T7urFAji/Ngw6NTpI+7y/OiMcrLQ0hVbZJlKPoe7i7PKlLYqEvSsmIJXcELfMwVlU3MgCVkBVuVi2VZdAtYdostQ7P5hC2slFZQ8t1VPXLVPhRmau0sV/yaryrZneU5sYnVHFgXYQfSbu6tzMGXEdDVrX3zMkpDxkxk6uVSJGChI9OmV93kffVqRatINQoLndl89HZM5wFs2OjI5sokoIsTLRXLwY5Qp9huVpdp+8Azb4UlR7uj0r9E9CJXK0AQGLkHov1wkEWOGLtozJ82PLFJVYlPSiSuh+pB3smIMV0Vit8Nlieeg21UddtX58910FRtAO2ZNhpParb31THTO2tJIGYii8KycHDniFS+qmbeCRVUAAAW0UlEQVRrFZV5foDObBvGeobir3h2xWwHB3fuUaspCAeoTV9NI+Uvjf67O3ow0EHDeYyHBkUj+eEdI0oLEFcWJUrVtWQgoOT7GOvejc5cm5ZzfIRA8u3Jd2O4axe8Grt70+ZEvnJ9Fwd2jCDr8CMXv0vDSM8AdrZ3y6j7KunJDQt+4OPQzj3gPpnp0ZgEEiRBH0d378eJ/v1Y8QpSyVGtjF0idi9O7zmGgdAHp7HCNxw7CPDU0FHs6+mTbpgQsOICSdrzXdhBgBfHnkB7LgnD7IF03Z8bPYld+S4UuDhgZOV5QqcPXKeTxYv7noBD+06kPA3Lq54EAh+2nRE8HPApcYXXMB1qkYGUo7+jB8/tPRE+UcDLISMPtuE0QHumA9/a9xgCsN1WLa0dQNxH9vcO4snho9uA58HPIkFEBhlS//OHX8BTg4fh+R5WvBIKXgkrbgGOZeGbYyfx0sFnEuBHpkb52Dy68t34wYmXcGTHsBhvV7wiCl5RMHdkcvjjw8/i1J7j8bckqi3S1QrER+xvT7yMkc6dIF76ZIms3SJ2tXXirx55EUf6Dsav9YrURNXF0b6DgmtHW4fItuAWUXDZPooY6dqJvzn+Ega76BhL8mKcVXqQ9l/V5Gb8yuhbVs/fRjUaBDg1cgLfO3waHZmsfOhUuyii5JVwdNcwfnD82+jKdSVEzhsVKNnPk+FHFjZYHzvaevHDx17Bh9Nf4OJdNXK2o70bD+/ahyN9+5QHt0yhSYBg5V0JMNw9hH986k/wwdQlXJ2dQtErYnd7L04MHMJY74gGal6wOHGblzvAkb79+KdTf4YPJy/h+vy0OHgOd/fh0YFD6O/sK4OM0c4kIML8Azw9cgL7egalbUwt3hVj+WjPoGDubeuNkJiBb8preE2TGG/zVF+a0M37Nfk4eOngszjWN4YPpy7JgE8+k8e+niGcHDyE9mxnIrrBzSt3fCkliMgoBHGZhmVn8PjQw/JX/sLyOT+jVNPZEiONND75qZwDD23ZTjy79zE8u5e3lOOpfhg3ujXy99GT78XX9z2ln/PlMzKN38YUgjYDDVqb7O/qx7fDWQcGL0NvBnPLmCuEG54INIVpb88I+FfZlnnpl0UeRkxP6pFAsojMNFr+spJt0/OVfoAqHxs02yPDhF/reorezDiKgBUPsAXbCj+BCsboC9fMfBtIS95pT+OjnEWo6ofJJhByBUYxkOt2ImIgYCPvBuSyiaiKDtX/NYOb9iltOopLz+4wEZlMImVtAN4fv8kiMv3VLddspLFUk1aSKl+wRAFp3NWYk9QmCFfcLQiKhKBfqIr7CQBMGQoZEIuRMcHqPyNjg3/TkBmhgWOj6IJLhBn54EbkLFlHy9YAljQqkkVkpnL5axporUoy7bnWs1ju1QC0Hv5YMFZnqmYnhHejeGsUJwwXx0kUG/MPryNAI6frQVSG/SqtaL0INZ6prNZjsgiYEKsAL3OxSbfiubmZ/m5VAqbvttV4afhUAqkEUgkkRgIpkSWmKlIgqQRSCdQrgZTI6pVcGu8+lIAeNFqvV7jJUjGJJiSzydzSYBtJIIE2so0gp89TCdQhAcNh2vmVKTRknuKoekpldVREa6I0RGQ0nHqep+Yahvgihs7wXnqSSiA+CXA+ZuXRPF2qnHZ1HpU53v9XzZNZK2TREJERUC6Xg639vbjEDsktPVIJJEUCnNhvNuSt1qCa0VRN2n71fMoWCCCkylXEHFEOzUIAEjiMIWgqrxTA6rd1VRjmJYLSo9xGaBUBKy5aUPKNk6ybyNySiz944QXsP3gAo2OjeP311/VE740zTUOkEtguCZDISvcuo1DiemZ84fjqVr++W0fDBQJs28HFS5cwaZ2B77Vi7Tau2ssusA3L1isPc0Ej25ayqJU/rFCRoELBInJtNonDX4lXvs8Aslot02TY8DnTUXmE6Up8lZfECdO3JaykRYBciMi2JV+FwaRN3Oq+CqvSkoy3LvJ1Y9RNZIViAQcOHsDQyJC0i8nJydU+MutmnT5MJbANEuCOUAv3YPmKwGTzEaNV1Ju98CFXEgEWFhawODUN+M0jsjLNWrJYgiEjISgSgyEym88VWZB8ymSiiEyuI2FNPJKSOXcckosiG5ION0cRIrNNeiqsCm/DdlSeQnpCUopkGc/kp0iPi6AGsvoLZ+gwbV4z7VYcdRMZ1c3CSkEWvRvdu1d/48pV0AqwaZqpBLYqAc7bXZmxcOOqrXY+opFeDPVbTSkaXk1J44s50D+A/mPH4LtcFrzxgxxLE405ZNFF0cqUtsTJDUqj4jW1NVmgPKKhMaYiIfVcaUehhiY9RIkIzvLi4qBMiGRJolRx1XO6NBiClHxMXlpzk5y01iZxeR7+qbhML5qGKVezf+snMpGSWgKRC8SlRyqBJEpAaWAamYxY0o7baHu11LZyMuOI28s1zzYsRCbao3CKrGcmq+OKqmDBCmwENvELzZiCKTJip5kJkGf1GsBUOMrLfTI4SUrf8S0EsnewFEQ/UyYxWdZUiE1fa0VKUqO+op8JAOZBgpWMzbxSRYokMYZtpTZGDPUTmZTAku3QFpeW5Cr9l0ogaRKwLAfFwkrELKa6mI3jVBvOlEpFLCwtImiJjUxpNcrmRc1GuX2abiG7d0bjEa1Hk4bqgipbWKUGp7Q4Eot0Ly0LfiQNYyMTjQ8WPFHW2N0M4Ada2+JeFYyvu4kMG5AYFZOJ9lWeG0t0lLfS+hqX+dopNEhkwu9wnHRfvrVFnD6JVQLcG1XvXi+j6lp7Un0JrWZsFaAF+NzolwZ/y4bjZBCgahXYraa5RnhZ91+UGmMoj3Qt2cXTXbeQyNhFjNwjt7H8okBJeJIj7VmamExXkHHEPqbIk+mpNLXNTOUk6VTHFSXPpCMZqcKoU6WRrVG8pt1unMhsG/lwA46m4UoTSiXQHAlwA5WMbuaq3xbpWtZHZNLVC5RGRhLL53Lw3ebZh0kgPETf4nlIEoZkjN2rrCUJ8WhiY0yllUlUACQyhlUrY7FjKYMEkrZJs4rYJLweBBAINZ6LuqfiixZncMsAhC