This topic contains a solution. Click here to go to the answer

Author Question: Write an equation showing the formation of the ylide from the ionization of the hydrogen on the two ... (Read 27 times)

tfester

  • Hero Member
  • *****
  • Posts: 534
Write an equation showing the formation of the ylide from the ionization of the hydrogen on the two position of the thiazolium cation. Include all resonance forms for the thiazolium cation and the ylide. Does resonance stabilization explain the acidity of the hydrogen on the two position of the thiazolium salt? Explain your answer.

Question 2

Draw all reasonable structures, including their resonance forms, to indicate the possible position of the proton of HCl in thiamine chloride hydrochloride. Explain which of the structures you have drawn is most reasonable.

Question 3

fTIeSO1QIN2ufTtllzAUdUkdgoBXBOz6ZrQvGHu9vmDzwXtu3nx51RihpW77+fjx48FWKeUFgahDAFpnRq/tRsnLYBoLoQ0IIMF7Jd410OiD441oCHYEGqRQIXXG6f5KoMHu2bJl7/jmFdDggzBSwqhw8s0dP2G8DwToxAPYWCbQ+LpARkCFBw80bu7ixYttJcuYQIsFtT++vmD2dgMK1BkLg/0PPnhf2UPD/YV9NKtw+vRp5UEVxDBs5UVj4PsAnXMvAQMbVlWGK2Gz7UIvdUie2EeAnxuryTpfHdI43+13XDoWAo0Rkr0gEDoEuK/Z9clEIbXxjYKdJasgBJoVKhIXbgSc+ma0LxiHGxuuf9z4cWq88PXXX3OU7AWBuEAAJJHZ7jkc2bgFSFJNnTZVOcNBHW4BUllwtIH3DQSTBg9+QNlVdysXznQmyHgPsg/XBCeKs2fPDopAA4lmVOWEWbCEI9AAKAzn8UcGhvPjgUDDQwld3ZdmvuTzxgaiArrL5iAEWmpEYmGwD4+ceGbhDYWNpae+Ck07cuSIMg4Jya2DBw+akyP+n/ucVwINDWZvoygL238SEg8Bfm7sJutABIY94SWH8/I+1gk0Nm5cqnRJR2OvIoGWeP0iklfM/cupTyYCqY1JA7CwcvwhBFokn9DEPbdT34yFBeP0uHOwiQachEBLD7TlHOmFAOz/Nm/RXD3bsFU27ZlpiuRxOz+ENKCSiT4BQ/n+2J3etXuXhjkdysLc0IsvvehXebe2+ZPOxBkkzCAxVq58WdUumDnC/NiYzu9JtB35ecO1mzeQZ9jw/mTVbzhWgEprwqhw8o344osvfOphkGyB/TAGM9qdCPA1OO2N7pj79eubJqsQaGkg8dmFw3MQrRIseDbRvts63Wb7gtq9e7cSrS1xTXHtxIkTaS80gjHcx/wh0IwepPAxkJB4CPBz4zRZBypGFRUuE8sEGtS3+Tqwx4AIC0BWQQg0K1QkLlwI8HPp1CfjldQ2YvrAA4NUH7UymyEEmhEpOU4vBNz6ZiwsGIcCK5g2eerppywJBCHQQoGw1OEvAtw3YXcPxJNb8OoQC3N+fIvYW2afvr012D10C+BCbr7lZvUNy5X7atVfQAj5G0BMLVq0SMO8E9cIbSloxaV3QDtgB5ntgsPu/dtvv5VKfRN5QJaNGTtGbbAdzuQZ9mbyDP+ZQMN+46aNyvwVTGBBqi3hCDTc1Fd17378MBv38UCg8UMLEUurlVEh0BihS/tYGOyj4w8adL96bu+7b6Ctiu7atR9qIIZhDyqajO9zP/OHQHvooQd9/TSa7btdepLkKNQI8HPjNFnnc3a+8w7f84JysUygGcljxgArYFZBCDQrVCQuXAjw8+jWJ+ON1DbjKQSaGRH5H2kEvPRN9FvOF60LxsHiyJpFm7dsTlOVEGhpIJGIdECA+xz2sAUNwsYpuBFomBOCxClQML/qz5hbQYjCLcAJ4cMPD1fzRNjOhiaeF8LNrV444hirE1MwJYRrhMr4sWPH3IqFJB1mjEAc4npgnw1cDrS1gJF5MxJm5mM3Ag0kGjsQSDgVTuOd6nhbR99HhB/seCLQjNdqPBYCzYjGpeNYGOyjs/OAx8mGHV9LvXp1XZ1KXEIgvEfcx7wQaHjhzZs3z+f0A7bQrMjg8LZYao8GBPi5cZuso61YNODBBMrFMoGGVUW2a4lr6dqtiy1pLgRaNDypidMGf/pkPJHa5jssBJoZEfkfaQS89M1YWDAOFsf58+er+d2mzZvSVCUEWhpIJCIdEOC+yXu38akbgQbj/agLHiIhAYZ5k1PA/BH9omixIqpco8aNlMSWU5lA0qAazd99SNs98shI7eeffw6kKtcyIMkef+Jx7epcV6lrgl02GPg3k2bG/2bSzPhfCDT9gYKDALdw7tw5rWSp6xTo/EALgeaGWuyl8731MgHnTs9l3F5wkUADalxNmjZRz+0rr7xi24TpM6arPBDRBWse6cCYos89+dSTttuAAf2V9BznhzQd9NklJCYC6IPYli61NtZtRmXDhvUqP8ps2LjBnBxT/7EqCI9HsCvh1IeFQIup2xrzjeV3s5dvajyR2uYbJwSaGRH5H2kEvPZNXmTl/NhH43g3UDyFQAsUOSkXLgSMfQ3HULl0khhzI9BACkHCEpJfbmHHzh0++++s2uhGuLnV6ZYO8hpjU1wrSDsIRYCsCkVA25csWeLjcFJS6mu7du1yJM6YRDMSZuZjIdA8Emi4iTCehwk6P9hCoIXi0Y6uOvjextNgH/Ydqlarol7AK1YstwUczD+uH6x8uF+WePFAXPf999/Tnp76tDbjuRmp2sX3wZ89jECuXPlBqnoi+Qcv20hLwkG17/Dhw5GEQc4dZQgIgRZlNyTOm5PIpLbx1gqBZkRDjqMBAR5feRnvxsKCcaCYCoEWKHLW5WA+ws6BmXWJ0MbCMRoW0sMlyRTa1lrXxn2zYKECPs6hZs0ayo6WVQk3As2qjDkOqo3sLdOo2mjOF67/mBdC0KNQ4YLqmmvXrqV9tP2joE4HMhCaTMATRv1BpDE55mVvJs2M/yNJoGUAKhTBoLsnVmfPly8f9evbz1NLdKOadPTYUZW3cePGVCe5jqdysZpJF68k3asbjRs3nh4e/nCsXobndvMzkVQ+iTp06OBabuPGDbRx0yaVLyUlhVLqp7iWiUQG/cVI9erXJexXr15DtWvVTtMMdMfefXqR7sGShg8bTuPHT0iTx98I/SNKX375JekkDh3+XN8Of0aff/652nSDir7qkpKSaN/e/ZQhQwYVp+umq/0VV1xB5cqW8+XDwYmTJ0j/QKu4jBkz0gODHqDmzZtTSkoDFRepH/1lrK5r3fp1tGPHx7Rw4ULVlB/P/UQ5cuRI92Z9rLehbt1/308lipeg1q1bU8OGDal27WTKnz9/urdHThgdCNSoWV31s4+374iOBqVzK/RBNeXMmTOdz3rpdLrdScK7Au+rzJkzX0qQo7hGQPfCSbqkN53/6QJlz5491bW279Cetm7dQqe/+z5VvPwRBMKJAI+z2rfvQIsXLXY8FcaOlW+sRLqtXJVv1KjRNFrf4iHoNtCoW/eutG7deqpXt16qS9LNn9Cjj46mo0eOUfHixVOlyZ9/EcA3dcuWzbRhwwbSDbMTxsCDBz9ITzz+REQg0tUUSZdmVudu0qQJNW3ajOrUqUNVbqxCmTJlikib/D2psW/qpA29887bqoqRI0bSmDFj01R36NAh0m2lqXh/+6ausUDPPf+cPs8fS7iXXbt2pfHjJlDBggXTnCc9InS7azRp0kR65tlnSCepqHPnzjRp4mNUpEgRz6c/deoUjXxkhJqHZcuWjYbpc9rBDwwmHCN4pZ+c8lmlmeOM/92OOd3TXs8kIcoRSDQbaFF+O4Jqnk5cKZtP+fLn1fSXrWVdUP1iTytQ6/QaYCdjy9YtykjlkCEPaa3btNYg+surKNizswLYExw16hENhlt37tqpwUilOXA5KxtoWDWASgE8wSAfJM/gTSUSAd5LoS7Yq3dPDbhyu417eK+JRIDkobEdMJjJ/+un1NMmTJyg1BZh3FJC4iCQaBJo+kBKg6ruyJEjtBIl/vX8hHdhJAJW5rkPwlMqbFRC5VakRCNxN9L3nCKBlr54y9ncERDp0H8xEgk092fFmAOmYfQFWm3qtKlaSoP6yhg7f9d4D5tZkQpwnMbtMI578+bNo+lEqQZviidPnoxU8zydl9sP6VCjaYNs2bNqe/bsSVNHoBJoq1ev0q6/IUnhpVQbPXj8THPyMEVg7nRr21tV23JemUPNWdy0eqCiOmbMo1qOnFeocvd0uVvDGNAcvEifIY9R4sx8HEkJNDCAEqIcASHQvN0gEEjoTNEeIM6KF9E115aw/YD88ssvmi65pF4+IKo44OVx/PhxpSaJDye8sTRokKIZRYzx0s+TN7cq36Nnd2WTCR4x8SJ0ssvE5+A9fzysCDTOs+2jbT4PLiCv0mMSCluI7767TMO1wRgnt9P4keY47EESRjK8994KXxuN7TK2FwY18ZGCSjoGRbjP8RYOHDigYUAHg6HmALsQrW5qFTUONMztC/X/eCfQvvnmG+2NN5Zqw4cP05LrJFsO7he/vjjUsHqqDwOywkUKWfbJ8knlNV1KSdMlV6PKI7KnC5NMrggIgeYMEcZPbpMj5xqCT922bau2ctXKuPwGBo9O/NYgBJrzvcWYcP/+/WqMmJxcO5UpI9jmMo4t8f+aa6+JqAqnrt2ibJsbx7ncRmNc9RrV1TcXan2h8CzpjKJ/qdxeVq82elqHwyjzfMpfAu3o0aM+csqo2uhfK9Mn95o1q322rq8rea0a32EsZQx4RmE3rVjxoup5xHPqpP4pBJoRPTkOCwJCoF2CFQM8c6fl1PwF8mlDhw7hv1G9h52wLFkzqw8MCCGroIvpq1UJfGxq1qqpbKgxo88vdrzIWrZqqWFi8NLMl5Q0E3To7TCyOo9dHJ/DiUBD2VdffdX38b6hwvXaTz/9ZFdlQPFYpYLrZ0iYVapcyXcu4GL8EHN7eY9BxPXXJ0V8II57AVyc2oo2G9PxMYWLZ0zkIWEXD0EGyJfuYrwRaJDqAkkPCbPaybV8fZT7onl///33XQIjAkfGga65bfwf7+d6ut0OXBMmLqF4p0bgUh1PCTIbCzVW0sOYzCDNyWiyY+VRmCgEWtqbgu81FnkGDhyglbjmX+nQFStWpM2YDjEY33H/w1inSZPGagEMY+B47H/pAGnMnELGB6lvFcgIOFUaP2G8Ilny5svj6xv4NnE/sdtjzBzpMGvWLNd2Gse9uK42N7fRdDM+2jvvvBPxsTtjywQa8Gzbrq3vmjA2MAbjuMKLg49mzZspYQpookR64cJ4HXbHIAxhK5ufxYYNG2h79+5V2eGAAPbhgBkINAguuAkC4J3uZUM9dhu+GeYN7TRu0PDhDcQub5Di5A32ArHhPmCDEAs2SNNh09Vq1QZtLWzQLopqCTRI6uj2zizvJdIiLVli2bAwRAqBdglUvHB0G2GXIgxHGPxBGitWAg8Y0GbzSgZfw/Tpz6oXEiSUoGoEsVi4P4b4sBdPLlxPIHv+eLgRaKi7a7cuvo8KDGCGKoBc5HbE+t44UPD3Wn788cdQQRqxevh5Fzf1mvJ0pNtBi9i9CPbEcD4CyViogVer/q/XJn6m3Z5zqD9AWjjSoXmL5n69WyC1BolfjDt27NgR6eaH5PwbN21UGFiNpaDaj3s6c9bMkJwrGioRAk1TkwQQZligqVixgmUfmDZtWsRuFyTLrd4lRYoW1u68q7MGKRAsEkqILwRkfJD6fhYomN/XD7g/JNoemjSRDIy3kUDDwhIb2L8iR3YfgYR2+kugHde1iaxUGyN5zV7OjfEbVHRZ8tGIh26r0PPc1At5hjx25BnizeQZ/hvJMxwzeYY9k2fYM3mGfSAE2v8DAAD//y25WOcAADwaSURBVO2dB7jVtP/G4wIXCCjDgQxBlKXsn4CAICCioCCgshFUHMgQHKAyZIgioLhAQQQUleFiCch0MN2g+Ge5EAVBnCCa/32DOe3t6Wl67z3ntOfct89zTtMkbZNPmjZ9m3wjZIiXNm3byGKnF3VNYafOHWWBgqe4hqWb544dO+Sxxx0jR4wckW5Zy3J+atWqKcueW8Z1v8uaXRbzenHdIQSeYx4dIytULC9/++23qNT88ccfslTpkrJwkdPk3r17o8IT7YFrDr969S42nuqnn36SZ5coruJjn7feetO4j58I//77r7ykYYPIcXWajstzbJSfDgvr2k+a3eLUq3+xBIdUX6ZNm6bKbOWqlVFZGT5iuArbuXNnVFg6etSoWV3WrFUjZbMW1jqWzHQtX74sZctPJ3zFyhWq3k2fPl17Rdbr1q9TYRMnTYz4pbqjT5/eKk+///57VFZatW4lixYrEuWf6h6HDh2SixYtlGhr1L24rjz+hLyKAepKnrzHRdy67lzZ4kr5zz//BJZttIXQ5tHp0Wvns7HceefKe+65W77zzlKJtlK6LSiD9h2ul/PmvZVuWXPND9sHmbHgutbXfm5c5z0+j1yyZHFmKEne0tzbXdsu05lffvnlSNlUq15V/vnnnyr8888/j/gPGTok0z7puPHpp5/K8hXOV3muWrWKhFaRlQXvNX5+uBfG+h0+fFg6f3///be0//AM1L+DBw9K/fvrr7+k/qEM8cOzBD+0EfDD8wi/X3/9Vf0OHDgg8fvll1+kyEpmkx3Xq0HTsVMHmS//yclOUiDno4BmYe/StbOqrG4Npn79+qqwPXv2WDuksGvYg8NUfp548olAcqEfHn4ENCQQopneB8IfRLV4LhARX331VXnbbbfK884/L3IufU639QknHi+3bt0az2Rk+VgbNmyImVb7S8HJ+U6S17S5Rj751JMSD+IgX2KynEkfO7CBbEFKdQHtiiubR13TaPC61cF08zvp5BPl6WcUU40rq0RT00UBzSo3r/amFSv8LjTsZ8+eJQcPfkCinuY/JV+kXtqfN7Hq5Zq1awLPJF4+Y6VP+9vvN3jOX9q4kXx8wuNyccZLN16oUn3BSxvy2rdvn1TPiq/0s33gjgkCw0cffSTHjhsrr7r6Kt/1uWu3Lu4HTJIv0n11q6uM9RjXeNVqVZUYDrEYQkVYFn2vcQpoSB/a6jr8gQfuV0nObQIaMr1gwXzFYc6c2YpBVv78iGeIE0s8g79TPMO2XTyDW4tnWGvxDGstnmFNAS0rJZdCcSmgWYU16qFRqrLigeJcnn32WRX27nvvOoNSbvvrr7+WEFQuuLCyuhkEkQH9cPAroCGNWuDEvjd075bQZH/22WeqwQwx/dTTCkUeZvYv7EjHddddm9B0eB0cN/Ozzjozkjb7C0yhQgUzHsKt5eiHR6uv6G69IryOnWphbCBbJZbqAprOCRonq99drV7WGzdpnKl3i75/uK3nz5+nDxHIGj0dcX91S5vdD/UVX1bxEvv666/J/fv3B5LeRJ2UAppFNl0ENPv1m1vdN97UwyrYFHVRQLMKLrf1ULdyHu1C54E333xD3n33XRLtCF3H7W1L7bd58+boAyTJZ+LEiZG06fTo9YVVLpC3336bnDFjhgzzqAOdXjcBDR0EzjjzdJVHiPl4J82NAtrChQsUg7lz52T5yqKAlmVk/nfwatCwB5p/jukU8403XleV9aWXXorKFoQz3PCee+65qLBU80DXfeRl6dIlgSVdPzyyIqDt27dPlj6nlEo7hock60UZXxNQ/himgi9D6CWi04/1ho0bAuH4wZoPIukAj3r16ymxYfHit9WXkEASFdBJKaBZ4NNFQLNydMQFgQm9RHv3vkOWKHl25Np3Nu7Llz8/sB5caLTVqGG9eDiHsV1U+yIlakNcCtPXcCfreGxTQLMoerU3rVjhd+EZaH/2we2sf87wVN121l3kA8/+LVu2hL+gDCmkgGYBooBmsXC6vv/+ezlr1qsSw9PPLVc2U90vWaqEM3rStmF+Sd9Xip9dXH1cnzx5svz222+Tloacnkin301Aw7EhAOo4lSpXlB9++GFkO52GcKLNhGsM9yTnQgHNSSQk214NGgpoISmkJCcDDSPcsHSXWfvpId4gbMCA/nbvlHOvWr1K5aP1Na0DTTseAPjhoZeVBT1S9L5TpkzJyq5xi4vhnugxgl5w/7uoVqBDOiZkDCtZtuwd+fPPP8ctf6l4IApoVqmlq4Bm5VAq2xb4Ao5yx9ATZ8/Qxx9/zB49ae5du3ZFGrkQFurUrS0HDRoo3357Udr1MDNBpYBmEfJqb1qxUseFlx7YqLn33nskbMfahzx6CWovvPBCoJlEr1anEKBfUu1r3E9q16mthn7hJS7deodSQLMuQwpoFgsvF+o8TIbADEjBQgXkSy+96BU9oWEbN25Uw06/+uqrlLXhq+83sQQ0AESYjnftdZY7nQS0L774QuURQ+SdCwU0J5GQbHs1aCighaSQkpwMNK5OPOkE2bZdW9czFz/7LNmiZQvXsFTwxJhuvFwjj0Hb7koFXkxj6hCggGaVVW4Q0KzcHnFh6AmMmd911wA1fDJIQRmiNoYc7N6925nMXLVNAc0qbq/2phUrdV2w8YKPc7AVe8GFF0R6pUFMswtqZ551hkSvliAWCAD97uwXeSHVL6Z6Xb16NdW7FXZ3kJ90XiigWaVLAc1iQVfyCOj7jpeABpvbbpOepJOAtmnTJnVPHjd+XBR8CmhRSMLh4dWgoYAWjjIKIhUYP1/5gkqup27StInE7EypuqC3F27a6BHBhQTSiQAFNKs0c6OAZuWerrAQoIBmlYRXe9OKlT4u2PCBuQu0pe0zaKP90aNH90AyClMM+qUV67OKnym73dBVwr5tKg39igc8CmgWRQpoFgu6kkdA34u8BDSkxj4rp96HApq5nPDBxM+PkwiYWUbF8GrQUECLwpVrPK67/lo1HAi90ZwLbO/ga2oqfp3E7FmY3Q2NxnS3veMsN26nPwEKaFYZU0CzWNAVHAEKaBZ7r/amFSs9XXiJwaQ8w4c/qAxjwx3UsnLVSjXsO11mU88uRwpoFjkKaBYLupJHQIthJgENKbq+/XWZxH8KaOZy8iOeIQ4FNDPLqBheDRoKaFG4co0Hbky4sWFctnOZOOnIzC+w/ZFqC2y3IV9B2yBJNW5Mb2oQoIBmlRMFNIsFXcERoIBmsfdqb1qx6CKB5BCggGZxpoBmsaAreQSyIqDBtmrRYkUiIhoFNHM5UUAzM8p2DK8GDQW0bGNN+R0xyxtubK+9NjcqL9oAP2YMSaXlyy+/VL3qamfMAAe1nQsJpBsBCmhWiVJAs1jQFRwBCmgWe6/2phWLLhJIDgEKaBZnCmgWC7qSRwAiGH545/SzLF++LDKB2vIVy/3skhJxaAPtNzUqDCPDDhw4oH4YMSbCXHpeDRoKaGEuucSmDb3LIKCNHDUy6kSYfRFhwx4cFhUWZg9MfIB0f7DmgzAnk2kjgWwToIBmoaOAZrGgKzgCFNAs9l7tTSsWXSSQHAIU0CzOFNAsFnSRQLIJUECjgJbsay5u59uxY4cSV0aMHBG3Y6bygf766y+ZJ+9xslPnjq7ZwCxSHTq2dw0Lo6eexaRL185hTB7TRAJxIUABzcJIAc1iQVdwBCigWewpoFks6AqeAAU0qwwooFks6CKBZBOggEYBLdnXXNzORwEtGmX5CufLmrVqRAdk+Fza+FKJF9RUWA4dOiQrVCwv85+ST3733XepkGSmkQSyRYACmoWNAprFgq7gCFBAs9hTQLNY0BU8AQpoVhlQQLNY0EUCySZAAY0CWrKvubidjwJaNEo0diE6udkL69Xrdpkv/8muYdFHCtZn3PhxqnfhqIdGBZsQnp0EEkyAApoFmAKaxYKu4AhQQLPYU0CzWNAVPAEKaFYZUECzWNAVDgJ33TXA1YxQOFIX31RQQKOAFt8rKolHo4AWDXvQoIFKeAIb5/L0M0+rsJ07dzqDQrX9448/ykKnFpRlzy0j//zzz1CljYkhgXgToIBmEaWAZrGgKzgCFNAs9hTQLBZ0BU+AAppVBhTQLBZ0hYMARkE1aFA/HIlJcCoooFFAS/AllrjDU0CLZjt9+nQlksF+mHPRLwWLFi10BoVqu2fPm1Ue3GYTDVVCmRgSiAMBCmgWRApoFgu6giOgn5V4njqXdevXqefTxEkTnUEpu92nT2+Vp99//z0qDxTQopDQI0ACFNAs+BTQLBZ0hYMABbQj5aBteM+dOyfLBfPvv/9KPz+MNIv1O3z4sHT+/v77b2n/wVSS/h08eFDqH+yp6x86seD3xx9/qB/aCPjhPowfZuDkLJxZLuLgd6CAFl0GGzZsUA3hsePGRgX+9NNPKmz8Y+OjwsLi8eGHH6o0Nm7SWN1AwpIupoMEEkWAAppFlgKaxYKu4AhQQLPYU0CzWNAVPAEKaFYZUECzWNAVDgIU0I6UAwW0cFyPUanwatB07NRB2bmK2ikNPSigRRcqlOFjjztG3nhTj+jADJ/Tzygmb7mlp2tY0J5Q3C+5pIGaSfTTTz8NOjk8PwkkhUBuE9DwBQxfxtwWCmhuVOiXbAIU0CziXu1NKxZdJJAcAhTQLM4U0CwWdIWDAAW0I+VAAS0c12NUKrwaNBTQonDlOo9zypSW9epd7Jrvho0ayoYNL3ENC9rz1VdfVeIfJjvgQgK5hYCXgDZy1EhVJ8Jut9BPWUEgf/nll2XJUiXkRRf9z3UXCmiuWOiZZAIU0CzgXu1NKxZdJJAcAhTQLM4U0CwWdIWDAAW0I+VAAS0c12NUKrwaNOkooOHFy21hDzQ3KlJeceUV8rTCp7oOgZwyZYrERANhWzC+ulTpkrJwkdPk3r17w5Y8pocEEkbAS0Dbtm2bRCM5Vo+thCUqzgf+6KOPVO9S9I4tWqyIfP75513PQAHNFQs9k0zAj4A2adKkJKcqcaejDbTEseWR40uAAprFkwKaxYKucBCggHakHCigheN6jEqFl4DWqXNHmf+UfFH7pKIHjONNnTpVnl2iuMTUuM6FApqTyJHt/v3vVL1WfvjhB/cIIfR97/33VJqfePKJEKaOSSKBxBHwEtASd9bkHBl2FzFk/Lg8x8q8x+eRd97ZT+7bty/mySmgxUTDgCQS8BLQYFB36LChcvfu3UlMUWJPBdujj4591PWjm1d7M7Gp4tFJIJqASUDDe0M6LV7tAwpo6VTS6ZEXCmhHypECWkivZ68GDWaIwjCZVF9WrV4la9WqqUQV2O1asmRxVJYooEUhUR6TJ09W3JYvX+YeIaS+X331lZpRJKTJY7JIICEEvBrICTlhEg4KO2cTnpigesKi11nLq1rKL7/80njm6jWqyRo1axjjMQIJJJKAl4CWyPOG8dhe7c0wppdpSm8CXgIaxO0iRQvLSxtfKtPFji5mAsYzFO9EzoUCmpMIt4MmQAHtSAlQQAv6Soxx/nRu0GDIUrtr26kHxgknHi/vvfce+csvv7iSoIDmikW+/8H7it9TTz/lHiFJvpgGd+bMmbJDx/YSN1X0QsHv+BPyysoXVJI9e94sFy1aSNEsSeXB04SPwNdffy0rVa6k6mvtOhfJ7du3hy+RWUzRsmXvyAsurKzyVKlyRfn224uMR8Aw/dmzZ8kTTzpBiW7GHRiBBBJIgAKaBbdV66vVsGvLhy4SCI6Al4CG58iAAf1VOzNP3uPkHXf0kj///HNwiY3Dmffv368+Rh08eDDqaBTQopDQI2ACFNCOFAAFtIAvxFinv+rqq5StqFjhqegPkQxiGV6g8LUFIhrENK+FApo7HTxwwRDCVVDd2deuWyvPLVc2Ippp8cxtXa16Vfnxxx+7Z4a+JJCGBDBbLoaBnZzvJFVXCxQ8Ra1x/7v//vskXhJSbcH9uG27tiofsGWIHmjoiWZaYB8Nk5vgngXzA3f0vsO0C8NJIGEE8OGnc5fO6nqsULGC3LVrV8LOFfYDf/bZZxkzd5+uZsYOe1qZvtxBwEtA0wTQ+6xJ0yaqDqNH2jMTn0l5O6I6b/Y1BTQ7DbrDQIAC2pFSoIAWhqvRkYaNGzfKfPnzqQdDOjwUYBz72WeflWecebrKU81aNeTKVSsduY7ePHTokBwydIjap+VVLaIj5HIfLUTixRwvp7Ahh1ku0cMl1qQM8UK2efNmWbBQgYh41ujSRsq+yuLFb0v0TnnrrTfliJEjMvVKK372WTIdZhqMF0MeJz0JoO7pmSghGF1Y5QJVJ5Bb3PcwhBH+sPs4Y8aMhNfVeFCGGDhkyGB50sknqhdtfPX3MxHIjz/+GLGPht4CmH13z5498UgSj0ECWSaAuvnaa3Nl2XPLqDqIiXhwXZ5SIL98aPRDEsJabllgu/D2229T+c+X/2SJyam4kEAYCGgBrbfhQwvq8xtvvC7LnXeuqs/4UOvn3SIMefSbBgpofkkxXrIIUEA7QpoCWrKuOB/ngUH4G2/qoR4EaNCdceYZyl21WhWZaraudHYhpiD9eGE8q/iZasIAPz2mMOyvYqUKar/zy58nV6xYoQ/J9X8E1q9fLzGEE42M2rUvkhgOC874YRa8y5tfLh944H755ptvxP0LO+wd6XONHTc2Zi84iKD6mkZ87MeFBNKVwIYNG2T9+vVU3cBX8aefeTqqh5b+oFDs9KIqXp06teWatWtCiQQvKBDlMXsu6m+zy5vJzz//3JhW1Ptx48fJQqcWVPs1btI4bezVGDPPCKEk8Mknnyi7SbiO0aaYP3+eSucXX3whr2xxpbpO0aP69ddfSwlRO7uQMUwMz+xTTyuk8ozncypNRpTdfHO/1CCAHs1jxjyirk30VvYjiEH4fiRjH3zURf2+vv11EqYTUn3ZunVrxPzDpk3m526q55fpTw0CFNCOlBMFtBBcr7j5P/zIwxI9ifRXenzdd/ZkaNO2jXHIYwiyo5IAY/Gw44aHGXotQMj59ddfjcnbsmWLbNGyhdoPX4nxtRgcuJgJoGGMYZWY5bJL186q9xf46x96vKBM0DMMPcWyazfiwIEDkWFp+OJnWnB9QzxFOtBrzk/PFdMxGU4CYSKAF9AeN3ZX1zhmouzbt4+xfmEYNmy5wF4g6kbXbl3k999/H5psYci1HnYJwWHevLd83YvRqKhQsbzKU24QJEJTYEyIKwF7L0i8YI95dIx0szW0YMH8yDMzHQVftKPwMe2888upugmhH4I/FxIICwG0S2FTE89DiGd4lsJ93fXX+hq9gOfwTTffqPZBr8oHhz8oMelAqi14Vxo0aGDE3A1sp+KjFBcSCAMBCmhHSoECWoBXIxo0+NqJlww8JGI12tTwmYyhjLClAwHivvsG+RKjgsjavn37ZP/+d0ZeCmGjy8+wPfvLJHrfjXpoVEo++IJg7nVOlAcaJegGDrt6ehgtrjf8cO3hax2mt8eXPj92mb755pvI0E28YPtZ8JUbLy81alaXq99d7WcXxiGB0BOwf/xAfUIPrU2bNmUp3Zi5Un80wL1v5KiRgd/78MEDtgzRgwy9VdwEB2cm0ZPniiuvUPcV5GP0w6Nz1ZA4Jw9uB0vA2QvST08r+z64/jHEMR2GHEMMR/sS96iSpUqoIeb8MBns9cmzWwTwwR3tU1yf9vb/9gxzJNrmJj7EDx78gK826ocffigbNrxEHa9M2XPk3LlzfH38sVIUjAujc1544YXIB2eYu2F7OZiy4FljE6CAdoQNBbTY10hCQ+wGMHGD99PTCkIUxA48ZGBPClMf+xkOmdCM/HdwdLvGcEIMHUT6MKQQM0WaFgxneu655zKM2BZT+3W7oWuoemGY0p9q4Wg04zqaNetV1fvlkksaZNjbO1mxR7nhpQGzZ6IcnnzqSdWjDSKBfcEXPbxYIy5EXRgh5kICuYmA7s2hba9kpYdWLE72YetBN/qvbnW1vLnnTRK9d0wLRPo77+wX6S1wQ/ducR8ybkoDw0nATgDDM9HIxzOtXr2L5foN6+3BRre91xrspD0+4fGU7AGye/duVY/1sxqTmuCDLBcSCAMBTCwG2726F3b3Hje4tv+Xr1geMQVTouTZ8qWXXjIKYnhGY9bnc8qUVvcBTDjgx/xAUFzwvnTRRf9TacWH7ilTpoTm/S4oJjxvOAlQQDtSLhTQknx94mvmbbfdqsQHdFHOTm+DVatXqZ48Wqj6YM0HSc5F5tOh1xIMZSM9+Lr54osvGh9uOILdoHbdunWUWJP5yNxKBgGIn/hCjYke8JW+StUL1fWJ8sQPXwSds5Tdc8/dKg4a5hh6jEYQZtrjV+1klBjPESQBNMIva3aZqhvoVYnem356aPlJM3rAPPb4YxH7RJc2vlTCdlMYF3z8mDhpotS23C6+uK5ct35dGJPKNOUSAuj9CdufeG75fdH2QmOfPRZDy9CbOxUW3TNW24Rq3+H6tLAJlQrsmUYzAeeH8wYN6huHE+vnjf5ID2Hcz/MGH3xhtgTvWzCR06dPb4mPPmFZvv32W9mpc0d1z4IdY7StISxyIYGwEqCAdqRkKKAl6QrFi9H4x8ZHXoxgo+q7777L9tnR82zy5MmRnls5PV62E5KxIx5GsIUFewN+vm6iBxRsGqCRC7tcfgW3nKSR+2aNAETRFStXKMOssCnhtF+H6xld7iGg2X/oGQk7a5jR7L333/N1PWQtZYxNAsEQgO0+zD6JRjjuXeihhR4eiVgwQ96tt94SqVtwwy8sS3Z6BIQl7UxH+hGAPU9MpoO6mZWhXn5I4KPQnDmzIz1Z8NzDkLMwLjqtepZRDgELYynl7jTZOwCUPqeUmqQmKx9e8b7Rr1/fLPd4xvsW7Izi2Q0RDpPjBLn88ccf6p1JjwBBr++w3leC5MRzh48ABbQjZUIBLQnXJiBro8rooutnaKPfZNm7QOMLC760hNVoJkQZ2DBAA1dPLODH5pZfFoyXXAJo9GDYLoax2UU0uxu909AwgPFiLiSQigTQQxMTcxQucppqfGPY88aNG5OSFfQ+a3RpI3VezJqH3mkQr4NatmfYpGl3bTuVHtzDhwwZ7MsmTVDp5XnTmwDqJkwNYMZbvBjj2sQ1mojF3pMFQ87uvvuuUPUUwT1J233iELBEXAE8Zk4I2D+cZ3f0jf38mzdvls2vaK7qPdqZfm1uotca6gnsfAaxoN0MEyoQD3HPSqWerUHw4jnDR4AC2pEyoYCWwGvTblT5zLPOkFOnTk3YmHbMXqmNcGLMP76YZuWrTgIxqHTAZgGGVOCBce117eSOHTsSeUoeO8kE0HiHfRXYmcCwEbuIpt1o7KARxYUEUoXA0qVLlE1A3LfQ4EXDN9n3VZwPRpBhFw3pqFipgoS9tFgL4uCHCWf82H7CkFS9z5ChQ1wPiw8d999/n/rwgbjoQcx7uCsqeiaJwJIli+UFF1ZW127ValUkekUmY0FPFvT4Rz2AUIWRAEHaooV5BdiOQno4BCwZVwDPkRUCahK0jA8t+OCCaxQ2MuM527Td3mHYZ322T24A24oTnpgg8RGACwmkEgEKaEdKiwJaAq5aDCfo27eP6mKsGzQHDhxIwJmiD2mfBho9F2DbKsgFX3tgqwAPTgzzxLBALulNAA0CvLhjGCfKXhuIxTUAW3nJqgvpTZm5SySB//u//1NDkXHNYogFhqdjyEWQC3rAYHZifL1Hujp36eSaHITpHwQG08u9SUBDox9D7XHM6jWqKduVriemJwkkgYB9xj70PHtm4jMS9pGSvcD2LCZLQr0wDZXU9TGeojbuB7ChCxulOD6HgCX7CuD5vAjgw4/9w3n9+vV8fdDxOmasMNggxWzRmNwKdQEfcjFRW1gWTEoCkw9IG4aZ9+p1e1rM7hsWvkxHcgl4CWh4/0snURh2VVFvx40fFwWZAloUkux74KJ5+pmnI8MJgmrQIB34soEvHOj9c8stPT3t5+DiwC+ejTt8FcWXJhwXRqYnTZoUSCM3+6XJPeNFALbQ8GVQX2foas+FBMJIAOIujPjiwweuVxj3hZHfMC3alkvjJo1dk6XrmV7H6lWmdzYJaOjpg48fmGQkCKFCp5Pr3E3Abq5CGwPHx8ogF4jT06ZNk2cVP1PdLzp26uAqWOu6iHU8RO0ffvgh0iOVQ8CCvAJ4bjcC9g/n6Ln9yiuvJKXntp51FvVMC1WwXRrU4hT28MwOk7AXFBeeN7UJeAlolS+opJ5Nr702Nyl1PtEktYAG8ynOhQKak0g2t995Z2lkJsqwNGgw4+ftt9+mHiSwn4ML2m2Jd+Nu5syZambGvMfnkf373yn379/vdlr6pSgBTCrQ8qqWahiX3yyg56EeytmwUUO/uzEeCSSFAF6EMW08hmThfhhvW5VJycR/J7Hfz/WLxIYNG2ImwSSgxdyRASSQBAIQbSHenn5GMVU3m17WVOKaDdOCSXYGDRqoemi6TaTkrJM5FbXRCw92dTkELExXAdNi/3COntLDRwwPpOd2VoZK2usmzOz4WaZPn67uRdgXIy3clvnz58nzy5+n4oV9aKlb+ulHArEIeAlo6EQEvQF1A89qCFCpvMDmMMwTffPNN1HZoIAWhSRrHvahPmEw8uyWenzxaHZ5MznswWFuwZEHgX6Q5LRxB1s5LVq2kLABxyX9CJQqXTIihuFLuJ8F3fm1gAZ7NVxIICwE3n3vXTUEC/c/9CR54YUXXHuRhCW9pnTo+zh6/mp3rVo1Jb6Guy0U0Nyo0C8MBPDhBb0fcR3jJRST0STbBmE8OOh6qNfoHUNROx5keYwwEPjrr7+UEX89nBizXaKndJAL7hN2Y/3oGeNme03XSawxBHTbtm3GZHsJaBgBpCc3AA+/kxsYT8oIJBASAl4CGpKIIcs9e96sntvoSAOTVpg9N90WCmjZLFEMJ8AsTBjqA2Hg1ltv8Rwmmc3TJGU3+wMEbjbukoI9ZU9y4009ImLYgAH9feUDM89qAQ2TXXAhgaAJfP3117J9h+vVQx7D19GDBD1JUn3R93PMSHhNm2siIlqsWccooKV6iadf+rdnzKTZtl1bde2mw0uorpMUtdPvWs3NOYJI9frrr0VMdMDmLYZvhmmB7VLYMEVvsM8++ywqabpu6jVstZlMFXgJaDgfPhLDhA165HEhgXQjUO68c5V9a1O+MLkc6hPqFp596WYGhAKa6QpwhGOoD2Zd0kN9MBwtaEP9jiRmeVM/ONi4yzK6XLkDboqYUQmCGCYIeHzC4549djCUGEaWtYA2b95buZIbMx0OAhhihS7ZJ+c7ST3YITJt3bo1HImLQyr0/RwCGhrwRYsVUfnExx7UXedCAc1JhNtBEdBDISFo4zrudkNX114jQaUvu+e110mK2tmlyP3CRAAjW2DTC9c2RiW8/PLLadE7FPmJ9bFJ8/cS0HQcrkkg3QhgOCOM6aOOoKPNG2+8bqzzENkxmYieiArvghj1keoLzCjUrlNbsXj4kYeznB1w8fOD5hTrB6Hf+UMPWPsPZaZ/GIWif+g1rH+YkAg/iP/44R0Jv99++0390C7DDzai8UMHMpHVHK9avUrWqFldAYNhzNmzZxkvnqyeI4j4bNwFQT21zzn+sfERQQzCGG6KENJgewLDOvFbuWqlaohgWJwWz/BSz4UEgiCAhxUa+SVLlVD3cMwIu2zZO0EkJaHntN/PcSI8p7RflaoXRs2QRAEtocXBg/sggAYihk5rY/x1Mhqma9et9bFnakTR9Y+idmqUF1MZm4C2rYw2XVhmqI6dWnOIrpsYvon8YBsf1zDLbqyFAlosMvRPVwKLFi1UdjdRPwoWKqAmHYTb74y3EGPuu29QZD9MuBO2Cbr8lJ19MiPkH0PDd+zY4WfXTHH8iGeIE0s8g79TPMO2XTyDW4tnWGvxDGstnmGdUAENcK69rp26sabDAyNTKWZs4CLAj407JxluexGYOGmimixCi2OmNWaDRcXlQgLJJgB7Q7oreZGihdVsyXi4pONiv5/r/GFGaO0/cOC92lutKaBlwsGNJBPALM2YtAPXZ/Gzz5J4OUXjMJ0WXff0BySK2ulUurkjL3gBw0fS0wqfqupql66dU/IF2Flaum7iRRgTAuhtDPmMZbeJApqTIrfTlcCWLVuUTXPUiwIFT5HobQXRRc94q9/7/JqxwmiPVq1bqXqGiUZGjhqpjhd2fmiTYPShnsyodu2LPEV2U37SXkCDYoquvBiuhounQ8f2rjMxmECFPVw/MNi4C3tJhS99MBaJmZbwAqSHxOnrCesSJc+WmLUz1Yc5h488U+SXwCuvvKLu39qY6c8//+x315SMp+ufvp8jE2js6Ac/nmfoKaoXCmiaBNfJJIBZrdCmwvWaTjYI3Ri61UmK2m6k6BdGAosXvy0rVa6o6mrdunXkmrVrwpjMbKVJ100IaOjB0bDhJSqf8IcdM7eFApobFfqlEwFnT6seN3ZXI4ucefzoo49ko0sbqTqDiRQxxNNPRwncUypWqqD2C/sEQfbRh+glP23atBx/5EtbAQ1KI26Q9jG7q99d7bxu0mZbP0DsL1xs3KVN8SYtI7ghoLcmXsjxQ1d/LiQQNAGIRWgIp/p02n45ut3PsS+Gr+owzGyIbttYKKApDPxLIgEMz9TDpdLNBqEbRl3v7G0sitpupOgXJgLofdLyqpbquQHTB7BlhHZeOi26bkJAwwJhX9uDRu8a9BZ1LhTQnES4nS4EoH9MmTIlYue9QYP6rrZz7fnFPWHu3Dmy7Lll1L0CvTdh69p0r0CvVghuGBKKetjs8mZy8+bN9kMH6t65c6e8vv11Km34yIchqPGaaAxs/PxQHrF+oRzCCaUVhYkv9uiyh8Sn86IfIGzcpXMpM28kQAK5gYDb/Vzn282AOQU0TYfrZBHASyraWUuXLknWKQM9T6w6SVE70GLhyWMQsPc+gdA97MFhyqh0jOgp7a3rphbQkBkIZBDPEFa4yGlRNo4ooKV0kTPxMQjAuD/sWeO6h533V1991SiC2Q+FoZ2jHx6thnriGJc1u0x9oLXHcXPjY9KNN/VQ58VIkSFDh7hFS5ofDOgPGTI4MqqqTds2ctu2bXE9vx/xDHFiiWfwD6WABmO2GLq5f//+uAIL68H0A8QuoCGtbNyFtcSYLhIgARJwJxDrfo7YP/30U+TLIhoq6H5PAc2dI31JIF4EvOokRe14UeZx4kHA/ozo3KVTWpqtsXPSddMuoCG8a7cu6oUe4c2vaK5eVvV+FNA0Ca7TgQA+aMGoP6512CWDWR7MxpjdBZPIaUEMs3X26nW7rxFJ6zesl+jx1qJli+yeOkf7QbCaOXNmZKIxTLq1fPmyHB0z1s5pK6DFynC6+usHiFNAQ37ZuEvXUme+SIAE0pGA1/0c+Z0xY0bkxQB2bTDEVe8T9Je/dCwP5okEdP1ya2PZBQuK2rxWgiaAyXV6974jRwayg85DVs6v66ZTQEMvPD0kDXHQs0YvFNA0Ca5TmQDMeEAs0+YUIJjHc2ZMtC21TUFMPvLY44+pWSHDyAziXb16F6u2cNFiReQzE5/JJJrHO80U0OJNNKDj6QcIG3cBFQBPSwIkQAJxIuB1P9enwL1ex9MzTGObApomxDUJxI+ArmtubSychaJ2/FjzSCSQFQK6bjoFNBwDtq8haiMOJt/ZuHGjOjQFtKwQZtywEYB4M2fObHlOmdLq2q5Tp3bCBHN9rjJlz1HnqlCxvFywYH5okOzatUt273GDShvqer9+fWPOvhvPRFNAiyfNAI+lHyBs3AVYCDw1CZAACcSBgOl+jlNggg/YdtFx9ZoCWhwKgIcgAQcBXb9itbEQnaK2Axo3SSAJBHTddBPQcHrYf7PHwdA2CmhJKBieIiEEPv7448ismZgoER9vIOYkekFvt1EPjZKnFMiv6tPlzS8PdGIv2Gt7+JGHI/baMEw7mRMYUEBL9BWXpOPrhwMbd0kCztOQAAmQQIII+Lmf49R2G5d6HwpoCSoUHjZXE9D1y6uNRVE7V18izHxABHTdjCWg4UUbPXR0vJt73kQBLaCy4mmzTwDPl9tuu1VNjoHelIMHPyB/++237B8wm3vae3zBPtodd/SSe/fudT2arnNYT5061TWO09MkbkO4evPNN2S5885VdRozhs6fP895mIRvU0BLOOLknEBfpGzcJYc3z0ICJEACiSLg536uz62n6Nb7UEDTZLgmgfgR0PXLq42Fs1HUjh9zHokE/BDQdTOWgIZjbNmyRcKGE+Ief0Je2b7D9RFB7aHRD/k5DeOQQCAEYNNwwhMTItcv2nw7d+4MJC32k27YsEFNGIA6hbq1Zu0ae7By67qJdaFTC/qaCdMkoGmTJTje2HFj5cGDB6POmwyPVBfQjgIkwUVkTNesKLRufY2Y+dLMmEReeeUVkfHgyBR+3333i/szflxIgARIgASCJ+D3fo6UZsyWJC6scoHI+AKoEs77efDlxxSkH4Gs1Em0sdDW0gvrpCbBNQnEn4Cum+XLlxcff/RJzBM8//zzoseN3aPChw8fIQb0HxDlTw8SCJrA0qVLRN9+fcWmTZtE1apVxZgxj4q6deoGnazI+SHBZNhiy0jXGPHQ6NHi4roXR8Lg0HVTe9apXUcsXfqOOOaYY7RX1DpjSKro0rWz8nermxkfsUShQgXFkMFDRZEiRaL2T5aHX/nJK55bmNPPvm1y63A/awpo/10p+iI1CWiIzsZdsqoXz0MCJEACWScwdNhQtVP588uLa665xniAFSuWixUrV6p49evXF/Xr1TfuwwgkQAL+CWSljUVR2z9XxiSBnBLQddMkoOE8bdu1FXPnzsl0SreX9EwRuEECSSawdetW0X9Af5ExVFEULVpUPDhsuOjUqZM4+uijk5ySnJ1O1037UQbeO1AMHjzE7pXJbRLQMkUOcEOLVKYkeMVzC3P62bdNbh3uZ00B7b+S0xepHwGNjTvT5c5wEiABEiABEiABEjhCgKI2rwQSCCcB/f7jR0Dbt2+fqFGzusgYAhfJDAW0CAo6Aibw66+/ioceGiUeHfuoSkmf3n3E3XffI/LlyxdwyrJ3el038+fPLzKGooqMiQjE8ccfL5YsWSpq1azlelAKaJkHVmoxDLBMbh3uZ00B7b/Lj40713pITxIgARIgARIgARIgARIggTQkoF/S/QhoyP7ChQvE1a2uFocPH1Y0KKCl4UWRYlnKsKclIBzdO/AeZZajZcurxOiHRovSpUunWE4yJ9deN9u37yAGDrxXRShbtqx47933RYECBTLvkLFFAY0CWtRFQQ8SIAESIAESIAESIAESIAESIIGcE9AdCAoXLix63tzT1wHxkr5121YVt1GjRgK2mbiQQBAEMozvi759+oi169aKSpUqiTGPjBGXXNIwiKTE/Zx2AW3jhg9FkyaNxcpVR8yNdO7cWTw76bmoc1JAo4AWdVHQgwRIgARIgARIgARIgARIgARIgARIIHcS2LVrlxg46F4xbdo0ceqpp4qhQ4eJG7rd4GlgP9VI2QU0TPDx7bffqiHUe/bsEUcddZSa9LBVq9aZskUBjQJapguCGyRAAiRAAiRAAiRAAiRAAiRAAiRAArmPwMGDB8X4x8aLESOGi7/++kvcduttYtCg+1yHM6Y6HaeAhvxAIOvarYuy51WwYEGxbu16UaJEiUhWKaBRQItcDHSQAAmQAAmQAAmQAAmQAAmQAAmQAAnkPgKwdVa1WhXx+eefi2bNLhcPj35YlCtXLm1BuAloyGy3G7qqnndwN216mXj9tdcjPe8ooFFAw3XBhQRIgARIgARIgARIgARIgARIgARIIJcSwOyId999l2jYsKESjtIdQywB7cCBA6J6jWpi+/btCsGIESNF/zv7KzcFNApo6V4vmD8SIAESIAESIAESyDUEFiyYL1atWpVh5PkS0bhxk5j5nj9/nli9erWAgfJGjS6NGY8BJEACJEACJJCOBGIJaMjru++9m/FsbCj++ecfkTdvXrFq5WpRpUoVzsKZIbLaF4iuejG5dbif9VEZkawj6zNwTQIkQAIkQAIkQAIkQAJxIjBr1ixxffvrlO0WGECeMf1F0aZNm6ijT506VXTvcYPyP+aYY8TsWbNF8+ZXRMWjBwmQAAmQAAmkKwEvAQ15fnD4g2LIkMEq++XLlxcfvL9GzJkzR3Tp2ln5DR8+QgzoP0C5w/bnV37yiucW5vSzb5vcOtzPmgJa2K4opocESIAESIAESIAE0oxAq9atxJtvvhHJVZMmTcW8t+ZFtrWjQYP66uu63r722mvFtBem602uSYAESIAESCDtCZgENEyogF5oa9auUSy6d+8u6ta5mAKa7crQYhi8TG4d7mdNAc0GmU4SIAESIAESIAESIIH4ExgwoL8YO25s5MC9bu8lxox5NLKtHTfdfKOYPHmy3hSDBg4SDzwwOLJNBwmQAAmQAAmkOwGTgIb8f/XVV6J2nYvE/v37xbHHHitat24tXn75ZYWGPdDMohlA+RHMnPEooKlLjH8kQAIkQAIkQAIkQAKJInDo0CEBcWz58uUZ9s8aiycmPCmOO+64qNPhq3qPG7srW2lNmzYVEx5/Qr0YREWkBwmQAAmQAAmkKQE/Ahqy/vzzz6tnphMDBTRLHAMbLZTFcutwP2sKaM6rjdskQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAABvwIakta2XVsxd+6cTKmkgGYWzQDMj2DmjEcBLdOlxg0SIAESIAESIAESIIF4E9i7d6+YNXuWWLBggfj+++8ihy9atJioV6+e6NSxkyhatGjEnw4SIAESIAESyK0EsiKg7du3T9SoWV3s3LkzgosCmiWOAYoWymK5dbifNQW0yGVGBwmQAAmQAAmQAAmQQDwJ/P333+KRMY+IUaNGipNOOiljRs3monTpcyKn+Obrr8Wbb70pfvnlF3HzTTeLYcMeFHnz5o2E00ECJEACJEACuY1AVgQ0sFm4cIG4utXV4vDhwwoVBTSzaAZQfgQzZzwKaOoS4x8JkAAJkAAJkAAJkEA8CcCwccuWLcSmzZvEfffdrwSyPHnyRJ3i33//Fa+88oroP+BOUaRIEbFo4dvitNNOi4pHDxIgARIgARLIDQSGDhuqslm4cGHR8+aevrI8Y8YMsXXbVhW3UaNGok7tOr72S3YkLVqZzusVzy3M6WffNrl1uJ81BTRTyTGcBEiABEiABEiABEggSwQwaUC9eheLA78eEHPnvCbKlStn3H/37t1KcDv09yGxZPFSUahQIeM+jEACJEACJEACJJA6BLRIZUqxVzy3MKeffdvk1uF+1hTQTCXHcBIgARIgARIgARIggSwRuOOOXsrm2fJlK0TZsmV974tea9VrVBMNGzYUE5+Z5Hs/RiQBEiABEiABEgg/AS1SmVLqFc8tzOln3za5dbifNQU0U8kxnARIgARIgARIgARIwDeBLVu2iEqVK4qXXnxJtGrV2vd+OuKiRQtFi4yhn+vWrheVK1fW3lyTAAmQAAmQAAmkOAEtUpmy4RXPLczpZ982uXW4nzUFNFPJMZwESIAESIAESIAESMA3gb59+4gVK1eIDes3+t7HHhEN2AYN6ovzy58vnn7qGXsQ3SRAAiRAAiRAAilMQItUpix4xXMLc/rZt01uHe5nTQHNVHIMJwESIAESIAESIAES8E2g3Hnnim7dbhB3DbjL9z7OiE8+9aQYOXKE2Lnja3H00Uc7g7lNAiRAAiRAAiSQggS0SGVKulc8tzCnn33b5NbhftYU0Ewlx3ASIAESIAESIAESIAHfBI7Lc6x44/U3RLNml/vexxlxzdo1om7dOuKnH/eIAgUKOIO5TQIkQAIkQAIkkIIEtEhlSrpXPLcwp5992+TW4X7WFNBMJcdwEiABEiABEiABEiAB3wQgoM17a55o0qSp2gfbfpe/Dx1WUb/66itRvsL5YvOmL0SZMmX87s54JEACJEACJEACISagRSpTEr3iuYU5/ezbJrcO97OmgGYqOYaTAAmQAAmQAAmQAAn4JhAPAW3V6lUZM3FeIvbu+Vnkz5/f97kZkQRIgARIgARIILwEtEhlSqFXPLcwp5992+TW4X7WFNBMJcdwEiABEiABEiABEiAB3wRKn1NK9Op1h+h9R2/f+zgjTnp2knjggfvF99/tcgZxmwRIgARIgARIIEUJaJHKlHyveG5hTj/7tsmtw/2sKaCZSo7hJEACJEACJEACJEACvgl07tJJ/PjjT2LB/AW+93FGbNuurZo8YOZLM51B3CYBEiABEiABEkhRAlqkMiXfK55bmNPPvm1y63A/awpoppJjOAmQAAmQAAmQAAmQgG8CS5YsFs2vaC7WrV0vKleu7Hs/HXHLli2iUuWKYs7sOaJ58yu0N9ckQAIkQAIkQAIpTkCLVKZseMVzC3P62bdNbh3uZ00BzVRyDCcBEiABEiABEiABEvBNAA3QJk2biH///Vcsfnux6knme+eMiFddfZX4/vvvxNo167KyG+OSAAmQAAmQAAmEnIAWqUzJ9IrnFub0s2+b3Drcz5oCmqnkGE4CJEACJEACJEACJJAlAphF838X1RJt2rQRTz35tDjqqKN87T9w4L3iiSefEMuXrRAXXnihr30YiQRIgARIgARIIDUIaJHKlFqveG5hTj/7tsmtw/2sKaCZSo7hJEACJEACJEACJEACWSawfsN6cdllTUX16jUyRLSnRKlSpWIeY8+ePaJvvz5i1qxZ4vkpU0Xbtm1jxmUACZAACZAACZBAahLQIpUp9V7x3MKcfvZtk1uH+1lTQDOVHMNJgARIgARIgARIgASyRQD2zDp26iA2b94s2rdvL1pc2UKUL19BFC9eXOzevVt88snHYtGiReK5yc+Js88+W0x9/gVRtWrVbJ2LO5EACZAACZAACYSbgBapTKn0iucW5vSzb5vcOtzPmgKaqeQYTgIkQAIkQAIkQAIkkG0C//zzj5gxY4aYPmO6WLlyhcB23rx5xaFDh9TQzmpVq4kuXbuKLp27iDx58mT7PNyRBEiABEiABEgg3AS0SGVKpVc8tzCnn33b5NbhftYU0Ewlx3ASIAESIAESIAESIIG4EPjjjz/E9u3bM37bRMmSpTJ+JcXJJ58cl2PzICRAAiRAAiRAAuEmoEUqUyq94rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M+aApqp5BhOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQIwJapDIdxCueW5jTz75tcutwP2sKaKaSYzgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECOCGiRynQQr3huYU4/+7bJrcP9rCmgmUqO4SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjkioEUq00G84rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M+aApqp5BhOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQIwJapDIdxCueW5jTz75tcutwP2sKaKaSYzgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECOCGiRynQQr3huYU4/+7bJrcP9rCmgmUqO4SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjkioEUq00G84rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M+aApqp5BhOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQIwJapDIdxCueW5jTz75tcutwP2sKaKaSYzgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECOCGiRynQQr3huYU4/+7bJrcP9rCmgmUqO4SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjkioEUq00G84rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M+aApqp5BhOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQIwJapDIdxCueW5jTz75tcutwP2sKaKaSYzgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECOCGiRynQQr3huYU4/+7bJrcP9rCmgmUqO4SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjkioEUq00G84rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M+aApqp5BhOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQIwJapDIdxCueW5jTz75tcutwP2sKaKaSYzgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECOCGiRynQQr3huYU4/+7bJrcP9rCmgmUqO4SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjkioEUq00G84rmFOf3s2ya3DvezpoBmKjmGkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5IiAFqlMB/GK5xbm9LNvm9w63M/6/wEydt4zkXt9KAAAAABJRU5ErkJggg== />
The lone pair on the ring nitrogen atoms cannot resonate into the ring and therefore they should be more basic.

Question 4

Draw all reasonable structures, including their resonance forms, to indicate the possible position of the proton of HCl in thiamine chloride hydrochloride. Explain which of the structures you have drawn is most reasonable.

