE6Q0MzRFluZiLiDzVQoBsJk++cRMTkfNnin4sa38XfB/i3VNM8deIbOPwt8LNK8T6Hf6ZeT6Y89/KJ2mubmGJ1E4JtkQxS741G/aMsWObqRjGUpO3L+VpP/ANtf3rXe1cuqXf8AzivzkvO19Nr/AKCUV+fXwL+K3jTx5pnwV+KupeItdh8QeLPG9/oWt6E2oTHTlswlykcAsiRDE8XkRt5ixrITuLEljX6C1q1Zyj1Ts/Wyf5NGaknKy/rVr80/lb0RRRRSKCiiigAooooAKKKKACiiigAooooA89+IfwG8H/FTxHoeu+I4NYn1LRJBNpz2XiDULGO2lG4easVvOieZh3UuV3FTtJK8V6FXx98ZfGfxW8FftDWmp3njzxP4S+ED65pml+XbeEtJvdPkaWOHMbXUkwvIxLKxjMiwSIjMMP1CfYNEdYXXd6fd+enn+A5rlnZ72Wvl0+7UKKKKBBRRXkn7R11rei+Cr3XNO8e6h4EtdNsp2R9JsrS7ub+9fatrAI7i3m3gvlRHGFkdpFAYY5Tdul/T+v62KjHmaVz1uivjL40wftJx+EfCfiHT/i7Y+Atf1Wz0vSY/Bun+GbS/W81mYnzv39xlokUEs2N4VIJG7YMHw7+NXxJn1X4beI9R8Zz6xo+v+NtS8G32hXOnWccIht/tEUN0jxwrKJ2e1DuDIYz5rBUUACqlaMnBvZ2+d0vxbXyaM3K0PaPa1/zf6P7mfalFFFIoKKKKACiiigAooooAKKKKACiiigDivHPwe8MfEbU7S/1uLVDc20LWw/s/W72wjmhZgzRTx280azxkj7koZcEjGCc5HjD9m74c+Or7TLrVvDi7tPsF0mKCwvLixt5LFXV1tJoYJEjntwyjEMqug5G3BOfTKKI+5rHT+v8Agv7w/r+vuX3HnGjfs7/D7w/46l8XWGgtDrMl3LqCq19cvZw3UqBJbmK0aQ28UzqMNKkauQWyfmbPo9FFO7sl2DrcKKKKQBRRRQAUUUUAFFFFAHlX/DWPwQ/6LJ8P/wDwqLH/AOO0f8NY/BD/AKLJ8P8A/wAKix/+O0UUAH/DWPwQ/wCiyfD/AP8ACosf/jtH/DWPwQ/6LJ8P/wDwqLH/AOO0UUAea6p8QfgN4i8VNqWvftGeH9f0Rb+PVLfwrqHivR2023uoypikXaonYI671jeZowxzt4Xb6V/w1j8EP+iyfD//AMKix/8AjtFFJLlXKtv6/wAkHW4f8NY/BD/osnw//wDCosf/AI7R/wANY/BD/osnw/8A/Cosf/jtFFMA/wCGsfgh/wBFk+H/AP4VFj/8drxr49az8B/j3q3h+/uf2qE8EyaJ5jWq+DPH+m6eDI6lWlZiHYvsZkyGA2swx8xyUVLina/QadjW8J+N/gD4au/At1d/tHaR4puvB9rd29lceIfHGnXUtxJccPcXD5DSTKm6NWyAqOwxzmsnw/dfs0+HfHS+IIPj34bm0+DWrrxFZeGZvF2ljTbHUbhSs1xEFCzEnfKQjytGplYhAcYKK0cm3zPf/g3/AD+6ytsibLl5en/At+Ta+b7nsv8Aw1j8EP8Aosnw/wD/AAqLH/47R/w1j8EP+iyfD/8A8Kix/wDjtFFSMP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAtaT+038Htf1Wy0zTPiv4H1HUr2ZLa1s7TxHZyzTyuwVI0RZCWZmIAUAkkgCvS6KKAP/2Q==)
Refer to Table 8.2. If Sherry produces five pairs of earrings, her total costs are
◦ $320.
◦ $360.
◦ $370.
◦ $400.
