A vertical cylinder with a movable cap is cooled. The process corresponding to this is:
Question 2sDDYn3322YUwCY+Fv/knuuqqqwpPyBwTHXNZJGTNSSJLUt2f/OQnRWb08Lrhb3Cw2JtUQAjiVMHLExwsPk8VwqZhls1NIouQwSMzJ2QZpgRw5EwmEzYNHJh9UwXhR3JfsCCIU/OXqfb8uDPgDPQeA4yrfBgnEXa2jNZ6zNrMnjHhhzMLSVNjzhP25vnOmwEmSAZ6u24vrKe/NYnsSiutpLtKt3iGknXRgPCAAAAObUlEQVQiBwcaDk4dmApzcKBJcp8pZxzAoXkSnSXl5ENdvCsJUo3TDF6iqfK+972v0LBzcKB5gsOuvSxrnyUmO++8c9E/aOOezLaMKd/vDDgDKQaY6sLMyRbLGsXOAabOr/N4bWbPjTfeuBBeJJFNmSwJa3bttdcWSWFjGRvsDZJmBy2MZQrbbLONPTToOwL4/PPPL0KsIcBSwov8g+TcI3lrKqkujjfgIGsE2Q2qCtoSONAcEWAp4UW+PbCAI5WZnrWTrJvBMzQnqe65555bCCxwpPoFTZC++dCHPhT1JPVktlW93jvHrAmLt/lOLd2Cs1P5Gw6uHO5z6gwHQ+rc2sye//jHP4pEsgRNThWWGGD6w/yWKnhLIqBoP6dghiRDO5pbqrDEAByYI1OFpQ4Ih7vuuitVtVDvFQeaW6qwxAAczMWlCksdeHHIwcHLAG9VCLScfknh6OSBLsWbH3cGnIGRY4AlDFpiZk38GUa71Gb2RNNirZ8N8cXNMQAj4a2UR0tE08IMaIuaTjE9asFER7SVsF21Idu2+b7XXnsVocnCYNoxHJtsskmxLvENb3iDXq7YxnDgAUng7lCbjOHAZIljCNFRbP1YXS6IQwvrEnNwLL/88sVSB5Lq2hJrG5MluQBZ52f5i9Wlrc0337wIBhB61iofnGf70V7fvzsDzoAzoAxg1lRzJnKBol6dCD41ebIfb/7RKLWZPXG2IO6jLSyYJmQZJjpS4VQVBtbvfe97RbzOfffdd1AmiPBcPBDJhoDQJdJLVUHTZA0iAvdTn/pUVdUi5ig4CG3GfGWYgSE8mbBihDgjWe+73vWu8HDTbzQrcLCkADNkVUFgEWYNzRc+rBCNnUdiX5Lqcn+aVDdWj31MOpNUF7wkA64qCHDWCfJCgjn0wAMPlMsuu8y9PatIG+PH7AsQ/7edWroFZ6fyNxxcON7lRNTiGoxHOcvehoMndu4cFSt2tIV9qh3YUxg4MSnaGJn2uP3OPxERRDD9MWeWKsynMR+Y44CByU8Tw6ba5ThzW+3AoXzYNEdleFrlAyEJHznmXvigX3JwgA+vXfqGPrZaeRl23+8MOAO9zQDCLPTqjDEyWoIPLLVpfpgmMTmioegAyWCP4COsljXTIbDw6sQRxLrOP/fcc4Xgw2SpsULRgDTOpnUcYTkEApB27QJu6iI82W9x0DbXagcOsHDfIQ6ERcgHOKhnNTm4gBPLB8KPurTBQn+9lyo+Qhy0AR9sW8GBiVRDoSkOHhau7clsY//CvbWvWzSqbsE5lp8eDaIfBhq3mR5G6/5r0/xYN8acmA3nRSBklhdYgcONYp7be++9ByWzRegRO1MFH3UxWWJqo31b8FwkHqcVOAgKTSKL9qYFHERGCXFgKgRHmMw2hgPnGLImsF7QFnDQtsWBkFAcVrtSHFbw0RbmW+bm1EbOPv5xEXrwoYKP/bwpsUzhpz/9qYVReHLGcJBq6ogjjhjUL9QNcbDOEhxhMltw8KFfcrTyJmD+wxlwBnqWATRAvNN5ibYfm+lhtMipTfihtSBc7NtW2U0RrQQBY7W+sro4bVDXan1lddnPgA4OKzDK6g8FR2q5ANeCA7Qn5gtb4UO1rTK87Fc+WsHRSr8g5Mpw5NxLFXY/5gyMJAN2sG3ndfm/CD85wSbARL3wXP8/a2dvzWm7NrPnd77zncJBxGptzD+huSG4rGcnGhofBJQVUtRlPgqPRrQkCg8w2gYPhG2beSgitxA6zWp01OUchIQWTIoEhC7DQbv6wHEuONDeCP+VwgEGsHB/VpMqw0Hb1AO3FuWjDAd86P2U8dEKDsys8JGLA60XftBuPZmt9lrvbvV/BQZ4Hnu9EPM3NOsdfPDBRQLXFDcsA1BvSK07mpkOFEPuFuEdJqfFpIknvXp35rY10vVq1fyscOJGWJD91a9+Vc4555ym+0LgMZhbwYcAwBOSrALWQYZ/NOqGbRN/E3NomA6Deioo9KIIHJLqhqZCxWH/mcGBh2osmW0MBybcgw46qMlUyHVjOBAi4GABvC0xHAjfsmS2MRx4nIIjTGYbw8EDCw5MD7bEcDBv+93vfteT2Vqi/LszYBhgoA9L7jq22Bq4Thcaeq/cIx6ddrqGY7wIINBj96bndsK2NuEXCiduDk2LwMmpvHPURQARqoxlCznmUNbEEVqMuatUwQS59tprZ+Mg6gzJXnNwsP6PYNI5SXUVB1FiUgVBRLYHcJSZIW0breBAU4aPnCTD4GBpBljQghHKXpwBZ2AOAzFhFQqEObWbv8XqxdprPqszflnhhqaLFcB6eIYabWegnoOiNrMnGR0wibHGLDVYo4nhuEEcylR8SbwVccBAuKRCkEE+kVUwt2I6sE4oc255zjc0MbQgQoql4m22ggPtEcxEdwFHSoiCASzcXyqpLlox2h1CPxUKDRzwgfYGjlS/KA5eQmIvFSx3IP4q2q7IsiKyj4gQW5WchWXmr7lFhADhp4vI7+eQ3//NzWaDKOn4HdZS4v3X6C5eUkNBlspWwP9buBZuOCZPXTw+nDZaefjKnoOy/coRZtHQ6tTKdeuqW5vmR9R/ErjmhNG6+eab5dhjj80KWcZcFmY3PBFTBdIxKbKAO2f9H2G/wHHPPfekmi7W/eHBefXVVyfroi2dd955xVtQzro7wrGB49577022zXrFE088UVhcnyrgwOTMG1pOv5Bk+LjjjpP77rsv2jTmVtr04gw4A80MxLQ1hFtVsZqT1ouZUPVYaqtRU44++uhU1VqO8+KjH23Q3hPaoC2KC7NorlnYnl/39zleIcNsGeJzgjhzGcyEaGWpSCTUJVcf6nMY+qsMLm8VrHfDQzRV1ltvvWKJgCZxraqPy+6ee+4pZYlew3OZBMaxxDrjhHX0NxkZqIdpMVUwVYIDJ5icQqDx3MwQ66+/fsFbWbBxzNjhfGoOBq/jDIx1BhB+oZnvmGOOqXR6iQmAmBDN4e6QQw4ZqDYcATrQyBC+WI0v5vADLrRSNGTwhv4aQ7jksE6pzexJx5NlgIXnKVMIZkCWGSAcUhoJc4kMupjuqJ8q1EU7AQdmv6qCAObTCTjgBBzcZ1VB+LDMoRU+eChz+gUuqnCwhvPUU08VEue62bOql8b2MTvIpf7XxzYTzXenZj27tyyCSd0mT+2TlKnVYqv7u2LQdmNY0Az1JYEQlaMlqME4TM1vThgyFn+TPkdd/JWA2BbhhFCjbkpAQSgDPvWoX1Woq443OTioCxbH0WA1h485LysI6bJ5vqpe8mPOwNhkIKb9od3FtLmY1jdUQWC1vti1YNsKJl5YOAfNVIsVVHbpBpoabZa1q+ezDdtFyIXn8VuFH4JwqPdsrzvU78PU/C4QkXOHem0/r6sZWEJEDhQRTLUvVghCd3jp6m6OgA8H0kiVntzVijZnBYySVaYl6vGyrfZHlaOL1qENTJJW8Gm7CEAEUui4w/FWtDR7rZhlwGrIseOKp93bIQq/CSKC48PtIvLXdmP09juSgQWZvRURhCA5HMu0QBd+Hdl9DqotDNiBXS8QG+CtgKiqp8fKtlbgxubZ9LzY9fRYzjYmWG2b9h7L9ut1rNZpNU49PlLbIZo9MT/yeWe/q/tIwfXrdBYDPAPpZL2dhdnROAPtYwAzXqg5YeK05r2YF2joGZmL0HpX2mtUnW+XGoQaKEJO427aY+E90T51dT8CDW9Oa4LlOrECTtU8Y1zEzmnHviFqfgoFDXCI8lOb8G2XMoCmx7wfTkU8RmXFNb8yZnz/2GPAamJ6d6FGZjUfrdOKWVHPYWs1zSqzqdXGbL0Qb4jDnme1O66NUNflFRaTfg/r6357zZhGqfXavR2m8Gs3PG+/+xlw4df9feh30AoDVmBwXjjAW4Gl7ZYJCj1etrVtVbVhMYX1hnoMTAhAhLlqgOxD40MLrEpQW3XNsnute7+vWK6bUW/PGXAGepqB0ISJYLDmPSsoICqs3wp5YVutnFtHXUyYrNdDoOpHzaZ1tN/ONlz4tZNdb9sZcAZ6joHY3JsKPztHp8TE6usx37aPARd+7ePWW3YGnIEeZCAmzFTo1bm+rweprfWWXfjVSqc35gw4A85AY97L8qD5/nSrx8o8IvW4b9vHgAu/9nHrLTsDzkCPMhBGNoGGdmh9ONNoibWvxzppa3Fa/CON0YXfSDPu13MGnIExz0DM9BlbFhATkq2QE7tOK+ePRl2d/+Tao4nfhd9o9L5f0xlwBsY8AymTZup4DkF2OYHVqHLOHa06LvxGi3m/rjPgDDgDI8BASqtJHc+BaDXHbhF+FmcdHOTwFKvjml+MFd/nDDgDzsAwGbCCKdZU6njsnNg+XSdYteZP1+CFC9xpb6jHYlhy9inOOjTfnOuV1XHhV8aM73cGnAFnYJgMlDl0lO0fyuWsENUlFUNpZyTOsfg0s/tIXDd2DRd+MVZ8nzPgDDgDNTBgBZNtrmy/rZP7nXk/1f6scMk9fyTrKT6Ev52vHEkMei2P7alM+LZNDHhszzYR6812CQM2jqVCjpkf9dhQtjiRrLjiisWpYXDqobTXjnOY61OP107A6JpfO3rZ23QGnAFnoJ8BO6em3+smBy0KgUKxaYXqvs5w2lNcaKmj6eii9+D5iJQJ3zoDzoAz0MUMIFDq1ijrpIMA2J1UXPPrpN5wLM6AM+AMOAMjwoALvxGh2S/iDDgDzoAz0EkMuPDrpN5wLM6AM+AMOAMjwkAw54fz5xQRmU9EkIuvjwgIv8hYZmCe/pubNJZv0u/NGXAGuoyBQPjNFpFnReQhEXnFhV+XdWZnwmWpw8v9n85E6KicAWeg9xgI1vmh7b1RRBbpF3x9vceI33HNDEwQkVki8nD/i1Vz853sndaM1H85A87AWGIgEH5j6db8XrqBARd+3dBLjtEZGHsMuMPL2OtTvyNnwBlwBpyBBAP/D15Rrn6F3NgWAAAAAElFTkSuQmCC />
1.C-B
2.A-B
3.A-C
4.C-A
5.not shown"