Question 5

IF7d9EPHczJYwWXLo5MelVZCBIW4ZBDmNRIloOvmmWedISFgxQt2h43jmx/vIohDiKNvv1vkoUOH4l1eaSFXtbtKnYP25aTJkySsyBINEL4wCg/fnYgfo/MwSs+NAFcYzZo3U+nAKDFYB4YPS0W68G2Av5kzZyaUTLg40+fOmjUroXMTPTjQQhxgAKCuFOZlEIQ4XdgwHbXqqaUQpwkZSz98NOBhohv+AwbcZvlwQY7efvstCYG5YqUK8siRI0YmXV7T9SyRHog77hgaqqde9n/nMtpAR6/vm1gf/RpA125dQvcLzvOzEGcWoTWDaH4pKMTpO4BLJwjo+zFenQyaOB7OVr+PKcSFk+FvtwjYqZuot/q4oLpy0C6HNm7aGFEUFOIikHCDAwR0ncMSvrL//vvvmLHGE+LwTfjss89mGQW3bdu2mNfEzl9++UXedded6jsRvsVhsPPDDz/EPS/eAXgPjh49SsJfPfKIofDhlmjxrpHd/dA7bunbR8ULYxT4sYvWcZ3dOJw+L/BCHIBe1+m60MtIV5AgCXHRbhoKcdZk/PDRgAd3l66d1X2LxkS0MH/+fHXM5ZfXt+ytj3ZeKrfrOmZHiMMLZs6cOaHJVeArzkpUTmV6eW1vEND3TbyPfqQWL2M4SNfn+FmIQy+n9vuJ/MA/hVXPHvJNIQ4UGJwioOuXnToZJHE8nC+FuHAi/O02ATt10w8dzznl+MILL6h2wIaNGyIuRSEuAgk3OEBA1029jNc+jSfE7dy5U93jFxUvJl9++eWo7UOdNXw/4rtK+95u2qyp/Pjjj/XupC0x5Fu/92H9N2LEPUr8S1oEpgvpSSn05BF9bumtvgNMh/h2NS2EODgWLF2mVOijDZWDQpxv79moCdcPvaB8NEDl16a34Q4ozRCemPqEurfbtW8n//zzT/MuV9Z1OaDOPfLoI1H/brvtVonZL/XxsO6DeTFDehLQZuCvvmrtFD2cyrp1a0Om4+vWrwvf7avfGF6Anj343YhVhynE+apYfZ9Y/Wy2804NkjgeXnAU4sKJ8LfbBOzWTT90POeEJYW4nNDjuakgoOumXmIoaSwLtnhCHDpmYfH522+/xU0ufAxr//iYyGHRooVxhbu4F41zANKGtinye2GxC5QIGM8KMM4lQ7uRdzzDSpUuqa7fqFHDmCxDJ/poJS2EOJQHnBTiQ19XDApxPrpLbSZVl22QPhrg/wJT0MOsONaQTcyAg/xjdpto1jQ2McY9DA4+9+7dqxxYwtfA1CenZjlHl0MiSzjbfOONlVmu4+YPvETctszDkMUvvvjCTQyM22MEKMR5rEACnpx0FsfNRUshzkyD614goNtXdtq72mpFnxPPQscL+bObBgpxdknZOw5uMWB95FbABHTokP/111/dSkKO49X1DBNw6fU6dWpH9csWT4izk6CDBw+GZjeF1Rg0DieHbOKbCX7Yzr/gPJXnunUvk++9/56dpEc9BqIiRlaBYclSJSRGgKX6+zZqYlK4w7dCnG4gPvX0U7bxwJeAPg+O+IIe0m1oqi7boFnUwNIAsymedfaZ8p1337G8bfFw0lNMQ5RLRoAQBXNm9EaALYbKVq9RTaVDv1ywrFylUpaHo96HlwFePuY/zPaq90MYv/vuuyQsm9wOeIns2LFDiYrde9wYSqNbjQGzA//SpUvJQYMGysWLF9lyzOo2S8afOgLpLsTB54mbYc2a1fLNN1dFbVC7mTbGnToCFOJSx5ZXzh4B3Y6yI8QF2VqVQlz27h99Ft6pKzJmhRw+fJhskTHrJO6r4XcO17sdXxa76MJQ+7tV65ZqIg60h60m43A8cTYjNNdN+E/Tv++//z7LK+REiAOXyVMmy/wF8ql48B2I+u5WgPGI9kuHfON76ttvv00oOd988406D+fnyXu2fGDcA64bRiSUgQQP9q0Ql2A+0/LwdBPiglzIX375pfKJVbhIISUYWeUVQ9owPBUPLwxXtRvgRwTCNJyBDht2h7zyqislTJr1ywNLiGYYRgp/i/feO1JC1P5g6weW/gD0eVY+4rSZsX5pwBIOs9+4ETDbLERb+BoAV51u8xIzL7sR8DIzpwMWkfp3g4ZXqBcThmP6qXHiBsegxZluQhwacBDq4XukePHMmbrwLHQjwFJA10HMPAbn5xhKTKtVN0rD2TgpxDnLm7HFJxDUjuf4Oc96BIW4rDzi/YKV1OYtm5V407BRAzXaRr/X9LJJ0ybxLpOy/QMHDgi9Z83t3kKFCspeN/WUcNMDocbLQXOESG4Wwc8483S5ffv2iKRnV4hbteoNWaFiecWrYcMGtmZojYg8RRvw7XT1NVertNkV0zD0dtSo+0OTQPTo2T1hES9F2UnpZSnEpRSvuxenEGePP4QoDLf0eoCZbt5z8sgSJYtHfRFhNhtM3IAXASzZdIDF1759+9TwT/Se9OvfV2Ksvdl0GucULFRAnX9z75uUzyoMh8UDNZbfKh2HXuqXkJUQp4959713Q5Z1EMGc+JiFr8ilS5dI5A1OT3U6zS97vQ1LiI1uhuXLl4XSaE6XOb2YNQgvO5iho3GFcg5a+PTTTyUahgcOHIjIGnxTtGnbxjMTlUQkMMkbgi7Efffdd3LBgldVj2q9+vUsPxLmvTIvyVTtXQ6dCHrYhbk+Yv3S8pfKIUMGy5deeslTM1jbyxmPikeAQlxsQmg/ue3K4d2M0QJvZHyYBvEdGJt+eu+lEBe7/FEfMLIFbcR69epmcdEE32Xmdxl+lyhZwtWhqSdOnFCjbMztXJ1G87ZatWupdy6GK8LHrpeCTq+2VoWbGb0NE3OFf08lKsRhhlItcnl9yObq1W+GfIHDzxuMH8KHl+IexeQS2hoS9ymsINMlUIgLcElTiDMKFw3F8Mqv9xYpWliZZevfXl7Cj1ru03OpFxWEJatw5MgR1UuCl1ady+ooH3N6mmn9MsADsXWb1hIfGNOmT5OwroKPgWiMrOKJtk3HEUuIw7mzZs0KvZwqVqogjx07Fu2S2dqOXjNY+cHirUrVKqG4wMX8Qtfp1Us0RipUKO96gx5lAS6x0oo0m/fjpdy33y1KEIDFXxACG9pGKQZNiIOVGcR+WLzVrXdZqI7quhi+xBBtN4O5wRyeNv0bz+crMvyaIE/4AErGM9XNPFvFDVEcHT5W1sz4KMK+WM6pra7p5W0U4iJLB+9rdBYNGHCbLF4i01p12bJlkQc6sAXtO13/0NZpljFLIDrS0AYOYv1zAKlvomD7IGtRQdRAe37sA2OVWFOocMFQ3cC7SdeTaEu0md0OM2bMiJtOc7sX+bqq3VVyzNgxGS5cFrvedtdstRAHntd0uCaUJ7QNzMHcroCla7zQomULXw3ZhPAIX+L6XmzcuJH88MMPVTYx2zHcF4EZhDg8t9OtMyWQQhwsh+bOnWt5L2Of25YulglLwUYKcQZUPLhu6dvH2GBaQyMS1mF+CbrhgTSH96zoPDzxxOPqwQaLKQyhgrkvpr2GWbSdmXf0dbKz1C+heEIcrt2zV4/Qywm+DZIVIFLqdPh9aW5wJJqXo0ePJgupa9fR9zte2OFh3PhxqpwxjXo6BL8LcZjkBZa6GN5es1bmLFv6no53n2NYB6yX3Q4tW7VM6NkCKzpYIKPdsWXLFreTn5T4129YrxhYtaXgsgBlOn3G9KTE5YWLUIiTykoGwhs6eipXrmRZB6ZMmeJaccHS3epZcsGF58tuN3SVsEpBZyNDsAiwfZC1PIueWyRUD3R9SLclRva4GTRvsxCHDirtIxv+vrUQhXQmKsRhdFOiftfc5KHjRvsNQ4+1JaaZB/znpfrbVKfDa8tACnHwY4Uhd1YBjgMhTqRDoBBnlDIUd/g9swqtWreKer9YHe+FbY9OelRZvVk9uDBEBJZRGPIJ6zing34J2RHiYBFjHia6bNnrSUkuesEbN2kU0SCJ97Gv0+6lpZ00Wx0DX3JBsAZgQ9uoEn4X4rxUr9xKixcmpzHuqOytUYgzuHXo2EH5bzW2BGMN/kfhgwhtjcuvuDzmkDbUJVikuGnJgLaQla/X8HdjuUsuVpNEvf32W64Pp03FnYIygPAI0TQdAtsHWUsZ97Vb7zYvxAvrOEyq5GbQHMxCHNKDTki9r0bN6qEhwIkKcW7mLRlxw91M+QqXKhbVq1dTlsvJuK5frxFIIS5Ww+jG7jcok06/Flgi6aYQZ9DSlldWfkyGDh2iHghesLYwUpz9NZik42H/5FNPZv8iOThTv2jsCHGIBuKbPgcCIsS5ZAaIkfBLcNttt8pLLr0kFJeO02oJ6xv4YXAzYGiXVdqwzfxxgaE4mJkJM0jjhe7mx1AqeLGhbVD1uxB35VVtI+5pO8NlotUDP21HLzh6gOHH0++BQpxRgrHam8ZR3l/DBEGwGoP1POop/NHq+mV+3+ht4Uv4KHU7YFhXeLrCf5ufN3jPN2veVE1utTrj490PvoLjMYYgiTzDZ2U6BLYPrEsZnbBwHQCf0PAnZrc+Y0IENwPSfU2HTCf/4XU3/Hf1GtWVqA7R+ddff3Uz2Vni1ukMF+JwkNUsqukmxIHDypUr1HNq4cLX8DOtA4W4ABc/hTijcOGoFA9Hszmw3gufCNiHmUP9HuAXDMJMlaqVow5bTXUe9UvIrhCH9GihFOdiiEkqw2effaYa3hDlYcKu04uZYfU6ll26dE5lMmJeGx8EF154QSg95g+hAgXyZ7zMO6rJNND7GYQP+1gw2NA26PhdiNM5wZB6PG/x0d+8RfMs1jbmOhi+vmLFcn0JV5YYAh3ubzM8jfiN+oqeXnwML1myOOn+L13JvClSCnEGjKAIcVb3cbpti+a+xCht769RiDPKKN1cVxg5j1yDEQL8sd51150S7Qhdt81tS71t586dkRdwaMv06dNDadPp0cuq1aoon5RwPeVldyQ6vVZCHAwN9KRP6BSAWJqOQhz8nYPTokULHbqzvBsNhTjvlk2OU0YhzkCI2TJR6eEnLTy8kzHbFvZhWmy/BwxJQF7eemuNa1lB/PhLRIiDLzNMIIHz4D/AqQ9uzNCE8sfwG/RUwWpFpx/Lbdu3ucIRMwbpdIBHg4ypySFaYAYipDmdAoU4o7SDIsQZOcpcg+N3WK3efvugkON33P/hHwnlM2YndUt4Rk99LZNfO+3nRNfTuhkzfU18eKKESOWl3vlw1sn4TSHOoBgUIQ7vQH0v62V4/dPb/b4Mr7vID979mCHe74FCnFGCFOIMFuFrmHAHM5TD/+XF5cpmqfslShYPP9yx33ArpZ8vxS4qpjrpZ86c6SufaDr9VkIcQEJI1MdUqlxRGYjo33Yma3CsMHIYEdpMuMfwTAoPFOIMIhTiDBaBW6MQZxTp7t271YMPDiHDA0QgPASHDx8