Author Question: Demonstrate how the ocean's thermal inertia is greater than the land's thermal inertia. What will be ... (Read 94 times)

soccerdreamer_17

  • Hero Member
  • *****
  • Posts: 552
Demonstrate how the ocean's thermal inertia is greater than the land's thermal inertia. What will be an ideal response?

Question 2

Compare and contrast the physical properties of seawater and freshwater What will be an ideal response?



tandmlomax84

  • Sr. Member
  • ****
  • Posts: 323
Answer to Question 1

Water temperature rises as the suns energy is absorbed and changed to heat, but water has a
very high heat capacity, so its temperature will not rise very much even if a large quantity of
heat is added. This tendency of a substance to resist a change in temperature with the gain or loss of heat energy is called thermal inertia. An example of the ocean's thermal inertia
compared to land's thermal inertia is two cities in the U.S.: San Francisco, California, and
Norfolk, Virginia. These two cities are on the same line of latitude, each is the same distance
from the equator, yet San Francisco is warmer in the winter and cooler in the summer than
Norfolk. Wind tends to flow from west to east at this latitude. Thus, air in San Francisco has
moved over the ocean while air in Norfolk has approached over land. Water doesnt warm as
much as land in the summer, nor cool as much in winter - a demonstration of thermal inertia



Answer to Question 2

Seawater is about 96.5 pure water and 3.5 dissolved solids and gases. The solids
dissolved in seawater change its thermal characteristics, lowering its latent heat by about 4.
Only 0.96 calorie of heat energy is needed to raise the temperature of 1 gram of seawater by
1C. The dissolved solids also interfere with the formation of the ice lattice, acting as
antifreeze to lower the freezing point. The saltier the water, the lower the freezing point.
Seawaters density simply increases smoothly with decreasing temperature until it freezes.
The crystals that form are pure water ice, with the seawater salts excluded. The leftover cold,
salty water is very dense. Some of this water may be trapped among the ice crystals, but most
is free to fall toward the seabed, pulled rapidly downward by its great density. Seawater
evaporates more slowly than freshwater under identical circumstances because the dissolved
salts tend to attract and hold water molecules. The latent heat of evaporation, however, is
essentially the same for both freshwater and seawater. Salts are left behind as seawater
evaporates.




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Astigmatism is the most common vision problem. It may accompany nearsightedness or farsightedness. It is usually caused by an irregularly shaped cornea, but sometimes it is the result of an irregularly shaped lens. Either type can be corrected by eyeglasses, contact lenses, or refractive surgery.

Did you know?

There are actually 60 minerals, 16 vitamins, 12 essential amino acids, and three essential fatty acids that your body needs every day.

Did you know?

Vaccines cause herd immunity. If the majority of people in a community have been vaccinated against a disease, an unvaccinated person is less likely to get the disease since others are less likely to become sick from it and spread the disease.

Did you know?

Not getting enough sleep can greatly weaken the immune system. Lack of sleep makes you more likely to catch a cold, or more difficult to fight off an infection.

Did you know?

To maintain good kidney function, you should drink at least 3 quarts of water daily. Water dilutes urine and helps prevent concentrations of salts and minerals that can lead to kidney stone formation. Chronic dehydration is a major contributor to the development of kidney stones.

For a complete list of videos, visit our video library