6yjjq386bgQYXey7CzJ 9hOG4iNCaYxp4e9HHmP 3hRxh1el/cdsV45IRDcPykorzxan/x48JbJ806Lri+amelMuEk5GP7qx98gldmfYj+/frg+ssuQKuMECrKk1L5ntV7ItEI1m4tx60/+wu27S4DnCQG9GqNP/3nrejRJozy8nJRnZD4uRCokmG1FPqtU7qhQdPXs39Vy9Lrdxp6lTmCXB0MmCgsKMCiBfMxdNgwdOneU8q9VbM5pxc8jdRbjgFvmlT2UbRg1lDW2Xzjg0VYsGwZLh8xBLdcdgEilqWy8Yv8wahlNrAyZrORWtu8L6OJvD7jxwlXp7irNLI0bPrGh3eX5eP56bPRvl1rfP2ysejQphUqYklkWjaJLXs/AAAgAElEQVT2xyx8+z9fxMcrdog03jKzAn/8j5tw3qAuqCguFm8USbDvWJLeViQcJwwYLKRMLxj6jNfZkPr0KoWOUcoVv0OUvAOmhayMCCoqKkTl5ccFVAZp+Tvr95OGgPKioo0/jkwrjH0lDv45+32sWb8B1184CtdeOBwWaV4KuVChQsLnGlJpaU9aQ9LgRJrI6zPISnNxGJkrC7sqTyWn9Th2Sf4m/O8b78EMWrhm4nic1qs77ATwo6em4cW3lwOhDARRgYd+cDlumTAMZSUlMB1GdBqwjYBKcWsw1ziLloVkYYi0w9yM4q1SdyfSl6QIfNUNjkSuvPi5Td1sfcTSFyMfgZP9Toy9BUK7jmEiEgniy92FeGnGXOwp3I+bLh2DS88aLPtJ2L1rwpJHS9I4RSAVcXGyW5bK59NEXp/R9Ymcx1bxhTd9FWnwi8sHRvFftpD/5R4898YsHCguwk2TLsJHa4vws2ffAUItgNhB3HH9aPziOxMQjx1CQnKP89EyiSQrhtPDhR7qjuVFiyYketNwg5JwqHLh1OpLupIUh4S84A+T/66GqhrReHilK061pku9vnJuchHYksSKNExxhnETBiyTaq0I1mzagxffncWyKfjOpAk4p29Xz4vIHxGWOWTAFu1A9WpG2h+kibwBpoBMbZng1PeZ4ihhmCb2HCzDC+/MxYwV2/Dhyn2IsypQeRkuGdUHz/7bjQhZSSSYjpZphFgFyLBhG3ZlOt0GaGrKntKna6qmSCyUxIUjqLdN2V43fseIJf+YYciADdNgyL2BoBWRuT+f1e7fX4K2rfLw/asnoF+HVhJIx9QVvvpR3XL1qJzI6FVheSJn0cdWIiAkLuZ3+sx6vt0kZNdFu9wMjBo1Gp+tiyFeYQLxMgzu2wb/dfckZAVtxOyYrApmSqRhkw+aTMOqp3glvMf8wZfCeYDr2ghZAbTMaYFQUEW+HvOJ9I5HRSDJkoiGrZ4Y3QCSTgjhYAbKbOCfcxbj1ZnzcEafTvjJNycLidM1RfL8Vx8gPcOPivGx/KjdD48FpePYh/KfxIAzilMs9nQDN2EZLgpjNh58Zjr2F5bDDDI030G/Pi1RESuDi0yE6YnislKQVxhCZBwdzHYc8MuuPkcoO7AhqYa3b9mMf7z4Ai6/fCIGnzFUBVNp98Pjhfaw/WmgpOE9aVgIuC4ygiF8uf8QXnl3HjZu24ErxpyL68YORwb1LKzsI26FqkC49kw5DM56b9ASeb2hO/KBfJwni5usaM+HTmZBhImf/nEWZi38AkYwiIiVxE++Mw49W4bx7EvTMOezdTCMDETMiEjjlHJE2+4Gayrij3xZ/Us1BITEpewdECK5bN2GJx76FdasXIlIJKR9yKthdSIfmRKCxY9DcBEIWfh4w2b87h/TULBvrxQt/3/jR3okztsrcwH5T5v+7fZErq6P9RHQErmPxMl6F1cqSuVMZ8vag0mJzHzurWX4/T+XAJlZcMsO4c5bRuOX3xiDgqJS/OWtOXh9+rvYvmsnLh1zDtpEM5GMlYvBiJpHbYw7vsERVZQYO3krNCUoKBCwYEbCCAUsL4Dq+M6p964bAYteKVYA5ckYps/7BLM+WoGendrju5MmoXe7VmKbIGWLbMN0zoxOFpVj3efTW+uHgCby+uF2lKOo22ZmRC91rRXEjBWb8dPfvSOJtFBWjEkX9sPPvzleQjLb5ERw740TMW3BUrw8/wNs3rUTN1w0Dqd37YiKeBniblwKQB/lgvqnOhDwyVzUr2QSFvegGyL9NvXrpCBgMUd4KIhNe/Zj2qwPsGHLDowbORQ3jjsXuZGQFwZEUUQGQDxVmDhOPFS04eekjIF/Ek3kPhL1eq9FCvI8T6dDUrkBFvZZu/Mgpj72Cg6Um4CTwMC+rfHYvVciM8hnTKZxchEMWBIc0b1TW/zf2+/jDy+/jgnnnYPRZ/ZHRthCokLlw+WCqHVFaXXtNaH24da69q5XR5vhQaQLHxkS+OGVgQ7vVLpj5hnWOW1UOdlaEPnOhQ6CwRCSrolFK1ZjxgeLEYKJ26+9DGPP6Ceo2zaLQXhjIMPgFSCXz/Tl50trdj0gTvhNE3k9IOQ0VNnFD5+QKkkTs9C6KI47+MGj05C/qQyIhpAXdfG7B65Gr1ZZQuIufcS9DH1sxll9u6Nb22vxf7MXYvr7C7Fp21ZMGjMCXdu1RSLpwLZZqoI6A+Z1kXopIu3IcvA4m29KR0/tTnoTufTeS2imPtMAraJuVU3T6oNfRfrVt6bTZ5k3LtPHKoGBOfSVfUdmlbgT0osqFApjT1EJZiz8GMs+W4vTenXFNy49H73atRa4uLclFZJ99BS2PsKawH1cTt67JvJ6YKlInAfyk3pw5DfqASUQwpMEH/z9O5i5aAOMzFawknvx6zuvx5gBnaWOpCQRUmWSJeBHpGfDQZvcLEy59hL079kVL89cgN+9+A4uGT0cw88YgMxQCPFYOZgJUdQ31ECysrhXSk4tFOY5VzcY5T9djw6mxCFC3VVPJdUJ3esf73Oiu5Xv/v4p0fnj7oSqYAUvpw/VUEo6Z1SsiBuujQBLZxoBfJy/WbIWlpWU4vpx5+HS0Wchi04pdJ81g55nCqXx9Mb0uAfhBA7QRH7c4HFyKpncCzGpcQbDYBCQhefeXoGnX10EZGXDLd+Pu28ejdsvPkPV8uQRhlWlOyTJkFUYuQlXwpUvHTYQfbt0wj9mLsbL7y1A/sZNuOKCEejSoQ2S8QTsJK+jHlfp36LuHSrbHCV0krqt/O9qtC+dvrD7xEGiazls1YibBK4McJXpERU0aco9rsnZzCxB9LMPqXSyLI7sJkHhOhTIwJ6DhZj20cdY/Pk6DOjUBVOuvQIDu7UTYF2HqWop2CgxR5N44640TeT1xJvTnmteZHI/34mwhoVZn2/Hvz83A04oCJQdwsQxvfCzb03wpENDUqiKzc0L+lFJgkw4zLnK84pRLolebXIw9cbxeG9FZ0ybswhPvDgdF557Ns4/oy9yohaSMa+wBKPpfOmHi0mqBLFxvuqnnp1s5ocpEqd6QJF1pfQtP3D0uJ2qKm7gSx5tvM/p9WZR8nZdJKUOnnfzMwyEwhHEEkksXLUKMxcsRay8Al8bMwqXjxqKFiGPPph1VjxRVOyEN4s9cSK9cDxVvdVEftzIc5oqI43iAxICZWJquwPYsKcEUx6ehoOHaKC0MbhPGzw95RrkBi3YjiuJsCiLK6le5G/5RvGQtwaVlpafLMCxEQ6YuOKswRjUvTNem7sE7875AGs3fIEJo8/CgG4dEXRcOMm4xCCxWWyNT+ppLxWJCyLHoeolTz6VX4kW+cZ7r9yefh9cBCRfCjMVmkggYgThWlGs27kP7y76CGvWf4HBPXvgxrHnYmBXSuEsapJUmQq9J0MfNW3C9JFovHdN5CcBawncMQIojNu467FXkb9pj1S6z4kYeHLqNejevoWYj2jFFzUIeUP8aZkYiwSuJGfFJ6pABf2fXZNJPrmvg56tczH1+kswr183vPH+EvzxpWkYMex0jB1+Btq1zIXLsm92QnymHVMZq3jm9HwJwCrPjfccJHc4kby9m3CleJ6eCMm0kic/NUdsb86E3aCE2O8rK8f7nyzCgk8+Qzgcxi0TJ2DCmYMQFSOmLU99knlTopCrcocr4YH4azpvzJmlibyeaHOq+jTJx0oS7i/+9A7eW5QPM5oB14nhoSlXY+zgTrBdByaTX8GSTOWKQ9TRMvE9qxtDnbmVfz4Vc4mI3tHT7144ZAAG9eqGGYuWY86Sz7Bq3QaMPedsjDxtILIjGXASFXAkopTSPbPSKYOs+l+pYMhn/C21Xx5hk6z4lOI4SFaUw7a98HAOQhp59XCeqdubb4SkOyYxUl5QlkWXwjCcchOLPt+Cf328BPsO7sPYwYNxzfnD0bFVtnraoz++kLQrqkCeQc1Xvns3UNming5TfZY1lTWkibyeI1HzadzAH97+FM++vAQI5cGJH8SUb4zBnRcPEVmbU5/ZDJX6xLtgpY2NH5REU12GqS5NVwqPLD1pAG2zMnDrhPMwckBPvDb/E0yb/T6Wrs7HhHPOxpBe3RAOhiSXiKPkee+CatEq6Z9PAOqaXGhqsVXp06s+1ROcU34YdUzUjavaYa5tI6tFCww6czjyWrWGnSSQJJ10ePlUSiJniLwrJdc4GyT3t2EgGrYQdx2s3rwL8xYvw/pN29GrS2d89+vX4uxenRVIHl5mZQm26jPUn0NVs4kH+VdOB5RPdR91GtvjHgFPFhcucGFYBt5fuQXX/ttfUVgeBmI2LhnTAy/+/EbkhUiW1CMqYjnhme1xD8mcH7kYbcfBh6s34F8LlmLrnkKc1rsXLhoxBL27tBcis+MxSS3KfNG8CwQcFnEGEhZvL+o8tSFo/gtQ9ZVRnA4N0bQ/