Question 2
Refer to the information provided in Table 8.2 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAMADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8a2/ii60UReEL/SNM1Zpkzd63ZS3kEcWfnPkxzQs7Y4H7xRzk5xg+H/ALNfxX+JvxP0zWPEvi3XPBdv4c0bXNV0a9trDQ7qzmKWkkkYuBcSX0qKCyKxRo+FJ+fjJ+i7hZWgkEDpHMVIR5ELqrY4JUEZGe2R9RXgPw1/Zp8T+Bfg58QvA8/xFT7b4nutR1C01/QdJl0250u5vGd5HXN3KWCO4KYZCAuCxJ3BK8XJ+T+/T9L/APDikuZwXS+vpZ/rYyPiZ+2LpOlf8I3d+EtTt1s4vFemaH4ltPEeg39ndW9teBmjliWbyWUlUYq2yRX7dOdPxl+1Hb39v4I1L4e6hY6hYXvjmz8Ia9ZazpN3b3tq0zYdfLlaGS3lUc/vI2BDDj18qh/4J16xYa3catpnj7wvo91Nf6NqjW1j4G8u0N1pxkMbmL7dl/N8xmlLMWZyWDAYUeoeJv2UNR1ePTb7T/F2n2PiZ/F9p401vUrnQ5J4b+8to0jiiihW6TyIQqBQpeRsDly2WLUbPV6cy+68L/L49N/vsaSa+yvsv77Tt87uKvselR/HvwNN45h8Ix6xK+rzXcmnxSrp9ybF7uNWaS2F75f2czqEbMXmbwVIK5GK8i/ag/ak1b4HeMotJjv/AA54atTox1Owm8U2c7xeIblZSr6fb3KTRx2sijyiZJfM/wBep2bUYnR8Afse2Pw8+MOr+MLVvB2rWWoa1ca2jax4Nim1yxkmBLR2+qLOpVA5JXfE7BSVz3rX+Mn7NN78Uta8USWniaw07R/F2jwaHr1jqehLqMpt4nkZHs5TNGLeX985zIkyhgjhAVO6Y3tCUt+q6bbX7X7X9AXLzST+Hp33+XT09U7M9G8Y3fiy98O6bJ4Uu9F0a9nYS3Woa1bNf2trAImZsRxzwGQltigiQAAs3OADi/s5/EfXPiz8IND8UeINOs9P1C980btPZjbXcaSsiXUIYlljlVRIqsSQrj5m6nz74rfs3/Enxz4bv/DPh74zR+F/DEktmtpp1x4TttQ+z2kEQRrV2eVRPHKwDOJVYMBsIKlgfT/gv4M8ZeA/Ba6V458dr8RNZWd3TV00WDSQsOFCQiCElMLg/N1O72rVOLU9LbW/rXvbto97pmScuWN1r18vyv8AnttqjvKKKKgoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACIARoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3L9obwd4D+AnxC0TVJfgN8L9b+EyWvn+JHtPBUDatpMRcRi7VhlJYVZ1LqIgyqCQW/h3dT8FfAvwNqXifxR4r+H/wrf4W21lp13pt1o/w4Fzcqt3u2SSywiYPGdnDLCg/eLlhj5vovUPAusap8TTrd1qulXHhWTSJNLm0GbSGeabewZma4M+wrxjZ5PIJyeePHbD9h/TfD3wo+KXw90Dxdf6f4e8WuraRBcQC5Hh9AxkEEQZx5kImZ2CfIQrkbifnMR5lHXfX7rvT7tU+n4E2cp72V193Lv8A+Bbrr996PiDS/wBkvwrYeM73Vvhj4PsbfwbJbx660vw6bNn5+fKfaLPLxsAT5iBkAwSQCKyZdY/Yzt7u8tZ/AXgi3nsruCzu1m+HjR/ZWn2+RLKWswI4JN67LhsRPn5XNavi39jvxn4z0f4tWepfFLTpp/iPZ6db387eF2As5LVVQtAgvRhHUH5GLEMc7m5BXxR+xt4n8X6d8S7W/wDiJpCf8JrbaLEz2/hiVfskmmujRsAb471fawZflPzDDcc6JK6u9NL/AK/rYt2tpvr+lv1v6HA/C64/Z9l1zxL4c+Inwy+F9hrdl41ufCthcaZ4BWKzkwIzbieUxzRwSyFnCiSVN+35Rwa7vxTZ/sjeDdUvLDU/hr4M32ss1vJcWfw8N3ameJGeW3S4hs3iedFRy0KuZF2sCoINbXh79kO9h1vxPH4k8XWGt+Ete8VJ4xn0iz0I2dz9ujeJ40a6NzJugV4VbZ5YYkAbwu5Wwpv2Gf7O8S+N9S0PUfAxHiS9vb+G/wDEXgNNQ1jS3ukKyLBfx3cLFFZmKhlLAHbuNYvnVNKOsuX8VGOnzfNd3totrlvldSX8t/wbl+S5f+CdB8Jfh/8Asr/HXRbrV/Afw8+HHiPTbWSOKa5t/Cdqio7xJKEO+BfmCSLuHVTlWwykDkmvP2QJZZIbL4beDL6V4b2Wwkj+H2LXVTahjOllcmz8m7ZdjcQO5OCRkA1798G/hpd/Db4PeH/AusaraeIP7J09dM+22WnnT0mgRdiZiEsm1tgG4huTk4GcV4dpP7E2vab4a8JeGJPiRaXnhzwQb2XwtDL4cxc28k0UsMX2yZboC5SKOZxtjSAudpLcVtiY/HGg+mjfXz207pNeTel3FO1k5/1/Xe+nZ9H/ALM/wp+D/wAdPhdY+N7z4LfD6zg1fbcWunnwDHZPZxtGreUZJ48XeC3FzEqRv/CvBr1f/hk74If9Eb+H/wD4S9j/APGq1fgJ8NNQ+Dnwi8MeCNR1q28QSaDZpYQ6ha2DWQkhjG2PdG00vz7QMkNgnkBelegVdTl53ybdP6/r1ZEW2ry3PKv+GTvgh/0Rv4f/APhL2P8A8ao/4ZO+CH/RG/h//wCEvY//ABqvVaKzKPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKAPKv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WigDyr/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9VooA800n9mT4PaBqtlqemfCjwPp2pWUyXNreWnhyzimglRgySI6xgqysAQwIIIBFel0UUAFeMfHb43+KPhV4x+H2g6D4Q0jxIfGOoPpVvcajr8unfZ7hYnm+dUs58x7Iz8wOckDbjmvZ6+fP2rvgTr/xr1X4Zz6XoPhPxPpXhrWZdU1LRvF15JDb3qG3eJIsLa3CsMyFiWXjYuAc5XOfNpy91919fwH0l3s7ettPxPQbT4t2nhjwPDr/AMULzwz8Oy95JZ+ZP4iimsJGDME8u6lSHcXVC20orDBBHBq9bfGv4eXt5dWlv488Mz3Vo6x3EEWsW7PC5jeUK6h8qTHFI4B/hjY9FJHz98TP2ePih468J+HdB0yw8G+FfD9pp+p6bL4Z0bXr6zgs1mSNbWSK8gtEnlRMSl7UCCJwUVtwUEZ37M37KXjf4X+PX8T+OfDvgHX9TsvDOm6PpGqw6pc3V7az2cDQhkeWyXykmVvmKEsgUD5wcDaNpKUpaeXyd/ustL682mqaGrOKfX/gr8NXq+3Zpntmv/tJeEEl8IReFfEXhPxdP4h1W1so4rfxTZQt9mlkkje4hBc/aCrROoijyzlGA5U10dj8cvhvqmtW+j2fxB8LXer3N3LYQafBrVs9xLcx48yFYw+5pE3LuQDIyMgZr5Z8GfseePPB/wAPvCVja+F/hzaeK9N8dQ+KdV1az1a5R9Tt4riWeOOSX7BvaQec0YDDaoUEfeKjUP7KfxGOu+Jda+zeD/tt38UbDx5ZxnVrn57aBSjQySfY8pJtAI2h1/eOMjGWUVeVnor/AJ+z/Lmk/wDt1+ic1FJuL2Xbf4/ztFf9vL5/RfiP9oH4XeDtfl0LX/iT4R0PW4SqyabqWu2tvcoWAKgxvIGBIIIyOcitjwp8TvB3jvUdTsPDXizQ/EN9pb+Xf2ulalDdS