This topic contains a solution. Click here to go to the answer

Author Question: Explain how astronomers find out how much energy is emitted by stars. What will be an ideal ... (Read 40 times)

tuffie

  • Hero Member
  • *****
  • Posts: 534
Explain how astronomers find out how much energy is emitted by stars.
 
  What will be an ideal response?

Question 2

In the context of an eclipsing binary system, briefly explain a light curve.
 
  What will be an ideal response?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

flexer1n1

  • Sr. Member
  • ****
  • Posts: 373
Answer to Question 1

Hot stars emit a great deal of ultraviolet radiation that you can't see, and cool stars emit plenty of infrared radiation. To add in the energy you can't see, astronomers make a mathematical correction that depends on the temperature of the star. With that correction, astronomers can find the total electromagnetic energy output of a star, which they refer to as its luminosity (L).Astronomers know the luminosity of the Sun because they can send satellites above Earth's atmosphere and measure the amount of energy arriving from the Sun, adding up radiation of every wavelength, including the types blocked by the atmosphere. Of course, they also know the distance from Earth to the Sun very accurately, which is necessary to calculate luminosity. The luminosity of the Sun is about 4 x 1026watts (joules per second).

Answer to Question 2

In an eclipsing binary system, if the plane of the orbits is nearly edge-on to Earth, then the stars can cross in front of each other as seen from Earth. When one star moves in front of the other, it blocks some of the light, and the star is eclipsed. Such a system is called an eclipsing binary system. Seen from Earth, the two stars are not visible separately. The system looks like a single point of light. But, when one star moves in front of the other star, part of the light is blocked, and the total brightness of the point of light decreases. A light curve is a graph of brightness versus time commonly used in analyzing variable stars and eclipsing binaries.The light curves of eclipsing binary systems contain plenty of information about the stars, but the curves can be difficult to analyze. A light curve shows how long it takes for the stars to cross in front of each other, and multiplying these time intervals by the orbital speeds gives the diameters of the stars. There are complications due to the inclination and eccentricity of orbits, but often these effects can be taken into account, so observations of an eclipsing binary system can directly tell you not only the masses of its stars but also their diameters.





 

Did you know?

Of the estimated 2 million heroin users in the United States, 600,000–800,000 are considered hardcore addicts. Heroin addiction is considered to be one of the hardest addictions to recover from.

Did you know?

After 5 years of being diagnosed with rheumatoid arthritis, one every three patients will no longer be able to work.

Did you know?

GI conditions that will keep you out of the U.S. armed services include ulcers, varices, fistulas, esophagitis, gastritis, congenital abnormalities, inflammatory bowel disease, enteritis, colitis, proctitis, duodenal diverticula, malabsorption syndromes, hepatitis, cirrhosis, cysts, abscesses, pancreatitis, polyps, certain hemorrhoids, splenomegaly, hernias, recent abdominal surgery, GI bypass or stomach stapling, and artificial GI openings.

Did you know?

There are major differences in the metabolism of morphine and the illegal drug heroin. Morphine mostly produces its CNS effects through m-receptors, and at k- and d-receptors. Heroin has a slight affinity for opiate receptors. Most of its actions are due to metabolism to active metabolites (6-acetylmorphine, morphine, and morphine-6-glucuronide).

Did you know?

There can actually be a 25-hour time difference between certain locations in the world. The International Date Line passes between the islands of Samoa and American Samoa. It is not a straight line, but "zig-zags" around various island chains. Therefore, Samoa and nearby islands have one date, while American Samoa and nearby islands are one day behind. Daylight saving time is used in some islands, but not in others—further shifting the hours out of sync with natural time.

For a complete list of videos, visit our video library