Two point charges are fixed on the x-axis. Imagine moving a positive charge from point P to the origin along the different paths shown in the diagram. For which path would you do the most work?
Question 2f+o7P8a4N4nPzvddvy/1OeytLlKf+/8gYMOViVKL+lpEaGCrnZgYQINFAjvN9/TsdQOF0Hp1Pw/rONQAJxTvXb9GR/d7vO/dyffcxwFzPdzqCxvRqfternBQf7Me9opw6ho7nOVkehKjzuV9shq2DuK/yK7sB5J7Mbcw0IqHqrD6OcT3fC1JtueWW1fXXX1+98Y1vLGCsHNF40WHk1VpxZyB4ybSw+Trm4d46+WGHHVZ0hE36zjWA0XbbbVd2cvI5ALDeHtqoV93VR3mX00b0QKd8gNwvBmq0qbp5GfQmD3UwoRlg0XbK4IWRaEPHqwMdq5/P3oH+KnxrAAATfUlEQVSMOvvfudpPH6Brv7ln1N3/2t//yqZ9Hed4n30HgFzPfYhjlcO59OV35Yl+5Tffv/71ry/9w2f3dB8vkzi3U2xir4zu47p+dx91A1LOU464j7o43j19F3V3bJQp6l4vk/7rOkupu3ZTV+I+ymBsKoNJua5L9wDCjlEXv5s8jBP/63ehC2VHOPwfbVQvp3uRZhs5Vh2JOht7xl1IjBf/x+d47/XdQr/1On6Y75SvLvX/RwbALkop0p+8ui46pNnXc7ewCw2oc9l+zuDqJVgk4BHJJ9HoOp/OpJNhiGbyAGxA4zidnRhwmIKJDkCF6NSSvA045zDP+YH5U6PBDWjsSVBQjvI0BfACEUJvXmSfffYpZfMbBualX7VVAIi2s+dzAIYJc6+99qqOO+64vn2lrfVdqNyAVR+Mdl/o2Hn5bWQAHAAxL4oDGMwnphP2CRjN8MzPfgDMrLQqjZ8YqAYw0pnP2ISN2O3ny1TcYostyjJO7ogAKOCLOTFv64KxuWaAumu5j4GPfYQA4GlPkFwxlqcykQnTm/WkjgDYUxO6IjJUsHntzmWAHdI/K1E/MdHOy9hhZaWsroGRAfDql+3+f8xFLoBYBBEDia+QHxerbQofmiDaW97ylmLiYgMAM8AVQ+Dntln7ypUry9aUOq18Y4OUuSZw4/lqfIAhwBdIY76AlyiHbAhM03Xdx/l8oRHsi/Mn+c7cBL7K5zMxmXhuHv9e19gRq8bE+8IXvrC4mbSB4Ev0j3kB30n2sTbda02UaFPpp1xWDIa/ErgBUyyYO4LvkN+rKUxpDBQQy2kFvAagwegzEHcdgGugerKERxrxDwMmbJuLIXxxcX2M8oILLihM3DWIc/hqsUwA7bpcEhjZNEGO24Z/W6AlBADbxCiCSvF9F95N1CR89V2oU9ZhdBpIAF6GLgEZHyWwxeYALxbncy8AdiuBAv5ZYBMBBq4MoOpcQAzIrRd3jJdN2vu5DQQ/uBquuuqqcj2AbkIAwEAO+w1h9nqMyrSEf9s+EBaNRIRcvbF6jB44190l0ypn3jc1MCkNrB6em9RdO3IfbBSzBKpAT5BNZkSkfPWqpnQim6+H6QlwsWi7nL361a8uQTyMGHBKKxJY81RlTFj6T1PkIgPrAHPX4yd2TROC8rmezAcb4mBi0xIpRQCYq0Q5lY2fe6eddioArMxYfkpqYF40kAx4GS0NRPlo+fQE35j8XAsYnrxFgNIUASdpZh7BY028czBVYH744YeX4Bv2bJMTflIg7GXTGq4EGRJYLPcHILNM15OUlUUgT1mk5GCS8ku5JICd4JZA0DDCnyyp3sQS+bNyV+vpPoNeTz3lKl933XVlclFebpZ4/JA8WuWMTIFBr7uU4+jGYg86VR91FPS0y5z2SUkNTEoDuSH7MjWNxcl+kF5G+PyY/5gctwFQwY7rAkgBkoEv9xd7xXilsMmAECRzXcAnn5I4nm8YMANrv0mBk4cMqB3vPlwiwE0wD0ArDx8rhi2fdlABUhZw2FrQvfmSAajv+bCH8SObBJSVm0ROcrBffl8MmJ5YDSYTn4HiuIRVwEoBvtg4n73P3Dj0xB00TN3GVc687nxoIBnwMtvZM90AFdMe4AFSYIP9Sj8CpvV0M7fj9zTYpSSFyFYQSNt3330LK5StAAzOO++8AhJ8poQbwsM7XROQRdDNb1wPXgAZAANlbJUPWfCvlwTjdC0CxLksAJMsCn5bwTuTw6te9ary6CB1wsSbE0uv6/tO3S688MICwFFuAUmMPFh5lLUZYOx3zaV+D4BNmJjuX/3VX5VMFsvBTzzxxOLuoScrBFNSA5PQQALwMrUMhCyIsLjBpjECaIRfFuOTftQ0azFYTJcJDuyADzcEfy+Rgma57oEHHlgAChB6kgRQdT/3AJzALPzQXA9WVUmB497gtiDuATwBei9xHPbJ3YAtA30uDEtKn/e855XJQvmxdLm6XCwYvvtHhL/XdeM7x9ooHpMOsOdisYGQ1XwYOzGR0IFJbJyiLnvssceq7JO4F5ZPB/UJLX7L99TAuDSQADwCzWJxK1asKKYs5ghoAAkANuD5drkF6gIQuQUAqpVx3pn5GC+A9Vw5q9sAOzC0co07osmmXZPJjMFib54uzK1BHMvtYGvKfmZ1bAvpeGXlX+Y+wdD5twEnRu+athHE7AFxsz7lho0/rAGTkgmEXkK4MA455JAycdXrg72PmwErt/Jz5Wgf7iDuIwDs3vXyRHnzPTUwLg0kAI9As9wPVqcdf/zx1ZlnnlkGt8uK+tucyHPiuCrqGQgGugUVGDDwtWSYCHZZ3MF9gbliowJEg4igHrCTzkaAqLzffivzHGORAJNcObgFMGbltLqPTxbrdn9mOdeGicUEgbUvJCYhCy7OPffcMjHFsRaiHHTQQcXNgkFjnAHmGGiw5Dh+1O9cORi5oJ96x8NJ+eOT/Y5a23m9xTSQALyYhgb8HauycIKP0Uo3gR2sCmgBYb5b5j3XA0ZLuA08mA/zAkLxrDTHnnzyySVS7xE+gwSlgL2HXMrAkBtMbPknst8rG6McUFWr+WHjO+/YON8okNx2221LmW0mZMUdJl4Hzvp5PgNpAG6zHcEtYG2SEXTjXsHmY3+HAF+/Y6PjBmDBSysNBRM9ldqeDNdcc025b6TtNeuT/6cGxqWBzIIYoWaZ+RglMdABkRdQFHm3TSeWh20CbP5bgTh+WywVC+MHJQCCe8DiBIyUO6KfG8Gxb3vb24qf2GfieDuryTKoB/vKjwP84dIASBg514RtFT1pg/sAsEuzC/BsXk6q2RlnnFHcFxHcM4lwq9hESL2bwkVhJzfunHEulVYn7cECMQFi81wsJhUs3/JyuktJDUxCAwnAI9YyZgdMuQ4MaiY8VgeIMGJBLAPewBeAAm7AgLvAe+zp4HjnCZDxvWKI/MYCWI4jmKV7CLqdeuqp5bPjiL0VLHBYKpi5jzoAKSCMRQNf17OSD5tvArD6Ye+YuOXGwWYdx+3AQqi7YUpB/++PPGquASA4COOvnzvMZ5MR945ymBBNWNwQdOvdb0vJcx6mDHlsaiA0kC6I0MQI3wEVcJXJIAglI0KqGtDFjL2Y91ifAJ3jAYLFEsCHSXzxxRevYtBAmy8VA+VrFpgD3AJJQIuZL9uAAGXXYFrXt6sctnpYKrA1Mbi2iYU7wvWBGBbfFAxWYMvqPHUlriNAydVS30Coea7rTSoIh72bYLzTu/sqr/r5PiU1MCkNrDmKJnXnDt8H4/Pi8wTCcmYFxzyehluBMIMFy7BZ2RDAEssEsJinYJgglo12CBAWOAKGgA4Ick8IvEWOsOPcz2Ow3dM1liuusdh1MF2LRGwIbzvN2OXMvenAMupwzfQrDwCW6sYPPAnB4L1SUgPT1EC6IMasfeYspsW3iQ1KzcJ8BbG8gKkUL6xY2lc8ssfGOZG7y/cL0AEU0HWOFWXM/QAsvzPfBbg8dXghtjnqKqsPN0iwdtfHmAXvBLpMLuq2kHBz8JM7losjJTUwDxpIBjyhVhbYsbABGAvAAVAZEvymFmBgyJtuuumqoJwludK/Dj744HIsdwMWDKwjVxbzZDYDO5kV9phg7i8GdqOqsoCiVW58qTZ+9z8x6XCDWNVnFZ3yLSYmIxbAIMcudq38PTXQFg0kAE+wpQCnNDTmNjeDtC6MF5CKzmOAGDI2K5hmEQWXhIAc0LagArgBW78DX75ggSNuAgsoJgG+yirNjBtFih1Gzu2gnO7P/bH33nuXCaGXr7iXyvlgBRyx/JTUwLxoIAF4wi0NMC2wwHA9cBKYYZHcCdLQwuerWAJ3sgOAGsD14sYI1gucCSAEyo7j13SMlwAaUAbowJH4HHm55Ysh/mDr/NB2XxP8M3n4P0DTtbF4S6i9Dwq+iqBOXC6L+ZuHKG4emhqYeQ0kAE+hiYCNyLs8XezXiizpZAJsABd4AmRuB+CKHdqYvSmOZbrzA7sedsz3y2cM/IB9pK0BXQIkASf3htV5fM2DsGaTBMauXFwhJoe68HFzscgRltc8bO6xcgkmmpBSUgPzooEE4Cm2tAwI4CdlLTalieIIbGHDgC/Mc8ANrGPFmBxjLgsr3wC4VzxxOa7T750vmhuB+4B7A0MOkHYOtu27+N5kYIk0xhui/AJm2C42b0Lpt1gkzlnoPVj+Qsfkb6mBLmkgAXhGW1PQzstS4rpwUzD5gTIGLPBlMQH/KTC2hLgXowXamK8sCkw7NnqXuTCsAFkb/2DQfNoWfFiwAUCXKpg8tr4cAF/qvfO81MC0NJAAPC3NL3JfJnkviRQtbDXYaf0zQAZisR9EgCJ2jO3K08WSAbhXsFxsNliv+8pGcN1gxX53LB8td4M9hvmyrfrjMlmuKAt2H+Ve7vXy/NRAGzSQANyGVupRRmDZC6QDDCNVLU7lG5Z5gbXGA0QBNeYJWLFmLNm77wAwf6zfQoCxe3JZYKsL7bIW5wz6zr1iEUkG4QbVWB7XBQ0kAHehFQesA3Bu+poHPHXshwF2i1EyCDd2VecNZkgD+VTkGWqMeS8KFszVkZIamBcNZG+fl5ae8XpKx5O61iuAOONFz+KlBpasgXRBLFl1eeIoNQCApdV1NQjHly7PWf0iR5tPHePni49g6Sh1mteafQ0kAM9+G81FCTFfqW1d2w4SyAJX6YNXXHFFSR20atFeGdICpe/JJpnk5klz0aFaUsl0QbSkobpeTExQfnLXGLCMEqmBNlyydahn4nnwqU35zz777LL/hwUxjkuZPw0kAM9fm89sjftt9D6zBR6gYNivTeoBrs8W1tg2FNuX8WFXPI+hqqf7DXDZPKQjGkgXxIw3pAUUfKMGq0FrvwdsiR+R2d4V3yEfsCyIYTbwmfGmK8WTXudJJh415YknsTG9Zdv21bA4plc+dxvqlmVcvgYSgJevw7FcIXYe82h4S42Brd3NDFZ+UltTWljRFQHAmGDX8oD5gOVfa7N6e/nei8R7V9oy6zG4BhKAB9fVRI/0WPsLLrig+A0Faaxg82w5W0HabcxqtPqAnmjhxnAzE0wXV8KFhWJnOv5trgb+bqsR+YZ9TgY8hg7VkksmAM9oQ3nQpteTn/zkauXKlWW/X/sleEKyTXgw5C4JoOJqib2Fu1Q3O8XZwlMWhOwHWRAm15tuuql64hOfWPZs7prrpUvtN866JACPU7vLuLYUJaC09dZbl0HqUh5weeutt1af+tSnOuP7DRWpqycUY8Jdky222KK4GT75yU8Wi8am+XKC+fK5Xkym3BDBlrtW/6xPfw0kAPfXzVR/8Xw0QSmb0xiozFRZAoJwpGt+Q+weADHJuyY2y99jjz2qxzzmMQWAbXokIMfn7SXQCoi7OPl0rS1HXZ8E4FFrdETXA0hAFgiHj9DA5TfsophkBBu75lrRVvGcP8/K8wK2/MEeF2ULTsDbxYmni/101HVKAB61Rkd0PYAEgO0QBnj5CD1F+Stf+Uq5Q9cGLBCS5dHF7ShNonX3grbEfG35KbUwsltG1HXyMi3SQALwjDaWZH35o2eddVYBX9tISua3agpzqg/oGa3CUMVSH2zwZz/72VDnteHgXm3FLfHCF76wTK7rrrtu59qzDe0yC2VMAJ6FVuhRBo/6wZze8IY3FOD9yU9+UszU5kbrPU5t5VdAit87NpRvZSWGKLR2fOxjHzvEGXloFzWQADyjreppExtttFHxiUphYrZ6lP16661XnufWtaWrfN7cLimpgXnSQALwDLc2v+hznvOc8lJMD9SUOypQJZDTJTGhWJwgYJWSGpgXDXQv56fDLScbgu9Q4KZrTw/mblG3rrpYOtwts2rL0EAy4GUob9KnCr7ZxMVS5K75D/mAv/Od73QyCDfpfpL3a48GEoDb01YlKGcp6zrrrNO5pygAYPtbSM1KSQ3MiwYSgFvY0lbEdU0E4fh/uxZc7Fo7ZX1Gq4H0AY9Wn3m1JWoA8FodBohTUgPzooEE4Hlp6Rmvp4wPm9RkEG7GGyqLN1INJACPVJ15seVo4Nvf/nZJRVvONfLc1ECbNJAA3KbW6nhZZXkkA+54I2f1VtNAAvBq6sh/pqUBvl8+4K4tMJmWPvO+7dBAAnA72qnzpbTzmyyIXI7c+abOCtY0kABcU0Z+nJ4GBOEe/OAHZx7w9Jog7zwFDSQAT0HpecveGsiVcL31kt92VwMJwN1t29bVTBpaFzdkb11DZIEnpoEE4ImpOm+0kAYE4TyoMndDW0hL+VvXNJAA3LUWbWl9BOGshvOekhqYFw0kAM9LS894PQXhbEI/L0/EmPHmyOJNSAMJwBNSdN5mcQ109Zlwi9c8j5hXDSQAz2vLz2C9bch+v/vdbwZLlkVKDYxHAwnA49FrXnVIDQi+/ehHPyqPWxry1Dw8NdBaDSQAt7bpulVwG7Lf/e53z8ezd6tZszaLaCABeBEF5c+T0YBnwj3gAQ+oBONSUgPzooEE4Hlp6RbU87vf/W51xx13tKCkWcTUwGg0kAA8Gj3mVUaggYc97GEZhBuBHvMS7dFAAnB72qrTJRWE+/73v1/94he/6HQ9s3KpgboGEoDr2sjPU9OAINxaa62VQbiptUDeeBoaSACehtbznmtoQBBu7bXXru5///uv8Vt+kRroqgYSgLvasi2sV+4F0cJGyyIvSwP/H63HLCME9KhnAAAAAElFTkSuQmCC />
1.Path A
2.Path B
3.Path C
4.Path D
5.Cannot be determined
6.None of the above"