2jZK7ZVjYlDlWGGxyp9K/PP4geI/Fvh3XPGXi3RfhLc+PvhLY+NLnV4GsPF1rYafNq/n/ZjM9tPanUDOtwxQpHKIWcDy0KYJ+m/2Q/2dfF3wNu9ak1zUXi0S5tILfTfD8viB9eGnBWdjHDcy2dvJDAgKqkGZVHzMXLHJcFeN5aO3p06rffbe6s7rVKai5JNLVX/AF+7azfZ3Wujf0vXkf7RHxc8XfBfwbrPizRfBml+JtB0PS59U1GW/wBffT5QIxny4US1n8xioJyxjA4GTk49crzH9pjwF4h+KnwJ8aeDfDCaYdX1/TpdNjk1e7ktreFZVKtIWjilYlQchdvOMZXrWNTmUW47/wBf1/wCo2vZnmfxH/ab+Jnww+DifEXVPhX4eudIxZzyix8YzuLe1uODNIW01SPLLJvAU8NkFsEDvfFPx3l8GeKZIdUsNGTwlp3heTxRrWuway8ktjEuQqpbi2xKshV9j+Ym4RyHblQrdF4d8Cz6x8F7Pwb41sLHzJtHGkala6ddvc27J5flHZK8UTHK88opBOOcZPmHwp/ZVvNI/Zv174Z/EHxG3ijUNbsJdGutXt8qyWKRm3tETcODHEFY5GPMZ/vZydKialU5enw+ejVr+tpeeuttHlRvKNN1NG9/vTv9119zs9Trvhz8UfiL46TQdauvhnaaL4P1r97DLJ4jEmr2tsys0E1zZ/ZxEm4BCyR3MjJ5gGGIYDM/aW/aPvf2cD4V1S68KLrfhDUb9LTWNWi1FoptIiLKDcmDyWEsahst86kccYyRN8GNA+MngfRNB8I+KP8AhD9Y0jR0Fn/wlVrfXS3t7axfLEX08wBI5WRVDMLplVssA33a2fi98PdV+JGs6HpUuj6LqvgqaC9tdcGoahLDc+VPCYsQxLbusnDE/NJH2xTq+7K9PVX08159vwf4Ci5W9/frbp3t3t87/ecn8aP2q4vhp8XPhz8OtD0CLxTrfi+5SOSeTUGtbbToXDmKSSRYZdzSCKYomBu8pjnAJFuw+Pfi74gav4p/4Vp4BsPE3h7w5fS6VcarrHiE6Y1/ewki4iso1tpxIqEKnmSvCrOSASql68b0T9jb4ieCrb4SJZavoni2/wDC3iNNZ1fV9c1O4tp7i3gt3s7O1hVLaRcR2zLliVy6ngly1eleAfhD8TPgJ4l8Y2XgZfC/inwJ4h1abXbW01/UrnTrzRrm4ctcRKYra4W4hzh1BMTAsykn71EErvW+9un8tl5fa1fVdmhtu90tLL/267Xf7OnZ7XufQ9vK01vHI8T27MoZopCpZCR907SRkdOCR7mvHfgh+0vpnx3uvHlhounCz1Xw1e+Rb217dBRqFrJEJLW8BVCVhmBOGCvwMjdnFdV8XdI8aa38L9R0jwkdJn8S30AtJLi/vJtOgRHG2aSN44p3R9u7YMHBIJY7efGPC37MfiX4UftJaF408AQWFp4PudEXSPE1rrfi3U9RvLkKwMJgFxDLgW+3CDzVDKxXEfUzF3m4vZq1+z3v+Fu3vO+w2+WCdrvR/LZrT1v0eml7l7wb+1h4k8TfCj4g+JrzwJpGj+JvCOtNoUnhibxM7PLch40VGm+xjYZTKnlAI4fcuSvOOqb45+K/EfjzVvBngjwVpWva14btrdvEt7qfiB7HTLG7mjWRLSCZLSaW4k2szEmGNVXbkhm2ClN+zhep+1HN8R7PWktvCWo2NvNq3h4Bs3erW29LW5PbasUrZGfvxRnB6rWb4P8Aj/4X/G/xh45+HLeHte0TxqsM+s+HPEd/Ppxtr6GNYkuLa5it7jKugIeNoxgqpDc4BD4VzPW34rT7nq//AAHpcq3vNL+k9dPTRdL69bX9afXfEsvgBdUt/C8aeKntVkHh+81JI40uDjMbXKK42A5+cIxIGduflryL4bfH74l/EH4g+MPDJ+G/hizHhHVLbTNWuYvGM8pzNCk3mQI2moJFVJASGaM8EDPGfddC