2EmpmRoIhmEGgymba0U94XGovVF0VX4T0qoyzLtIsmKSwVzhdJQKYvOeA/jgk8+xYtVatMzOwCXnnoULhw1GZlAVhJUHRjHE154p+ntTQUAT+XGPBCmUBKFyeGzcW4IrHvgT1m4tApwA+nfPwpuP3oZ+bTKV1CeiO2Xc+j/8ePyt7gNiwKN0pbxbTC9isSQWw+xla/DOwk9RXFqCYYN7Y/RZQ9G9fQcE3AQSyZjcUmhENSUzI+NPq798+vYfvav/1nw/+8ZN8lAgEEAymYQjaiq/v823b3W3nC6o1X9hP0nvTOKmnAMNepsEAthZUIhFy1Zi8Yo1CJgGxg8fhvEjh6BNi6goYpR9RpnxOc/0q+kioIn8GMdGuQQy9awrifFNywAdU274yUt498MtQNhEy1AMrzxyK8YO6ib7ydTnAhA3Q1lKx3i1mrv567LGUvIInedmIn/LW2gFRSWYufRzzF66CrGkgxGD++C8IYPQvX1b8Wwpt5NMPAp6rMvDtZyH1/MXPF3Imr9ypTqClWMnG1WHVeWm6nulymelqZYiDxSlvZuWpCgIBMGonl379mHhirVY/Fk+3EQCY87oj0vPGYbOrXMFBPHB8lVPniqlxtxLFahSqB+ayI9zMF1bqSQcy8T9z72LJ16YB0Tbw0oewrM/uhS3X3K2SLqGm/Ai3JQummRcXQd+PJflsUdcSK6r3Mao9XZZWo7XM7BtfzFmLfkUC1euRswBhvXvi/OHDEaXDq1hWkA8npR6n9SZ85FbmQR5FdMrH3c8LWx6+9bGjETmS+d+a+va5v/WfN/9mUISd8SgGQgGwUH/cl8hFn+2Hp98thp2Io7hg3phwshh6NuxbZWaTaQG5qbxbubU44mQ4J+3+SKTyi3XRH68o8vqP6aJ3729Cvf898twAgE48Tju+PoFePaOcUKOqio4y7SZyktFWKU2tRzvhY+8v6w9SthM3E8JDBYMT6e5be8BzFy6EgtX5CPpJDGkf3eMPGMQenTqjHDAQpKl5RzKYOrxm0bCVJDIK9F2VMIsqgasYBhJPpE4SVF7yT4ppDLgjUpUbY4Nw7RghcNyE9+2Zx8+WbEaK1avl4jgswf2xrgRp6N/5/YyqcSOQNULsZDgNk4iih2cEyR0zg4lkBx5FupfTiUCmsiPgr4sdMWSoAeISNSGhdlrtuOGH76IwlIA8VJMGN0DL/3ym2gZNMTVkFFyNkPwxc2PF6DBjRpH6snrIdlUslJdjeWPlL4UEavmciEqfajvnbJlfxHmLV+JRSvWoKS0AgN7dsHwoUPQt0dXZEYCElTkJG1x01OLmNfyOs8my0dF91XSu+qL+l+5t9XVwsbe5rVaPPQVHRmwkwmUlZYhnBGFFQxItGdtCb2x26mux9ZWx1F9JuCKRPnd/+MRfu8UzapvvjoFCFm8YQVQlgC++HKPSN8r89eLZ9TI0/rjojMHoV9nBvSol4+BL4FLIJr3m98Sf1/93nQR0ER+xLGhJtmUKHcaxxzTRsAwsbGgFFf88A9YuykuR/brauLNh7+L/u1z4dpJpn2rlj61+smrFmz1rQ3+WXSdvJEoiWpHUQkWfboWCz5bi4L9hejcsQPOPH0QTu/THe1yMmA4CdGti3q1Uk9K0uCyJrn4RKKWeZVhTQUyNXh/jvkCvLmRxk1kZoSw9KOP8L3bvo1f/PKXuOKaq1BcUl6fW+oxX/3YdiSWvC2qm7DCsgppx3Qk0pcJrRRt837t2y+q8KeKiOoTM2ChsLgEqzdtxyef50t+8NwWWTh3SH9cMKQ/urdteWzN0ns1OwTq70rR7Lp6PA1WC4y6Y0q2DJwIGBaKk8CUJ6dj7YYDQCgT2dEknp56k5C4QyOoSOA8Ri2ymlesa1vNPU72N6FcZWuVcGrK6J1ysnDdBWfjwpGnYdmaLzB/+Wr8a9ZszF2chcH9e2HYgL7o2bYlIuEQHDuJZNKW2qK8EbDeYjWaEfoRV0heg1Tjc/zJ7kg9zqfoUUmqTKlaVlaGjflrUVJcjIB4+qienEp/craAJE3YOGVUrh1PDndNKaFGG4ZkuCeB0zeemS9lTlJmCCBkBpBIJkD1yfINm/Dp6o04UFiEru3ycPPFozB8UF+0y2nhIUhDvfpI8tev1EFAE3mdY8nlw1SxDiyDRkFVN/PB5+fg7fdXAxmtYCQL8dD3JmL8kO6AyzzhBhxWkmhyL2ZIpD+wMmqC+mEDaB2J4OJhgzF6SD+s2rQdCz9bi2Wfr8OS5evQu3NHnDGoNwb06Iw2ORkIGA7i8USl+pSELmeT/DBUOanqOyfiYnmyYZPyeOQqebQAGMgSiGQgIE9MjGxVGguPzk/25Y/5fHID9J51lNGZh1Jf7cJybdgmM/bwKY8FvJmb0HOjtICDxaVYt20zlq/diA1bvgQDnwb37IJvjB+FwX26I4d+4PLicxSNvTyvt0m/pRQCTZF5mgTAXOckKwbVU1z6w8yVeOrvHwKZLYDS/bjzayNx5xXD4bq2UoGblJaUYa1JdECWLh/DhWZFmvbNV6JnpWEUDjIsA8P79JS/bfuK8cnaL7Bw9Rq88vZ7aJHRAgN698Bp/XqgZ+e2yMsIS0GMpG0zEkn08nwMMZn6lP+aEEnw6YCSqwqC8R6SOD6+RMpB8j6fyvEiZj6ZG9TheRv4ZhvqBhnmTShgwrBMlJZVYMOXO/D5hm1Y8cVm7C0+hHYtczB+xOk4d2A/9GqfV9kd6r957mrKm8rf9IfUQkAT+RHGk658DKBgovy5a77Ej555F66ZKWlpLx/VAw9952JvkZhwLD9q7ggnO8WbfX4lrfORWv2jKkTMt162RBddW7dA19FDcdnIQVizbReWrNmEz9ZvxeLP16BNbg4G9umFAb27oXvH1sgNB2A5SdiOgaRtSQSlKUXuTnFn5fKKwHy1hc/XTU2bwHYJb4sGjzcdpdNn6+XJIaA8ScrKYti0uwCrtmzFpxs2Yu++/cgJRTCgR1fcfNp5OK17R7SIRjzglfTNL+ppg2fzEWgKY6Pb0BAIaCKvA1U17Q0Ypon1+0pw16Nv4OChhKSlHdC9BR657xpkhxnfTCMiJV4uQtKk/yhbx0kbfRPpm+3hQvbD8RVxC7ELq/NX9TubZ0uokItIMIAze3WTvz3FZViz6UssXbMRn63Kx4LlK9EmLxv9unfGgJ5d0K1dK7TMjCDMzI4OIyeZGY9nbWIvTzlM4mTXqXqpIZ2fkuZSR07CdWWumaYFM8iiDsChkjLsKtiHNVt3YvXGL7Fn/0EELQe9urbHJSPOwJCeXdApN6cqNoGY02/c5HhWn4dUrVU9fKgZcEo6qy/agAhoIiflkHUqxTWWTjPEuFmWdHD/k29g7bq9QCgLOREbTz1wHfq3z4HtUofJxEzM5Mxwd5VlvAHH6rhPLd3ynht8QlcnoT6fShcueq5ytfAtv66CMD2PdtGuRRTthvTFBUP6YmdhEdZs/hKf5m/EilX5WPjpKuRmZ6FH53bo36MLerRrg5Y52YiEArAMR5JT2bYoXZRvuuciKZf0VB+8lHpCqGaIO0JPqSrxbxByjDxRVG0jK1b2WT4oBuPQKulU/a/kXrmwXEkIXR0o6hjZ6Kp9q5oidCuYCKSVLVHTR5AUUua11Eu1Vf2vtqpfpM80jEvaAGVELk/aKCgpw7ZdW/HFlm34YtuX2F9UjKBlokfHdhg79Eyc1rMburdpWTVVqRzzrskrii1ExtTrTOWcVmOtWuW3zmukfksJBNKayNV095YbF67EQzAaThHbL56fjelz84GMPCBxCP9x5ySMo3GTsi53lt244AOKKJrYGqlqzuFyWDXZvIp5PH2tmtlCN4q4PM7r1DIH/Bt/5iDsPFiMdVt3YOWm7Vi3ZTuWf54veas7tm+DHp07olfnDujatjVyM6Ngag/DTICk7tgAkw+KiodqHtGx0ybJYBZvTVVzsVMFgD2ylvbxMzE3YIpFs6Zu3qMwuXHIfvS0YWc94uQ1hMirkZwaeF7ci2iUiaDmBVtEFZSoQKpRNJ/BRJz2iJQGYHK7oMbjGYjEM4rdRNlOAmZAJG8mtGKihAMlpdizswgbt+/CF1/uwvbde1FRVoqcrCh6demAS0YNRf9uXdGtVW4NGdtDSTpViZk3RtVvGP5+Clb1v79Nv6cWAmlN5GooDTiGSihE7xMYlCaBv763Co//fSGQmQOUH8Dt14/C3ZefJQqIw1UoqbxIqvpGUiJGjBrtmJuFjrn9ceGQ/igqLceW3fvw+dad2LBtBxavWIU5S5YjKxJCx7Z56Na5Izq3a48OrXLRqkUULSIhuRFSM8UnG2ZwpHeJ4xuLyZryEn9OIW7qQ1QOdUXiLhVBJn35OXbe/nJT8Hw//FPwBsFjuaejigqTohXNepch5Qqxq5syt/J24ftsi7sfXATEvusRvLzxrKpEmtgLKNqbfNThzcNA0LRgWJYUxy6PxVBwsBAFBw9h2+4CbNm5C1t378ehshiiwQA6tWmFMcw1370Tendqi7ysjMrbhlIGqScCqoX4qq488TbptzRGIM2JXC1K0ZnSrctJwrCC+GDNTvz46X8haUWAihguGtkX/33beCEDFigwuVirLbP0mT8GXLpYir6ZqClJMycziiG9ushfwnWwt7AIW3fvxbrtu7F+RwEWfpqP8tjnkhKgVV6OkFbndq3RvlVLtM7JRG5GEOFwCOEAvV/IwK4kHSPWJHAJITcNIXqRx1ksw7FhOSRtaYUQMSVdxen0IOKoeOeSAfJVI77MWkXlahaoURT1DQlf/H3UL6J7lhw0dEnlk4P/9ODAMg