6A6ukqTa05NVozlYaIjP3ejOOIL5n0zWtmkd5MJRCfBGjs97MZeYl9bSNTXR8ucV0froA2H/iikXHUL5fNwrcatbuVsRgi4x1lpFekIGQk6o92sdD+m1GtTHFJlHRMGorIhITXIia5H9HAdLhoF5aEJUc0DcEpN8qEyUDsbmpyU3GqrlVKTfnfEJERgU0iy2cbHwhqSnHSRFIJVEqAROZmVTNn15IOrI0a+4UMaJAPIGaVXC4L366TFSvhVlwZQpNfcoB0GZUGJFqX2LfK10J0OpzS4iSU4hKtkVXHM+QoLh6GkCL5qDTLxGhMXspup0c8aS8jqUo31mi5+tdok4qLK8rXzIvGiczmFymnRkuaiSxNK5VAEyRAIitlMtJN49c2CKJT6uokn4BbuandnJxMRnokTSMycaRXJKB5SihAupnaME8GFUtYSGRK8TGDAUZDY+mUNqXITgiR97RWFRKfJhuK2xCbCCwkT0Vk8jzM05AbfTiUf5juqSrKMgRmNDLz24Q6rZVE40Rm2WnXspZk03uJkIAQWTYrL2jAaUS+q5b3JzpO56njII1IWtq0ks/n4TVJIyNhGe8LgSi9MUVshqAEsiYGIY+ItmXIyvyK5qS7o4q4VFoqbUlRNCkTXu5Hwofhwvx0/ChRcRRTfSoEmtIGy+Snbrb2f0NExlEb2gjyuXyqkbW2ntLU65SA5WRQYNdSNB0fvlnkQBijzkQ1kdEurIz9eXh1kmI1AhkLDY13mmiogYVEImpTmTZIKJp4hExCnlEnUfIy4ZinOecv84yGk+c6XWXmqiQlDaWchtzQGQs8o62VMbTaht4QkbG/TGN/W1tKZNUNMr2OXwLStXKyKGZz8tL5Hm1knry4sulSfQqZ0IBMEg8C5LIZaf+eU3diFYKSgdWIw64hMAaKko0QkYlpyEsTmgkbPjbMo9Mw9+VXnpHItBG/RhjJNxKJUaiVRrHxcfS6fF4mswrDfyS9Zpw2RmQEb9vIZDKpRtaM2kjTaLoEqJE5GeXnyO6g77nhFCW+jPUcjBWwixqowa4Mu64Bd21vzmFW1DCplUlB3VHXZewRnjIB5Nfcl2lOYWKinOp/vFlBiRXxwyhSYGEqJTHR1kzQKI7yuYkrQqpTzuU0Nj6rm8ioKvLv1sQE3njzzMY5pSFSCcQhAS7jM3cFxRKJx0PglpRGRix1KlHsblEj40jfpS++wM3gDUm3ecUrA1PuF2bupNKClI+YdpMgqWjnVuPLpRxWo06vamK3ek7lg+no1Sr0L7UlxpOBANrl9KoVEo7hIxPEmX80L5lpEIY3WDnBXPm7SVg9GZ1hW6GZ1UlkAWjgHBwcxJ07d1EoNm/mf/MaQ5pSKgG+kA78ohphFCLjaGNog6pPQuz5KReOAK7roVAoIvBK9SVWK5ZWbKgrscfHid0kEmpYZQLRRKbJh1qaIR9FZJqsNMmFzyRBEpEPXzz8fZU2nWQDGz6nGzEtykjyJKnK1HL1jFg4LUkGN9TUJfqLccoSQzIuo1qWUnTUtcyEr+h61ip2I/fqJDKgra0Nzz/3XGTRukZgpHFTCbRKAha+vP4Bfn3p3+B5JfheqWEiI1JqZBw4OH78ETz8jT+qX71rQbFJHo126VSHU7vlb6JrWDNH07dtQRmrk6ybyJgQmZmjlumRSiDJEqANlweJx3cLyqO/ljlnC4WQFS9k1N75is41Lnd/jdgaFKlJpq7fhoisbiNDXVDTSKkE6pGAWkKGMX2/BK9JRCaTxsVObDCtfrHNk/S39RJokMhaDzDNIZVAMyRAmqEdy3Npz9X2nAYS5rxNGoXUMjUNJJRGbYoEUiJrihjTRJIpATE/h9B834XPJam18tSIDqUGDDhRPM4OVVi0r/xJSmRf+Sbw4AuAhnm3uIzZhXksLS43xzAfAIWV5RZtOvLg10mzS5hAIot+RaNfO943S/Iq57xmC6Pu9GQ4X2bYVn2h1bCzpLuNIzi1y6FlFx3RUuPkqzGrgXSluUSroHbC23A3okIJ/mpQum3U1I4CtPcMYvjwKczdvgquGBuqZA0iH+gDdgwdrJ2KtIloO41i1uVhzLAOaieT3t2cBKxAdOSIYDcXr3WhpGLVSGjRK4C2iKztwLGzKs+AK3GyUdBAkZAR0xBzgKJblJWqck4GtqW/E8SsIStnwGijbp0oK1OOfAT4ICQEhZktIM+VfgWzJmDelNUOeBIHZv2im4KEmH0UxNZlIZ/JaWx07jIfExOB8X1pJ35xAV6pEHnQ2KmZn5ht3yF+VqucPEMiU22U3dqSr7akyzl5lblMRUpQO25MJDHGFr83SjxBRAYLUwvT+NW1D3Hx3gSKnovuXBuO9+/H86Mn0Znr4viT1hZierlWVZmFa7M38KtrH+PK3BRcL8DOtg48PngIz+45gVymTbzKhQwEcly4NUHJB8DC+duX8PaNTzCxeE8Ug76OTjw9dAxfGzmmPhLyotETO24i48vuiAzPTnyC301cxO3lOZlcM9K1E8+MPILjAw+tqhXlZ8G4lHerPnprtUX5CqDkFfDWjY/x/tQlzBaWkLFtHOwdwnOjj2Ksd48m2rjaw2qR3Z93EkdkFi7duYofnfsZppbmpdLpmEeq5fpPh3ftxd+deBl9nbuVRpYIqVv4/cR5/Pv5NzBXXBbtkSwrq5ECeHLgIP76xMvozHVEMMfQcOVbpbQT4nvjynv4yedvoeR7suwxRcndsDj95A9GH8X3j35DtvpT37gams52yV40Gwte4OHHn76OM9fPgdO+s/QuB+D6HtoyWXz/8Gm8sP/pKlT6Gy27b7MMTZS7kLxJr1qrUsS/VFzCj879HB9OjwvpyvQfQGTem2/HXx57EU8OH6vCnF5uXQIVs0m3Hr05MbSWAAvzK3P48WdvYmZ5Ee3ZPHJOFlknI3/5TB6f37uFn37+G7g+p4PIm9kcCFtOpYx5Yn4SP75wBktuCe2ZPDJ2Bhk7i5yTE/y/nx7Ha5ffVd7kAtk0/i1n2oQIzNvChZnL+OnFtxEEFtqcnMiXuInZsRy8ce0jvHvrE91lYrZxylp1g9+58THOXP8Yju2gnThtBxmeZ3Py0fjppbfx6cy47mYavIaAm0xiFAlJUcSpZFpZOaqOfzH+Dj6YGkfOZltQcs7aGWkni6Ui/uOzM5icv60xV6aQXm1NAq3St7eGQoc+f+cKbi3cBe1LPKTTa9ok+NJl8enda7gxN9nCrsJWoAf43cTnmC0YTawyLrVJNtz3GGZlvuolqwzb8iv90vmBh9/e/AQl35ddpSleUXo0AM7WoEH8tzc/RdHjprOGDFqOsHYGloWiu4K3b56XeYbUalSTMARiCaEVPBe/vfmxOL2qhEzDMeFqJ1//3Ui6qzQ9C18uz+KDqS/kY6amDOn2rFtBznZwb2URv5u4UD+ENGYogfiJTNobFzjycX1uUl4q+diZdhhCVS2ANrObczPRuzGcK3Ce7+Lmwm21YsAaKNhVW3ILmFq6EzGwrxG4lbe1PF3fxcTCvXUxZywb00tzWCjSVSHywrYS35ppW1goLmG2uBRu61YdlEScsRxMLc6iyFVgaQ9jeaMMXR2pxdcTCzNYdFf0ROkajVlPAGf74fLbSs4tBvUAJx8/kYXCNYZoNkC+PKsrn3d5cAebeI+yliKDvgZYTVDKxlfe8GJ1uWpGa/ZNvYKperfVlOD1spAiCVT+iwmzBqj88NX/VZhZICP/kLg0XnN/VaTW3zA2UuX5XwOItPHW4/iq5BA/kYW2BhvDXf2r3hnR2tkOZKliumJkMNzVF3/9cAcdwbJLlnQJi6EJQ0MWA3pHNo+BjpgHKISPAmQdBwMdvWJXEiHKsi1lhYDl8AIfu9u69ABF7DyGrlwHurMdSs4CuppYA8Hc19GDHPexDAmtBoFsU8sZ7Nwp9kfhWTHRcXkcs5SjIl+S3WDHrqb6tm1T8RKXTfxEForEwiP9BzHQ0SP+NjSmit7AOpe/QFwxHto5grHe4XjfLnmP+M/Ck0MPozObl9EzIV2FWmzB/OjSd+jkwAHsbO+JvGBhobf9hL5tXxs+CoeLA3KTWaP9quLIoAQ13qeGDysfrWrO2HbEPvKZdnxt5IiMXIr/lmAgMfDEEncXdodPDR+DTSJTt9VvLP8D7O7YhRP9+1E0ywZRjpS1fOGImW5FeTw5fCQWhA9apgkisgA723fgT49+Hd25dqyU6FjqS91zK9Rlt4ixnn587/BpZJ1czKQgn1jxZxvtHcH3Dz8HvkgrptEiEGN6wS3geN8Y/vDgM/F/dUVl5Nvk49HBw/jW/idAw39RL9nMx7SfFbwSTg0fwXOjJ/XHImYmo0oTBDg9+jieGT4qxOCSgGUBv0DhR4AX953EicHDGrOo77G+qxw0+e6hZ3GsbxQrbhGeaIksC0TGeScjLiOj9CWLueseq6CalHnyPPthYXJhGv87fhaf3L6Cgu+iO9uGp4YeEj+h3rbeiHNpfF0HNWlYtmAQ51H6v71+9T1x4i15HnZ3dOH0yCN4fuwJ5OkQC2PQjQ+z6nJRveU0HR8fTX6OX157H1dnZ8Q3a0/XDjy/91Gc2nNCz6TQtkhymVJ/mtTstpCM6SZaNugdf/bWJ3jz2oeYWPxSdN8Dvf14Yd8TQs7KyE8vM7UkNOvIjBhuIccmBDXkb6PgLuPX1z7Ab26ex92VRWQdG0d2jOCb+5/CoV37pB6UmtaEbL+ySYQOsV9ZCaQFTyWQSuABkMD/A9QjI3v/m+ANAAAAAElFTkSuQmCC />
1.The induced current in the loop is zero.
2.The induced current in the loop is clockwise.
3.The induced current in the loop is counterclockwise.
4.An external force is required to keep the bar moving at constant speed.
5.No force is required to keep the bar moving at constant speed."
Question 2
What is the highest pressure indicated by an isobar on Fig. 48.3?