/tT+x7U619kGqFN1wthu8hGPO1C3zMB03EDdjO1c7R4x8EPhf478B/Fn4weI9esvDq6X4x1KLUrAadq8888Rit47dI5Ve0jUBlj3llZtpO3DY3U9pu+1n96a/S/6Gbb5Y27697Wf62OS8Dfte+Ktf8Ka14x8Q+BPDXhnwZoWr6hpOqXv/CYST3a/YvM+0TQW7WEYmUCJyE8xXIUnbxivR/hz8UfiL46TQdauvhnaaL4P1r97DLJ4jEmr2tsys0E1zZ/ZxEm4BCyR3MjJ5gGGIYDxf4TfsL2k/gv4h6Z8UfCXg2PxB4j1HVru08TeGpnuNQhhvxMHieeS1hY+UJSFyWVuCUUqM+t/BjQPjJ4H0TQfCPij/hD9Y0jR0Fn/AMJVa310t7e2sXyxF9PMASOVkVQzC6ZVbLAN92qitPe3tH77e992n42uDva67yXnv7tvVb+i21Lv7RHxc8XfBfwbrPizRfBml+JtB0PS59U1GW/199PlAjGfLhRLWfzGKgnLGMDgZOTjntR/aQ8S+EfAmkaz4n8B2I1vxNPZ2XhTQ/Duvm+fVLq5jd1ilkntrcW4RU3O5Dqq5ILEbT1/7THgLxD8VPgT408G+GE0w6vr+nS6bHJq93JbW8KyqVaQtHFKxKg5C7ecYyvWuI+Iv7P/AIq+Inwe+HcEGo6V4W+JvgS5tdU0q5iklv8ATWureNovJlYxxO0MyHDEIGXdkBtuGmHXm2vH7rvm+5W/4cp8zklHtL0vZct/V3v+iPUvAuu+OdRv7618ZeEdK0BY4kltbzRNebU7eYksGjbzLa3kR1wp/wBWykN97IIq38TfHUHw08B6z4lntZL82MO6GxhIEl3OxCQwJ/tySMiLweWHB6VV8BXnxAvpJn8a6R4a0REjVYodB1W41IzP/E7PLbW/lgYwECuTnO8Yw3OfGL4eeIPib4k8JaX5Nt/wglrcte6vLbeIr3StTMyqwg8k2sYYqjHef30ZJC9lIaaidrLd/wBX7eevoxwaTcmrpf1b+vVXObvf2pob79kqb44eGdEttait9IOrXGi3Opm2MXlj/SIDMsMn7yMq6gFBkqAdmcjIvf2pvFfhfQNFvPEvw90oat4mis4/Deh+HvFP267vLy6VmhguBNa24t0CxyM02ZEAikxuIAbz7TP2U/ij4Y+D/wAc/hhocPhWLwf4ukum8MQXviW+uJdLFwAk/nySWTO4b5psbmIclSx3GSt+9/YqT/hVXg+fwrpPhH4afFzw1c2WrR3ugW7SaVe3tokqKtwFjhZ45llcO+wSLv6ybBu1upS57WTcdOyd+Zd9F+Pe5FpX5Vv73zaty39evrurHv8A4F13xzqN/fWvjLwjpWgLHEktreaJrzanbzElg0beZbW8iOuFP+rZSG+9kEVi/tFfG+1/Z8+F2o+L59Jn1+e3O230m1kCS3TBWkkCnB+5FHLKcA4WJj2zW34CvPiBfSTP410jw1oiJGqxQ6DqtxqRmf8AidnltrfywMYCBXJzneMYbifif8HtW+LvxHto/EdnBL8PbDTJ47VdM8Vajpl/LeSgK5lS2RA0Rj3R4MxGHclG3ALlNuNrf1119dvn06aQcb3le39LT8/vOj8RfEjXb/wPo3if4daJo/jDT9Qtft5n1LXG0+BLbyvMVleO3uC7NwAoUDrlh38u8FftearefAu1+L/jLwTZeH/Bl/p0d3p8Wia6+p6lcXEsyQw2pge1t1EkjPhSJGXI+YqOaufs5fCf4n/CH4A6x4C1uHw1f3FgbqLwzHba5cyxJaSF2itrid7NXHlbgokVHLLj5Vxg4vhn9k3Xdc/Yt0n4LeMdS0/Qte0iGCOx1zw/cSX0cU1vKs0FztlihOd64aPpjo+Tkaac0rbaNd0ne/k2tPn5GKc3yp+afa6tbzs9em3meweAfFfxK1bUrSPxh8PtJ8N6fdWhnE+leJf7SltJRtIhuI2toACQzDdC0y7