2YVhAsCsLFRBtBRdzGoYpyFB4qxq6C/djBvz0F2H/wEGLxOMKWhXa5uRjRryd6d2mHbh3aoX3rlsiQecV28Ibpz0rVLraaT4qcedJp/0bl/6zf0xqBtCZyWezeozYlPFhhbNlXirseew17DslKRq9uUTz1g8nIiQY9N0P6lKfni0KrH2UoCHhGNNIdeYV/QcNEp1Z58nfuoH6osB0hsJ1792LLnn1Yv7sAG77chk/XrZdAo4xQENmZmSDBt2mZh3at89AqOwvZWRnIikYRCQQRDITBMnm0R4h0bAJOgjnGlUTMCkx0pSQPSjiNsLlQnjiRirDNO4IYYRWBy7ZKVYhP5UoKd00SNdMU0waiqjo5zDIpZc1M8byMJVzEEw7KystRXFaGgkPFKNh/AAUHDmL/gUMoOlSKsvK4qIsYWcp+nTZsELp1aIsubVqhfV4uMpgUvMaL7WBfCCZ/U3I3Wyy3IV8f7gNe41j9JZ0RSF8il9Uiy18WuGWYOGSbmPLENKwS42YecgKl+P3UGzCwI9N7JiVZv/Itr70A02cKCZEKdkoyVIoO9p8sI/Kq8gqhlsF1ETEddGqVg06tcnH2gL4CVHFFDPuKSrGjYB+2FxzA9n0l2Ld/PzZv34nyirhQWSgURmZmFLkZYeRmt0B2Jsk9E9mZGcjKiCIjGkE0EkI4FELYorsei2bQSB0QPYpjBYTY2awgb0DBIGKJuBRS4KQPhCPyYOFpdZRqx7Hh2LYUyU7YSZTF4iiriEmbSsrKUVxegaLiEhSXlOFgcRkOlpSgtLQcVJvwJhIKWGid2wJtc7MxtGcndGjTBp3btkLb7EzkZPrugVVzhYZKZuChKs8PUCJ5+/Bym6814m1SfSbORF2/NAJVCKRvrpVKIqf3AL+YuP9/5+Kx5xfACEVhxovw2H2TMOXKEZ5nQMJLfBVJ60UkTy4eApV04rENSV5UACIhKznSJ3evUI86UonIVbMQQIVt41B5DPsOFmPPgSLsLyrB3sJDKBDiLEVZWTliFXGQYEm2JLNgKCA5RkIMVQ+HEQmFpcxdIGAgGDQQDFhSTCIUDGL3jp2Y8dZ0nH/hBeg1oB9isTiYVoGqEBabSCTiSCQdlFUkEY/FkEgk5I81Ph2mLrYsBIIBRAKWPCnkZWYgLzsDrVu2RKucKNryiSIvF9m8wVRGVNboonwRO4OopJRqSiHmq5SU/VTpTtSclIM81uYWX19eib1s0/+lOwIpTuSc+tUWhFoJSgfgLQmlZTXwl7mf4rv/9RqSRh5QdhB3XDcUT917tegkXerFKQUxg6FLF4w0nja1MKz1VcEt8CjJUf3O/0X2FCWBDAn17IIjf/ONjYfjyqMqYjbKEnGUlFfgUHk5KB2XlMXE17qsvEIk4tJYBcpiScSTrIbkICl/KpsjyTNgWsjKzERpaTGSdkLGk7YOywoK2QeDAQRDQYSCrGEZQkYkjOxoBvIys5CREUZmJIJsvmdEEQ2FEA0FRNI/vMX+FvZLNPrixU/ViMw1L7eKUp34evrqE0odx7N4t8LqYrl/8vSeg1Uo6E8eAmlA5JR8PBs/P3LNKEuYpGxlEMai9Xsw+Ud/wr5iAOVxjB/RDS//6ibkZoTE44Ch99TR6lfDIiCuev4lKuH2iP4Y7550baRxNOE4sG1HpeUlKUrAjCJOepT47o/Ug1uWBctiYjTl3eI34djelf87m8uW8q7HnscAABXnSURBVKUTUnlA6LdGQyDFdeS0xnmVwymB0w9NSj3IchNy/vJgGab85g3s2+sCIQM9urfAo1OvFhKnO5z4p2gSb5QJeTgB+iTOy/s0Wb0plWxfuTEgNk4TIcsEGsUuzZuCuvzhralslv6gEWhQBFKcyIkdg05oqOSDLTWLfFhXHg3ljol7H38Ly9YXABELmSEbT029Dqd1zIXNKivcT6/OBp2ARz/5V4BfneernUg218X7/j61Tyv70rLIqVH7R/8g/a4RaLoI+D5aTbeFJ9AyrksJ/vPkOUbomXRTEL8K4Fd/nYfX3s8HMqOAXYxffW8CJg7tJntTJ24yb4Ve1ycwAo1waB2ELUPG/8Q9knpqTx9fua2WfC/bqVeRIxuh0foSGoGTi0BKE7lat1zplkT/qWXKhxALf537OR7+v1lANAsoL8Jtk0bg3skjhOQdSuOyszrDyYVcn+2kIXCU4eGoK45XgUC79+zFX5//G77YuLny8v4+ar/KzXV/OKad6j5Ub9UINDQCKU3kBI/LmJIZY/Uk1MI0sGj9LvzwmbeQMKJAWQnGnNUNv73jcsHapv+zHynk6VX0Gm7oaXhyz8/xUvTN86oozHX5a3HrN2/BksULZVT9e4D/ftQW6AlwVHj0j6cegRTTkddecaoqCvXitmshaBrYeaAE9zz8MgoKSfAmenTOwLP3X4O8aFD8xeXpmi6GtUhckQMHjKqZlL//nfqZWY8W1Bx9fvNVYwZCdBeki2HQn/Icx9qvOmi95klrH6C/awSaBAL+rG4Sjal3I/zFVpk1T+SwSipOgiTuIp50cfeTb2HpuoNAKAPRQAzP3D8ZgzrlSZSfksTJ4VzQ6lX1yd+iSdxHoqm91xyr2uPEcHv1p9pd+/cj9KbmSY+wk96sETi1CBzjbD61jfzqq1O6JpuzO6xPaamitoyBlvS0XI0mfvP3D/D67HWSW9xIHMIvvjcBl53VC2BtRC9vSGVhyq++qN5DI6AR0Ag0CQRSgMhJ4v5jss/GClsR1F2WrgVe+mAlHvq/+UBGLlBxEN+cdAbuv3K4pGWtFOg981iTGBndCI2ARkAjcIwIpACRU9r2/5SrgmTAY+Faw4ZhBfDhhj34wdPTECellx/C6LO747ffn6TSE0mObRZZ9t0cTNCDXL80AhoBjUBzQSA1dOSVxkdJuacy2Ulsh4VtB2OY8uib2MPITctGz46ZePLeq9E6GpSwbRZXFtoWsbzK16G5DKBup0ZAI6ARSAGJ3PcXJhMrJQkD6yljV9gG7nvqTXy6cgcQDCMj7OCR+yZjaLc82EkJE6k1A1S4tSqkXOsn/VUjoBHQCDRRBFKCyClH+3put9K4Cfz2hdl4bfZyICNTam7+/LYJuGpEH6kWb5o2TKpe/COpXvciAelx7t8Umui46WZpBDQCGoFKBFKCyKXymIT7MORHZWr+54J8PPT8+0CoJVBRjG9PHIIHrh0lHWcOFSnIK5rxKn240rTz/yo/8kqk9IdmjYDKA96su6AbrxE4IgLNnsgpidN10HBtyfjMgJ6lG3bhgcenIW6TxMtx3pnd8dAdk0QXzmICKgc5zZtVJH5EhPQPKYEA63/G4ywm4Xs4pUS3dCc0AoJAsydyUjEp2XZYmNbEnkMV+N5jb2J7QSlYPr1Lpyie+cFVaNciJAV7K1UpmsTTagmEw2F06dIFGRkZadVv3dn0QCA1CkuIkOWiHMDNv34Zr81cDYRCCJlJ/ONXN+Gq4b3hsDiv6GCYn1wXykqP6a166UvjBw4cQHZ2tpD54bnP0wkR3ddUQ6DZS+RilGRAkGng1y/OwWszVwLhLCBWjv+gcXN4b7iuSpnlGFXqFN84mmoDqvtTEwFfNx6JRNChQwdkZmbW3EF/0wikAALNm8hZvsthIV4TL36Yj4efXwiEWHOzBDdNPBtTrztXvE8YIGRUKxDMaH6tHU+B2XuMXWBtzuovLY1XR0N/TgUEmlVAkC9F++6G5GbTCOCjjQX48WPTUZEIA4linHtmVzxy9+UIGC4cV+r8iCFUCJwJsaSkO4ev5gJPhQHVfaiJgCbtmnjob6mJQPNhMq8SlxTRdRi86dCJELsOJXD3Iy9j+54KwLDRvWMQz069Gu0ygnCRVEVfjIBXbNcbRJHQmk/XU3PqNU6vOF9qe6r46pbGaYG+ikag4RFoNmzmGvQQVyoSarzpoZIAMPXpN/DJ57uASBjhYAyP3H81zujaUsLvDckr3vAg6is0bQQolZPMbduWv6bdWt06jcDxI9BsiJxGTfqaGKYLi8ZNw8BvXpqPF99bBmTkAYky/ORb43DNyAGAm5DUtBKqefyY6CNSCAGSOP9Wr16NcePGYd68efI9hbqou6IRaD5KYjFWSuR8Qoyb/1i0Ab/603wg3BIoL8RNlw3Gj248XxJmCekbJtxmdJvSc7FhESgqKhIS3717d8NeSJ9dI3AKEGg+xk7xOqEkHsLiLXsw9YnXELdDQLwU5w7tiIfvvBwhAui4cKygRG2q4B/tn3IK5lWTu6RlWQiFQggGOTf0SyOQWgg0C5lVheEzRa2JvaUJ3PfIG9ixJ854TnRpF8JTU69H+xYRuImk526oBklTeGpNVt0bjYBGoG4EmiCRU3/i5cMgg9NXnGH4hoEYgAee+heWLNsBhKIIB+J4+P7rcGa3NpLREJYpgUEW7OajM6p7XPRWjYBGQCNwzAg0LSIXR3FF5B6HS4JaPz/KIy8vwN/eXQFkZQOxEvz7ty/EDef0FbJnphWDboWS1tDXGGmZ/Jhngt5RI6ARaLYINCkiFx4HyzpYIoWzVJvnq4LXPtqAh/44Vwono6II37h0MP7ta+d70rs6stmOgm64RkAjoBE4AQSaDJGTih2GXjqmhNO7oixh8QcDyzbvwz2PvoLyJGtuJnHOaT3wyJ1XgGYrVZ9TS94nMAf0oRoBjUAzR6DJEDmpWPKES+CPC5ORm0YAu0viuPux17FjF33DTbTvEMCTD0xC++wI1ecisevMKc18FurmawQ0AieEQJMhcupS6CvuGEk4kq0wgArXxP3/Mx2LP2XkZjZCgRieuHcSzu7RBnAcGE5ScqhoxcoJzQF9sEZAI9DMEWg6RC5AkpItGCq7FR57eTFefGsFEM0EYoX40a0X4IZRA1WVTZOpa1W+Fa1YaeazUDdfI6AROCEETgGRk6zrkKEZdi/bTRhGAG98vBa//tPbQCATKD+Ar08YgJ9+7QLprC0mTgswLMhhJwSBPjgdEEgmk1LqjeXe9EsjkGoInAIiZ4Fkj7M9Pq+kdgrZAJZu248pj05DSTICxEtwzpBOeOyuSQiZTH7kIuCy7iblcEtnok21GdkA/WG2QxaVmDJlCgYMGNAAV9Cn1AicWgROTak3Mre4FtK86ZVdY/S9CRwoTeDKH/8V85fvlKCfDrkO3njkVozo1Q62FAJylepFiFwH4Z/a6dP0ry5pj3njr1Zcgtt0nvKmP3a6hceOQONL5CKFUzmiIjbF74SGTtOVtLQ/ePZtzF++B0YkjIB1CA/fN1lInC4qivY9Mf7Y+6j3TGME/OyHJG+msuW7fmkEUg2BRiVyLiHxFadi27VEFpeCyKzYAwOPvrIIz8/4BMgMwk0U4d9vGYtvjFZpaUn7JHtdoy3VpmDD98eXvmu/N/yV9RU0Ao2DQKMSeVWXLKlkL8KR1Gsz8fonX+BXf5wDhHKAsmLcOGEI/v3rY0Wf7tiK9JVCnE3mn/JV0R4rVajqT0dGQJP4kbHRvzR/BBqVyEm6PvFSOhflimng8+37cf9jb6KUDgWJOIYN7oTH7pyMsAUkRFjXknjzn2qnrge+OsUn81PXEn1ljUDDINCoRM4uKCJXekpmNCwojeOeh1/Blu3lYu3skJfAsz+8Ch3yorAdF0H6iltKn67InzcA/dIIHB8C+/fvx6xZs7Bz587jO1DvrRFoBgg0OJHXJF8Ssouky4qbipCnPjcd8xi5GY4gaMXx+D1XYWTP9rAZ3clkhkL9AXn3JXpfqm8G+OomNgEEKInn5+dj4sSJWLBgQRNokW6CRuDkItDgRF6DfH1WNxQVP/76Avxt+jIgkgXEinDfTaNx/QVDJC0tqZ62TT8f+cnttj5buiFAMmfxZV/Nkm791/1NbQQahMirVB8+c/vvKp8Ks4XPWL4BP/n9HCCQB5SX4epxA/HTmy+C4SaFvKtgV2qVqu/6k0bg+BEgkbPcW3V/8uM/iz5CI9A0EfArMDRg6+i7SzWKAUmhYpr4bMdB3PnIW6iIhQE7iaGD2uGJe65ClmVIzU3XMEBnFoOVglxDSeZan9KAY6RPrRHQCDRnBBpEIj8cEAOua0gFn4LyBO5+5FVs3V4ils92LYFn7p+MLnlR5cdiBuGI6sWX4jWDH46n3qIR0AhoBKoQaHgiF9HahGUaYDznj/7nHSz4ZBMQDiJklOLheyfi3L4d4LrMwaJIm41SDQsAJHWdGatqxPQnjYBGQCNQC4EGIHLlmSLXcZkLxaj0F3z2jYX4y5ufSG5xVJTgvv93AW6+cLBXalmlwSKVUwUjuhUlo+tybrUGTX/VCGgENALVEWgQHbnI1dUkbArV05dvwk9+P0vV3Cwvw3UXDcbPbhknVC26c2mVp0bx3rjJdz+s3mj9WSOgEdAIaASqEGgAidzLZmgkRLSmt8DaLwtxzyOvoyQeAuIVGNq/E35zz2REKazTX9whcyeF1Kuapj9pBDQCGgGNwLEg0ABErjQpLoIwYKKg3MaUx97Cpq0HActA27wgHp96BXq2zFAk7ucUZ/SPpyM/lobrfTQCGgGNgEZAIdAwRE4PFahc4T/+43uYvXQrjGgmwskyPHL3lRjTn8bNuLglSjO83OR6UDQCDYUAA4FYJYipbPVLI5BqCJx0Iqep02RQDww8Ne0j/Pm1JUBGFtxYOe67aQxuvmigGC/pjuiayl+c+zoe8acawLo/TQeBaDQqQUFNp0W6JRqBk4PASa8Q5Aolm3hn+Xbc8G9/Q7EdBMpLMHlsP7zwi68j03Tgl0ymZtwxbM+gqbxWTk639Fk0AgoBPyS/pKQEGzduRNeuXZGXl6crBOkJklIInAQiZ/SlZLcCPcFJx6t2FGHyj/6GTduLAcfGWX2z8PJvv4MerbLgskqLyShPZRR1jQQcWLC8c6QUurozTQIBkjmN7v6r9nd/u37XCDRXBOrvfui6UhxCgu/5WbIVmiiqsHHvo69h09YDYELxdkEDj0+9QZE49zGU/ty3axoI0typ7ZzNdQY1g3ZzzlUn7+qk3gyar5uoEfhKBE5AR64Cf1zSMMnZpCxu4Gd/mIE5izcBkQgMpxS/vu8KnDegI2xP5SKRmnQ01LUTv3Jw9A4nhkD1OabJ+8Sw1Ec3bQTqTeRMbMViyHDinjRt4Km3PsLvXl8CZOYBZTHc//WLcMt4pqVNwqQGplpJCL2wmvbESIXW+XOsOqGnQr90HzQCtRGoF5Ezgp4mStdJwPDcud7+dAse/N1sJEO5QOwAJp3fF/9x60WK7CmrS5UIun7xaP3SCDQOAiTx2kRe+3vjtERfRSPQcAjUi8jZHDEdGQEYgQjydx3APY++hkPllkRunt4nD09PnYgMKr+9pFlMoEJTqFaGN9xg6jPXjQAlc1YIuummm7Bo0aIahs+6j9BbNQLNC4H6EbnrwKQ0blg4EHdx9+Ov4AumpTWB1pk2nvnh19C1VSZcW+nRFSTK6bB5waNbmwoIkMgLCgrwwgsvYPPmzanQJd0HjUANBI6ByJl8Vmm3lVJEeYpzcVBR8uAfZmD2kq1AOAwrGcd/T7kGo/t3hMOgIIrtTEEr2QzFwlnj4vqLRqAhEaAKxdeTBwIBhEIhBIPBhrykPrdG4JQgcHQiF88SsjA9xFUFNnEzNGzACOB305fjuVeXAtSLlxbj7q+di29dfLoQP8SbhVyuvFpgeO+npJv6oumIgE/i6dh33ef0QuCofuT0TDFcC64kCCcpO+JqaMLCnJXb8POn34VjsXByCS49vx9+8Z2xHokbMKviL9ILUd1bjYBGQCPQyAgclcjZFrFVuvQRp4qFypQgNuwuxvd/8wYKYwkAMQzo3QpP338tcgIm3KQDI6BZvJHHUV9OI6ARSGMEjkrkSgtO7YvSjlOdcjCWxN2P/QvrtxcBIRMtowE888A16NU6A7BdOKaECKUxpLrrGgGNgEagcRH4Ch05Kz9QH04ityQ282d/moOZizYCoWyEkqX4zV2XYezATmo/ywFMCRNq3F7oq2kENAIagTRG4OhETq24ryUxgOfeXoFnXlFpaVG+H3ddfz6+c/FQVThZhHYmo1XJsNIYU911jYBGQCPQqAjUJHJxTfGiL13ldJiQlFYm5q7aigefng43kAmUFeLSMZ3w8+9c4jXWBExG/wRgelqYRu2FvphGQCOgEUhjBJgCxXMvFOYWdbjaplTjYQD5e4tw52Nv4EAZJHKzf582eOLe65EdNGV/cReX8xg6cDONJ5PuukZAI3BqEFBegnRN8dQorui4mfbTAdOjFMccTH3iTeSv2wcEQsjNdvHk/degb9uWtG0q4pbwe08U1xL5qRlJfdWjIsAyb/F4HIkEPa30SyOQWgiYTH9FH0NW2KS/OKVxw7FhuJzwBn76l9mYMX8LEGkBOGV46M6JmDC4i4jr4s/CpES+V0tqYaN7k0IItGnTBtdffz26deuWQr3SXdEIKAQM27VdU6rzqIzhBn3GSeJmEP/z9nJ8/7/fhBvKA8oLMeWmkXjye5dXeiP64fci0PtmTl9K1whrBJoAAn72Q9OsMgdVD91vAk3UTdAInDACgSofE+VvYtDd0Axi9ufb8ZNn34JrRoHyg7hsdA889K2L5YKyEPx1IV4tVVryE26RPoFG4CQiUFeYfl3bTuIl9ak0Ao2OgOjIVQg+fcYN8QPfuGs/vv+bF1BYTLVLEv165ODpKVciKxRAXCRuRnnyRWMnJXhhc6VgUR+93/WbRuDUI6CJ+9SPgW5BwyIgcnVN7jVgBYPo3bUjEI8jK2rj8QeuR88OLQHHQdBNSq1OeoxXf/nftK2zOir6c1NEgE+U+qURSCUEDLfWrOYcZ8HxQ0kXv/z9u+jeOQ93TB4pNYFMSt4Gs66wzJv2NEyliaD7ohHQCDRfBAzHdT3FiPIbpwcK3Qot09eeO7CpN0cAFhlehBmG7Wsqb77DrluuEdAIpBICNZNmeY+cdEW0HReGhGk64GaLuhMhcaaypZOib+1MJTh0XzQCGgGNQPND4DCJXIVqUi43kPRUKEyXpfLZ+slsXQR0TpXmN9q6xRoBjUBKInCYjlz1sjJI3+u059FiMCO5qhZkgjnK9UsjoBHQCGgETjUCAaUvqU3JvtqEuhTvN0llywLKvsWf22sfd6q7o6+vEdAIaATSD4EaOnKfoqtgqCJq9UkbOKuw0Z80AhoBjUDTQCBQXaquou26Gnf0X+s6Qm/TCGgENAIagYZH4P8DqZsulYqLK/wAAAAASUVORK5CYII= />
1. c = sin1(3/2)
2. c = tan1(3/2)
3. c = sin1(2/3)
4. c = 30"
Question 2
Two objects with indices of refraction n1 and n2 are placed in the same liquid substance and have their critical angles measured. If experiment shows that c1 > c2, then it must also be true that
1. n1 < n2.
2. n1 > n2.
3. n1 = n2.
4.more must be known to determine the relationship between n1 and n2.