This topic contains a solution. Click here to go to the answer

Author Question: How did dark matter behave differently from normal matter during the early stages of the big bang, ... (Read 89 times)

ericka1

  • Hero Member
  • *****
  • Posts: 544
How did dark matter behave differently from normal matter during the early stages of the big bang, and how is this important for the formation of stars and galaxies?
 
  What will be an ideal response?

Question 2

How is the Sun's rotation different than that of Earth's?
 
  What will be an ideal response?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Jayson

  • Sr. Member
  • ****
  • Posts: 350
Answer to Question 1

As long as radiation dominated the early Universe, normal baryonic matter could not contract to form galaxies and stars. Dark, non-baryonic matter does not interact with electromagnetic radiation, and was not affected by the intense radiation.

Tiny fluctuations in the texture of the big bang were caused by quantum mechanical effects. As the Universe expanded, these tiny fluctuations would have been stretched to very large, but subtle, variations in the gravitational field of the Universe. Since dark matter was not affected by radiation, it began to clump around areas of higher gravitational field.

At the time of recombination, baryonic matter was smoothly spread through the Universe, but dark matter was already clumped in filaments. After recombination, ordinary matter quickly gravitated to regions of high dark-matter density.

Dark matter clumping allowed normal matter to clump and begin producing stars and galaxies much faster than normal matter could have done on its own.

Answer to Question 2

Earth is a solid body and rotates equally at all latitudes. The Sun does not rotate as a rigid body; this is possible because the Sun is entirely gas. For example, the equatorial region of the photosphere rotates faster than do regions at higher latitudes. At the equator, the photosphere rotates once every 24.5 days, but at latitude 45 degrees, one rotation takes 27.8 days. This phenomenon is called differential rotation. Helioseismology maps of rotation in the Sun's interior reveal that the gas at different levels also rotates with different periods, another type of differential rotation. Both types of differential rotation seem to be involved in the Sun's magnetic cycle.




ericka1

  • Member
  • Posts: 544
Reply 2 on: Jul 27, 2018
Gracias!


EAN94

  • Member
  • Posts: 307
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Street names for barbiturates include reds, red devils, yellow jackets, blue heavens, Christmas trees, and rainbows. They are commonly referred to as downers.

Did you know?

Inotropic therapy does not have a role in the treatment of most heart failure patients. These drugs can make patients feel and function better but usually do not lengthen the predicted length of their lives.

Did you know?

Most women experience menopause in their 50s. However, in 1994, an Italian woman gave birth to a baby boy when she was 61 years old.

Did you know?

People who have myopia, or nearsightedness, are not able to see objects at a distance but only up close. It occurs when the cornea is either curved too steeply, the eye is too long, or both. This condition is progressive and worsens with time. More than 100 million people in the United States are nearsighted, but only 20% of those are born with the condition. Diet, eye exercise, drug therapy, and corrective lenses can all help manage nearsightedness.

Did you know?

Only 12 hours after an egg cell is fertilized by a sperm cell, the egg cell starts to divide. As it continues to divide, it moves along the fallopian tube toward the uterus at about 1 inch per day.

For a complete list of videos, visit our video library