kIzghj6JXnHw0ufi3L9ht/H+meDbNbe3Aub/w9qd1dvfTYxlYJbaEW6k/N/rJv7vfcPR6GrGnVnlX/Cm/F3/RdviB/wCAPh7/AOVVH/Cm/F3/AEXb4gf+APh7/wCVVeq0VIzyr/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP/AHw9/8AKqvVaKAPkXxn8Q5fBPjGbRLn4xfFu+sLLVLLRNU8Q2Ol+F20/S767CmCCbdp6ykkSREtHE6L5qBmByB7L/wpvxd/0Xb4gf8AgD4e/wDlVXh3jz4E+PtR8XfEvwvYeG3vfDvjXxbpHiaDxQL22jtrGKBbf7TDPE0nnmQG0+Ty4nVvNXcyYbH2NSjdxvJdv/SYt/c20n1CXxtLb/gvX5qzsfPK/sbacnjY+Ml8e64vi8uZT4gHhrwsL/eV2FvtH9j+Znb8ud3TjpXY/wDCm/F3/RdviB/4A+Hv/lVXqtFPZWDd3PKv+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqq9VooA8q/wCFN+Lv+i7fED/wB8Pf/Kqj/hTfi7/ou3xA/wDAHw9/8qq9VooA8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WigDyr/AIU34u/6Lt8QP/AHw9/8qqP+FN+Lv+i7fED/AMAfD3/yqr1WigDyr/hTfi7/AKLt8QP/AAB8Pf8Ayqo/4U34u/6Lt8QP/AHw9/8AKqvVaKAPKv8AhTfi7/ou3xA/8AfD3/yqo/4U34u/6Lt8QP8AwB8Pf/KqvVaKAPKv+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqq9VooA8q/wCFN+Lv+i7fED/wB8Pf/Kqj/hTfi7/ou3xA/wDAHw9/8qq9VooA+ZvjLq6fAjQ11HxV+0H8RkeVSYLGx0jQbi5m+dEyFXScIm+SJPMkKxhpEBYFhnE+MHje8+Dl/qNrefF74ueIG0fTU1nW5ND0vwvIuj2LyGNLifzdPjLKSkp2xCR9sTMVAwT3X7bHhnxZ49+A+q+FPBvhK/8AFesapcWjKtpdWdvHbiG6hnYytcTxcMsbAbA5zjIA5rzr4wfDP4ieJfFvj/VtD8CX91a/ErwPbeH3iub+whk0G9jknXN5/pBDRbLncWtzM2Y2AU5GZlfk9xXlrpstrrfu9G7/AHGiUbXfl+aT/B3XpfVDdC+KC+I/GuiaJY/Gb4tS6Rruo3OjaV4r/srwx/Zd7fQIzzW6H+z/ADww2SKGeFUYxttZhgn2z/hTfi7/AKLt8QP/AAB8Pf8Ayqr5z+B37Mvjz4d2Pw1+Gl3oEi+HfAHjC71+PxfJe2xttRsmSYwokSyGcTlrjayvEiARsQ5yoP3DWjSu7bdPNWTu+2t1byMbtyaa0/4LX5JP5/JeVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVXqtFSUeVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVXqtFAHlX/Cm/F3/AEXb4gf+APh7/wCVVH/Cm/F3/RdviB/4A+Hv/lVXqtFAHmmk/CfxRp2q2V3cfGfxxqlvBMksljd2ehLDcqrAmNzHpiOFYDBKOrYJwwOCPS6KKACiiigAooooA5jUfib4U0nxxpXg261+wj8Waojy2miiYNdSRqju0hjGWWMCN/nYBcjbnJAPT18s/F17HQ/2wvhBqeneEdee3sjq767q2j+FL6e2E11aQQ2zzXMMDJIT5QQtubYEG8qor6mp2XKmne+/3vQbVnYKKKKQgooooAKKKKACvLvjj+018Nv2brbSLj4jeIz4dg1Z5I7OT+z7q6ErRhS4/cRPtwHX72M84zg49Rrwv9pCz0PVbvT7TUbb4jprB028i0m88CLqcSieUxAJLcWOBG25IyouWWDqzZ25XOcnFXX9f8HsaQUW/fdl/VvlffyN3xD+1L8MvC2iaLq+peIZ4dO1bT4tXgmj0m8l8mylKrHc3ISEm1hYsAJJxGpIbn5Wx6pFKk8SSRuskbgMrochgehB7ivgTxd4H+JXh6y8Z6Z420PWPGXifx18LtO0CPUNE0ua+tpNXhNxHLBPJFGY4Mm5R/NlKRkBzu4NfcvgvS7jQ/B2g6bdnddWdhBbzHOcukaq3PfkGtpL3pW26desl+Fk/mtDDmd4q3TX1tF/q/uaNmiiipLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5e6+Kfguy8aweDrjxfoNv4unUNFoEupwrfyAqWBW3LeYRtBPC9ATXUV8PftF/tLfAy5+M+m/DTxH4rstEXRfEVlr2tyHT7y6nu9QiCi3toWhidUIKRebIzLtQLGobc5j+4acUpUo1E92/Tp19W16JP7VkSspcvl/n/AJfp0CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXOeJ/iP4S8E6jpdh4i8UaLoN9qsvk6fa6nqENtLeSZA2Qq7AyNllGFycketdHXxH+2P4Y1mTxv46stDufDPirV/H/g228OWnhO81CVNZtSlxOVuba2jikMsG6Uu7s0Sx+SWL/LilrdJK9+nfR6fPYpJNNvpb80vwvf8D6m1j43/Dnw74tXwtqvj/wvpnidpI4l0W81m2ivS8gBjUQs4fLBl2jHO4Y6121fDXj/AMH+HrX4yaJqng7xH4d8ZfGDTde0i0vfCN3oumXVzb20UVvFcTmWSA30AjQGdZ1mSIHaApZ8v9y04tShzLu/u0af4kNrmt5J+j6r5NBRRRQMKKKKACiiigAor5A/ah8NaZ4e+Knw3+Imj+D9D1F7Xxpp1vqviPS78/8ACRPPIWthZpH5JDwgPEXj84fKHAjXl6+v6UWpQ5vO34J/qEvdny+Sf4tfoFFFFMAooooAKKKKACiiigAooooAKK81/aF8ba14F+GN9deHdP1O91q9mi063m0vS7jUXsfOcI920NvHJIywoXkwFO4oq/xV8OfCfxhqU3wL8NfD/wAK39/plr4g+K2p6Lf6p4j0+/hV7dp7ueOOV2ELzNKYFSWJZEdizRO0Zc1CcpT5Irt97aX3ar9E2KbVNKUtnf7km2//ACX/ADsfpbRXwrd/HWTQP2SNf0Xw0nhHwP4tsNffQJ7Xwkg022t7N9YFjLqUMCFpLeM72BkBbbIGw24DFXUfht8NfEnw6+Knh74seB/Dl5pHw08QLcongq2n0WHXbuaxi8nzUWd5WumacR5adtzSRk0cyceeOqtdea92+n/by+em97CabUet7em/X5P8+qPvSivI/wBlX4E6f+zt8E9D8I2dlb2N3899qUdszOn2uY7pFVmZmZU+WNSxJKRrkk5r1ytGrMSd1cKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHL2nwt8F2HjS58YWvhHQbbxdcqUn1+HTIUv5VKhSGnC+Yw2qo5boAO1dRXw58bf2prR/2qvAGh2fxG0/w34b8PeLE0bWNM/teK2e+kaxnkmkuU3hvs8bm2iXeArSmTqVQ19x1MHzR5lt0/B/rcTajUcOujf4r8LBRRRVDCiiigAooooAKKKKACiiigCrqemWet6bd6dqNpBf6fdxPBcWl1GskU0bAqyOjAhlIJBBGCDXGaf8AfhhpHh7U9Asfhx4RstC1Nke/0y30K1jtrtkOUMsQjCuVPQsDjtXe0UB28jlYPhR4ItrdoIfB2gRQPpo0Zok0uBVNgORaEBceSP+ef3fanaf8AC3wXpHhq08O2PhHQbLw/Z3C3dtpNvpkMdpBOr+YsqRBQiuH+cMBkNznNdRRTu07/ANb3/PX1D+v0CiiikAUUUUAFFeHftc+G9W1P4VatqWg23jbUtdsrG6WwtfBviE6Q0MzRFluZiLiDzVQoBsJk++cRMTkfNnin4sa38XfB/i3VNM8deIbOPwt8LNK8T6Hf6ZeT6Y89/KJ2mubmGJ1E4JtkQxS741G/aMsWObqRjGUpO3L+VpP/ANtf3rXe1cuqXf8AzivzkvO19Nr/AKCUV+fXwL+K3jTx5pnwV+KupeItdh8QeLPG9/oWt6E2oTHTlswlykcAsiRDE8XkRt5ixrITuLEljX6C1q1Zyj1Ts/Wyf5NGaknKy/rVr80/lb0RRRRSKCiiigAooooAKKKKACiiigAooooA89+IfwG8H/FTxHoeu+I4NYn1LRJBNpz2XiDULGO2lG4easVvOieZh3UuV3FTtJK8V6FXx98ZfGfxW8FftDWmp3njzxP4S+ED65pml+XbeEtJvdPkaWOHMbXUkwvIxLKxjMiwSIjMMP1CfYNEdYXXd6fd+enn+A5rlnZ72Wvl0+7UKKKKBBRRXkn7R11rei+Cr3XNO8e6h4EtdNsp2R9JsrS7ub+9fatrAI7i3m3gvlRHGFkdpFAYY5Tdul/T+v62KjHmaVz1uivjL40wftJx+EfCfiHT/i7Y+Atf1Wz0vSY/Bun+GbS/W81mYnzv39xlokUEs2N4VIJG7YMHw7+NXxJn1X4beI9R8Zz6xo+v+NtS8G32hXOnWccIht/tEUN0jxwrKJ2e1DuDIYz5rBUUACqlaMnBvZ2+d0vxbXyaM3K0PaPa1/zf6P7mfalFFFIoKKKKACiiigAooooAKKKKACiiigDivHPwe8MfEbU7S/1uLVDc20LWw/s/W72wjmhZgzRTx280azxkj7koZcEjGCc5HjD9m74c+Or7TLrVvDi7tPsF0mKCwvLixt5LFXV1tJoYJEjntwyjEMqug5G3BOfTKKI+5rHT+v8Agv7w/r+vuX3HnGjfs7/D7w/46l8XWGgtDrMl3LqCq19cvZw3UqBJbmK0aQ28UzqMNKkauQWyfmbPo9FFO7sl2DrcKKKKQBRRRQAUUUUAFFFFAHlX/DWPwQ/6LJ8P/wDwqLH/AOO0f8NY/BD/AKLJ8P8A/wAKix/+O0UUAH/DWPwQ/wCiyfD/AP8ACosf/jtH/DWPwQ/6LJ8P/wDwqLH/AOO0UUAea6p8QfgN4i8VNqWvftGeH9f0Rb+PVLfwrqHivR2023uoypikXaonYI671jeZowxzt4Xb6V/w1j8EP+iyfD//AMKix/8AjtFFJLlXKtv6/wAkHW4f8NY/BD/osnw//wDCosf/AI7R/wANY/BD/osnw/8A/Cosf/jtFFMA/wCGsfgh/wBFk+H/AP4VFj/8drxr49az8B/j3q3h+/uf2qE8EyaJ5jWq+DPH+m6eDI6lWlZiHYvsZkyGA2swx8xyUVLina/QadjW8J+N/gD4au/At1d/tHaR4puvB9rd29lceIfHGnXUtxJccPcXD5DSTKm6NWyAqOwxzmsnw/dfs0+HfHS+IIPj34bm0+DWrrxFZeGZvF2ljTbHUbhSs1xEFCzEnfKQjytGplYhAcYKK0cm3zPf/g3/AD+6ytsibLl5en/At+Ta+b7nsv8Aw1j8EP8Aosnw/wD/AAqLH/47R/w1j8EP+iyfD/8A8Kix/wDjtFFSMP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdoooAP+Gsfgh/0WT4f/wDhUWP/AMdo/wCGsfgh/wBFk+H/AP4VFj/8doooAtaT+038Htf1Wy0zTPiv4H1HUr2ZLa1s7TxHZyzTyuwVI0RZCWZmIAUAkkgCvS6KKAP/2Q==)
Refer to Table 8.2. If Sherry produces four pairs of earrings, her average fixed costs are
◦ $4.
◦ $20.
◦ $25.
◦ $100.