WvstXvzdu2qjy0fHajq6mGy8S/OHlmUiAhYw+FzOquhEwjBUWLLDKu6xuHVeHqkyd+oRcu/ZtGW12XDf4uBEnhTiDelCFOCOHUvk1RI88yh1DasItVTERjRvh+++/DzWeIVDUv7yeHDlyhHzzzVWBs3iLx5dCnEEoKEKczhE+nuDD55577laz2ZmHcsYS5ubMmaMv4coSVrbhgoL+uDUv8TypV7+eGtKGj8Fkz9buSuZNkVKIM2BQiDNYxFpDnYcrFLg3yV8gX4bBwkuxDk/pPkwoh+G0+GZDuvwY9PMmmhCHPGGfPg4T6un1IAlxX3zxhcrXExnfMuGBQpxBhEKcwSJwaxTijCLFUL8zzzpDYiIPq4Bpk+Fs2K8BfsHwke4F32Z+Zch0e5MAhTijXNJBiDNym7mGITVwGn/nncPVsFA3hWmI4xhKgRnQ0jlQiDNKP2hCnJGzzLXff/9dopMPvnSrVK0SslKFKGcW5jA7Kaxs3Aj4YB96x9DQx6z+qNXLmjVrKGtb+CVCfoIcKMQZpUshzmDBNecI6OdOLCEOPsmtJpcJkhC3Y8cO9Uye8ljkbNoU4oz7kUKcwSJwaxTishZptepVJcyArUKLli1Ub6rVPj9sg/UZHv4jRtzjh+QyjSRgmwCFOANVOgpxRu655hUCFOKMkgi6EGfkNHMNPo7gxgM+Vs0znqP90adP7/DDHfkNdw364xfLC4tdIG+6uZeE/99vv/3WkTR4JRIKcUZJUIgzWHDNOQL6WRRLiENqzLOo6nMoxDlXTl6JiUKcV0oiBemgEJcVapeundUwJwxhCA/wk4DeXT/2lmK2M8zGh8Zn0H0ThZcbfwefAIU4o4wpxBksuOYeAQpxBvt0E+KMnGcOI8fkR+PGPaAckGPdrbBh4wY1nB2WJukcKMQZpU8hzmDBNecIaFEtnhCHFHXt1iVLJwKFOOfKySsxUYjzSkmkIB0U4rJCHTN2jHrgYdx6eJg+I3Omnk8++SR8l+d/w7cdHvwQLBhIIGgEKMQZJUohzmDBNfcIUIgz2KezEKcp+NWXk05/kJYU4ozSpBBnsOCacwQSEeLge7bouUVCYhyFOOfKySsxUYjzSkmkIB0U4rJCxax8eEBaTZesJzrAMX4KX375pbLyq5cxYx/8xDGQQNAIUIgzSpRCnMGCa+4RoBBnsKcQZ7DgmvsEKMQZZUAhzmDBNecIQEzDn93vyXXr1oYmqlu3fp1zCU1xTPQRZw8whTh7nHx5FIW4rMWGYRMQ4sZPGJ91R8YvzJaJfWMfGBuxz8sb2rVvp9L9/ub3vZxMpo0Esk2AQpyBjkKcwYJr7hGgEGewpxBnsOCa+wQoxBllQCHOYME1EnCaAIU4e8QpxNnj5MujKMRlLTY49M2V+zTZvceNWXf87xdm/ep2Q1fLfV7cqGed6dmrhxeTxzSRQFIIUIgzMFKIM1hwzT0CFOIM9hTiDBZcc58AhTijDCjEGSy4RgJOE6AQZ484hTh7nHx5FIW4yGIrX+FSiY9Zq9CseTNZs1YNq12e23by5ElZoWJ5eU6+vPLAgQOeSx8TRALJIkAhziBJIc5gwTX3CFCIM9hTiDNYcM19AhTijDKgEGew4BoJOE2AQpw94hTi7HHy5VEU4iKLreO1HWWevGdb+lMbNGhg1H2RV3J3y5THpqghqQ8+9KC7CWHsJJBiAhTiDMAU4gwWXHOPAIU4gz2FOIMF19wnQCHOKAMKcQYLrnmDwJ13DpcTHpzgjcSkOBUU4uwBphBnj5Mvj6IQF1lsI0eOUAIW2ISHZ6Y9o/bt378/fJenfv/www+yQMH8suzFZeTvv//uqbQxMSSQbAIU4gyiFOIMFlxzjwCFOIM9hTiDBdfcJ0AhzigDCnEGC655gwBGZTVq1NAbiUlxKijE2QNMIc4eJ18eRSEustjmzp2rxDb4VwsP+uNi1ao3wnd56nf//v1UHhYvXuSpdDExJJAKAhTiDKoU4gwWXHOPgH5XvvjiixGJ+GDrB+r9NH3G9Ih9ft0wePDtKk///e9/I7JAIS4CCTe4SIBCnAGfQpzBgmveIEAhLrMctI/zRYsWeqNgXEwFhTgX4ac6agpxkYS3bdumGtSTJk+K2Hn48GG177HHH4vY55UNH374oUpj8xbN5T///OOVZDEdJJAyAhTiDLQU4gwWXHOPAIU4gz2FOIMF19wnQCHOKAMKcQYLrnmDAIW4zHKgEGfcjxTiDBaBW6MQF1mk6NE+9bT/k7f07RO5M2PLeeefK//97/6W+9zeCOGtceNGaubXTz/91O3kMH4ScIRAuglxf/75p/zrr78s2VKIs8TCjQ4ToBBnAKcQZ7DgmvsEKMQZZUAhzmDBNW8QoBCXWQ4U4oz7kUKcwSJwaxTirIu0dJlSskGDKyx3NmnaRDZp0thyn9sbX331VSUiDhw4wO2kMH4ScIxALCEOTm8hrHvdr6MdWBDaX3nlFVmiZHFZt+5llqdQiLPEwo0OE6AQZwCnEGew4Jr7BCjEGWVAIc5gwTVvEKAQl1kOFOKM+5FCnMHCt2vRhihSiLMu0iuvulIWKlzQcmjnrFmzJCZ08Fo4fvy4LFmqhCxcpJA8cuSI15LH9JBAygjEEuL27t0r0diOZkGWskQl+cIfffSRsnaFqFj03CLy+eeft4yBQpwlFm50mIAdIW7GjBkOpyp10dFHXOrY8srJJUAhzuBJIc5gwTVvEKAQl1kOFOKM+zHthLjuPW6Uec/JYxDw8drff/8tZ8+eLS8qXkxiSuTwQCEunEjm7+HDhykrmoMHD1of4MGt7773rkrzk0896cHUMUkkkDoCsYS41MXqzJV//PFHNRT+tFynytyn55J33DFUHj16NGrkFOKiouEOBwnEEuIwk/eYsWPkoUOHHExRaqOCb1b4lbXq9KRFXGrZ8+qJEYgnxOG7IUghVvuAQlyQSjoYeaEQl1mOFOKM+znthDjM6IXhP34PGzdtlHXq1FbiDPyarVmzOiJLFOIikKgNM2fOVNzWrVtrfYBHt+7evVsGrRHlUdRMlocIxGpoeyiZCSUFfuCmPjlVWebCCq791e3ll19+GfcaNWvVkLVq14p7HA8ggVQSiCXEpTJeL16bQpwXSyV90xRLiINIXqRoYdmseTMZFD/DmLkZ71B8E4UHCnHhRPjbbQIU4jJLgEKccSemnRBnZN2faxiKdX3n69WL54wzT5f33HO3/Pnnny0zQyHOEot87/33FL+nn3na+gCHtv7xxx9y3rx58oYbu0k8nGEVg7/Tz8gtK1epJPv37ydXrXqD4ptD5cFovEfg66+/lpUqV1L1tV79unLfvn3eS2SCKVq79m1ZpWplladKlSvKN99cFfcKsMR57bUF8syzzlDiXdwTeAAJpJAAhTgDboeO16jh5MYWrpGAewRiCXF4j2BECNqZuXKfJgcNGih/+ukn9xKbhJiPHTumOrVOnDgRcTUKcRFIuMFlAhTiMguAQpxxIwZSiLv6mquVLy0jm/5fg9gG0Q0fYuj9gRgHUS5WoBBnTQcvbjCEAOaWhdmWD7bIi8uVDYlvWoSzWtaoWV1+/PHH1pnhVhIIIAHMbozhbWfnOUvV1Xz5z1FLPP/uu+9eiY8NvwU8jztd30nlA74eYREHy7h4Af7jMIkMnllwqzDo9kHxTuF+EkgZAXQg9ejZQ92PFSpWkN9//33K4vL6hT/77LOMmdbPU6KG19PK9KUHgVhCnCYAa7gWLVuoOgwLuWnTp/nez6rOm3lJIc5Mg+teIEAhLrMUKMQZd2PghLjt27fLPHnzqBdMEF4ucEL+7LPPyvMvOE/lqXadWnLDxg1GCUZZO3nypBw9ZrQ6p/3V7aIclb6btaCJD3x85MLHHmYlhcWNlR+YZJLauXOnzF8gX0iEa9qsqfI/s3r1mxLWMsuWvS7HTxifxUqu2EUXBmJmyGRy5LWCRwB1T88cCuGparUqqk4gp3juYWgmtsMv5ty5c1NeV5NBGKLi6NGj5FlnnxmyQrAz4coPP/wQ8h8H6wXMlnz48OFkJInXIIGECaBuLl68SJa9uIyqg5jwCPflOfnyyocmPiQh0KVLgG/HAQNuU/nPk/dseWP3G9Il68ynxwloIe72OB02qM9Lly6R5S65WNVndPja+bbwePazJI9CXBYc/OEBAhTiMguBQpxxMwZGiIPj/Vv69lEvFDQMz7/gfLVevUY16TdfYLp4IMog/fjwvLDYBWpiBjsWXBjOWLFSBXXepeUvkevXr9eX5PJ/BLZu3SoxNBWNlXr16koM8wVn/GHWwjZt28j7779Pvv760qT3+MMflI5r8pTJUa3yIKbqexrH4zwGEggqgW3btsmGDRuouoFe+memPRNhMaY7Js49r6g6rn79enLzls2eRIIPHYj7mO0Y9bd1m9by888/j5tW1Pspj02RBQrmV+c1b9E8MP584maeB3iSwCeffKL8SuE+RptixYrlKp1ffPGFvKrdVeo+hYX3kiWLfSGOZxcyhr/hnV2wUAGVZ7yf/TTpU3bzzfP8QQAW1o8++oi6N2E9bUdYg4D+SMY56BxG/e7arYuESwi/hz179oTcWuzYEf+96/f8Mv3+IEAhLrOcKMQZ96vvhTi8RB5+5GEJyyZtNQBrg3DLius6XRd3KKeBxd01OOWHA2C8FGFFAUHo119/jZuoXbt2yXbt26nz0GuN3mtwYIhPAA1sDBfFrKQ9e/VQ1mjgr/9ggYMygaUaLNey61fjl19+CQ23Qw9kvID7GyIs0gErPjuWNPGuyf0k4CUC+JDtc0tvdY9j5tAhQwbHrV8YXg5fN/CniLrR66ae8sCBA57JFoaS6+GkEC6WL19m61mMxkmFiuVVntJB2PBMgTEhlgTMVpn4UH900qPSyhfTypUrQu/MIArHaEehU+6SS8upuokOA3QcMJCAVwigXQqfo3gfQoTDuxTrXbp2tjWaAu/hvv1uUefAyvOBcQ9ITO7gt4BvpZEjR4Tc+MC3LDq3GEjACwQoxGWWAoU44270rRCHhhF6X/GxgpdNtMafGhaUMUQTvoYgZNx770hbopaByLm1o0ePymHD7gh9XMKH2f79++MmwPxRCmvABx960Jcv0LgZdfgAlAcaNzBvh99BPTwY9xv+cO+h93DS5Emq59GO36pvvvkmNCQVH+p2Anrd8RFUq3ZNuemdTXZO4TEk4HkC5k4U1CdYjO3YsSOhdGOmUd35gGffhAcnuP7sQ8cJfD3Cog3WM1bCRXgmYVl05VVXqucK8jHx4YlpNdQvnAd/u0sg3CrTjuWX+Rzc/xi6GYSh1BDV0b7EM6pEyeJq6Dw7ON29Pxm7QQAd92if4v40t//3ZbhZ0T5J0aE/atT9tnyrfvjhh7JJk8bqemXKlpaLFi201YlkpMidNYwWmjNnTqjjGm582F52pywYa3QCFOIy2VCIM+4RXwpxZkejeFHYsfyCoAXRBC8r+NvClNd2hnkaqFK3BnNyDJPEkEikD0MlMbNnvIBhWs8991yGs+Bz1Xk33dzLU1Yh8dLvt/1ofOM+WrDgVWWN07hxowx/hGcr9ig3fHxgtlOUw1NPP6Us7CA2mAN6GPGBjmMhDsPZMwMJpBMBbV2ifdMkYjEWjZN5OL7bHw/XdLhG9uvfV8KaKF6A2H/HHUND1gs3974p6UPh46WB+0nATADDTvGxgHdagwZXyK3btpp3x103W9HBj9wTU5/wpUXKoUOHVD3W72pMHoOOXQYS8AIBTOAG38baKrx3n5st2//r1q8LubgpXuIi+fLLL8cV1vCOxizdpcuUUs8BTOxgx62CW1zwvVS37mUqregwnzVrlme+79xiwni9SYBCXGa5UIgz7k9fCXHoXb3ttluViAHT6+xYP2zctFFZFmnB6/3N7xs0XFiDFRUckiM96G196aWX4r4kkUyz4/LLL6+vRB8Xkp/2UUJERY85JtSA1UC16lXV/YnyxB96KMNnlbv77rvUMWjgY0g1GlOYGZG97Gl/OwUeABrzrVq3UnUDVp6wJrVjMWYHDCxyHn/i8ZD/pmbNm0n4tvJiQCfK9BnTpfZ1d8UVl8sPtn7gxaQyTWlCANao8I2K95bdD/ZYaMyz/WLIHKzL/RC0pa72mdXthq6B8JnlB/ZMY3wC4R3wjRo1jDtMWr9vdGc/BHY77xt0HMMdC7634Ppn8ODbJTqPvBK+/fZb2b3HjeqZBT/PaFtDoGQgAa8SoBCXWTIU4ow71BdCHD6wHnv8sdAHFnx4fffdd0YuElyDJdzMmTNDlmQ5vV6C0Wc5HC81+AqDPwY7va2wyILPBzSW4bfMrnCXJVL+SCkBiKvrN6xXDnDhcyPcvx/uZwwlgBBn/oOlJvzQYQa6d99719b9kNKM8OIkkCQC8G04aNBA1ZjHswsWY7A4SUXAjIa33vrvUN3COrZ5JWTHQsEraWc6gkcA/k4xaRE+tBMZwmaHBDqXFi58LWRZg/cehtJ5Mei06llhObTNi6WU3mkyGxKUKl1STQaUSAcuvjeGDh2SsAU2vrfghxXvboh5mITIzXD8+HH1zaRHpMAK3avPFTc5MW7vEaAQl1kmFOKMe9PzQhwKSzuvhumxnSGbRvZir5lNu9Hjg54frzonhbgDHw9oKOsJHOz4JItNgHvdIoDGE4YjY3ieWYwzr8NaDg0MOIlmIAE/EoDFKCZAKVykkGrEYzj39u3bHckKrOGaNmuq4sUsh7CWgwjuVtiX4bPn+s7Xq/TgGT569ChbPnvcSi/jDTYB1E24UMAMxfjAxr2JezQVwWxZg6F0d911p6csV/BM0n6xOLQtFXcAr5kTAuYO+OyOBjLHv3PnTtn2yraq3qOdadcnKazoUE/gB9WNgHYzXMNAhMQzy0+Wtm7wYpzeI0AhLrNMKMQZ96ZnhTiz8+oLLjxfzp49O2Vj/jHbqHZ2Cp8I6MFNpJfJwJn8NaQDPh0wVAQvns5drpdfffVV8iPiFV0jgI8A+J+BHw4MhzGLcXodjSY0xhhIwC8E3nprjfKZiOcWGs5oQDv9XEV8cDYNv3FIR8VKFST8yUULOAZ/mNjHjm8sDLXV54weM9rysugwue++e1UHCo6FRTOf4ZaouNEhAmvWrJZVqlZW9271GtUkrDSdCLCswQgE1AMIXhiZ4KavXriNgG8tpIdD25y4AxhHIgTUZHMZHTbouME9Ch+iyZwd3OwP0uuzdJsnkYDvyalPTpXoTGAgAT8RoBCXWVoU4oy71nNCHIZJDBkyWJlO64bRL7/8YqQ4hWvm6b9hSQHfX24G9D7BlwNewBi+iuGODMEmgIYFBAAMT0XZa0e8uAfgS9CpuhBsysxdKgn85z//UUOscc9i6AiG3WMoiZsBFjmYTRrWBEhXj57dLZODffoPQkU8kSCeEIePB7gQwDVr1qqhfHtaRsyNJOAAAfMMi7CEmzZ9moT/KKcDfPNiUirUi3hDQHV9TKY4jucBfAzDhyuuz6FtTt8BjC8WgfAO+IYNG9jqGIp1zWj74KMVs3tjEjHUBXQIY0I8rwRM/gJXFkgbhs8PHDggELMxe4Uv0+EsgVhCHL7/giQuw+8s6u2Ux6ZEQKYQZyDxjBCHm++Zac+Ehkm41TBCOtDTgh4XWCP9+9/9Y/oXwk2Gv2Q2EtFLi54vXBfOvGfMmOFKY9m4TbjmFgH4ikNPpb7PMISAgQS8SAAiMZwlowMF9yucKMOZspeC9nXTvEVzy2TpeqaX0azc9MnxhDhYHqETBZO5uCF46HRymd4EzG44tNN1dHq6GSByv/DCC/LCYheo58WN3W+wFL51XcQyGeL4wYMHQxayHNrm5h3AuK0ImDvgYUk+f/58RyzJ9SzBqGda8IJvV7dCuECId7aXBEK3uDBefxOIJcRVrlJJvZsWL17kSJ1PNUktxMEtTHigEGcQ8YQQ9/bbb4VmDvVKwwgztA4YcJt6IcG/ECqGVUh2I3HevHlqJs3cp+eSw4bdIY8dO2YVLbf5lAAmb2h/dXs1PM1uFmAJqYeoNmnaxO5pPI4EHCGAD+pZs2apoWZ4Hibbl6cjmfhfJObnuf4g2bZtW9QkxBPiop7IHSTgAAGIvxCBzzv/XCV2tWzVUuKe9VLAZEYjR45QFqNWE1aF18mciuOwCoTfYQ5t89JdwLSYO+BhuT1u/DhXLMkTGQJqrptwH2QnvPjii6GOZYz8sAorViyXl5a/RB3n9SGzVunnNhKIRiCWEAdjJOgNqFd4V0PI8nOAT2a4Xfrmm28iskEhzkDiqhBnHsLkBWfaBhZjDT0wrdu0lmMfGGtsNK2ZX0RYz2kjEb6E2rVvJ+EjjyF4BEqWKhES1dAzbydgmIIW4uDPh4EEvELgnXffUUPL8OyDZcucOXMsrVq8kt546dDPc1gi6/U6dWpL9M5bBQpxVlS4zQsE0IEDa0zcx/iYxaQ/TvtoTAYHXQ/1EtY6FMeTQZbX8AKBP/74Q02WoIdJY3ZSWG67GfCcME+KAEsdK990uk5iiaGte/fujZvsWEIcRiTpSSTAw+4kEnEj5QEk4BECsYQ4JBFDsfv376fe2zDIgasuzHYctEAhzihRV4Q4DJPArFkYwgSB4dZb/x1z+KeRXO+tmV9EWGcj0Xtl5KUU3dK3T0hUGz58mK2kYaZgLcRhUhEGEnCbwNdffy273dBVNRYwLB8WLbBs8XvQz3PMIHntddeGxLhos8RRiPN7iQcv/fsyZj7tdH0nde8G4WNW10mK48G7V9M5RxC7lixZHHI9Ap/AGJbqpQDfrvDxCuu0zz77LCJpum7qJXzZxXPBEEuIQ3zobIZrHlgIMpBA0AiUu+Ri5f87Xr4wiR/qE+oW3n1Bc29CIc64AxwV4jCECbNkYbYs3FwYZuf2hAgGiuyt6RcQG4nZ45duZ+HhihmwIKxhIoYnpj4R04IIQ6ThzFoLccuXL0s3ZMyvhwhg6BhMzc/Oc5Z6hkOs2rNnj4dSmLOk6Oc5hDh8CBQ9t4jKJzqNUHfDA4W4cCL87RYBPcQTwjju45tu7mVpxeJW+rIbr7lOUhzPLkWe5yUCGGkDn2e4tzFK4pVXXgmEtSryE63TSvOPJcTpY7gkgaARwDBNTFqAOgKDnaVLl8St8xDrX3755dCEX/gWxCgUvwe4h6hXv55i8fAjD/s9OzlOv2NC3MZNG2Wt2jUVeDggfe21BXFvwhznzoELsJHoAOSARfHY44+FhDUIbHi4QpCDbw4MV8Xfho0bVIMGw/20CAdxgIEE3CCABgE+FkqULK6e4ZjBd+3at91ISkrjND/PERHeU3pbtepVI2a0ohCX0uLgxW0QQAcnhoTrSQ/qZzRwt3ywxcaZ/jhE1z+K4/4oL6YyOgHtexptOq/MKB49tfH36LqJYanID36jkw6zIkcLFOKikeH2oBJYteoN5ZcU9SN/gXxqckes252h+LfffpP33jsydB4mNvLaRGh2ys48aRTyjyHvX331lZ1TA31MyoU4QO7c5Xr1gA7Ciyf8bsDNhD82EsPJ8HcsAtNnTFeTcmiRLd4Ss/dG81MVKx7uI4GcEoA/Jm0iX6RoYTW7dZCmWDfzMT/P9XbM4K23jxhxj96slhTisuDgD4cJYFZtTI6C+7PYRRdKfORCmAtS0HVPd0RRHA9S6aZHXmANg87WQoULqrras1cPX35Ih5eWrpv4oMbEC/o3hrJG82tFIS6cIn8HlcCuXbuUz3fUi3z5z5Gw/oJPSD1Dsf7us+ueC6NPOnTsoOoZJnSZ8OAEdT2v89OjIfWkUfXq1Y0p1ns9P8lOX8qEOCi4MFHGMDzchDfc2M1y5oxkZ8jp6+kXDxuJTpP3f3xwyomZsfAhpYf66fsJy+IlLpKYZdXvw7f9X1Lpm4P58+er57d2GvvTTz8FGoauf/p5jsyi0aQbEHifwXJVBwpxmgSXThLALGRoU+F+DZKPRiuGVnWS4rgVKW7zIoHVq9+UlSpXVHX18svry81bNnsxmdlKk66bEOLgG65Jk8Yqn9gOP29WgUKcFRVuCxKBcMuvPrf0ViOdwvP40UcfyabNmqo6gwkrMXTVjsEFnikVK1VQ53l9IibzaEhY7b/wwguB6ywML9dEfyddiIPyiQftRcWLqZsEw+42vbMp0XT55nj9IjJ/uLGR6Jvi80xCMfQP1qP4sMcfhjAwkIDbBCA6oUHt92nU7XK0ep7jXAzL1fswE+Xvv/+uLkkhzi5ZHpcsAhh2qoeBBc1HoxUjXe/MbSyK41akuM1LBGAN0/7q9uq9AZcO8PWEdl6Qgq6bEOIQ0EGg/WXD2gfWq+GBQlw4Ef4OCgHoH7NmzQr5wW/UqKGlb2FzfvFMWLRooSx7cRn1rIA1KXyBx3tWaJ9zGOqKeti6TWu5c+dO86VdXd+/f7/s2q2LShs6CzG0NggTuqUCatKFOCi/uClgQYCJGYI2TCK8EPSLiI3EcDL8TQIkQAL+ImD1PNc5sHIUTyFO0+HSKQL42EU766231jgVpavxRKuTFMddLRZGHoWA2RoGgvnYB8ZKTHIUxKDrphbikEcIbRDhsK9wkUIRPqAoxAXxTmCe4CaiTp3a6r6HH/xXX301rphmpoYhqxMfnqiGsKLutGrdShllmI+xWken1C19+6h4MXJl9JjRVoc5tg3PutGjR4VGeV3X6Tq5d+9ex+L3Y0RJF+LgNBhDUo8dO+ZHHgmnWb+IzEIcLsJGYsIoeQIJkAAJuEog2vMcifrxxx9DPZ1o8GBYAYU4V4uLkacBgVh1kuJ4GtwAPsqi+R3Ro2f3QLrjMReHrptmIQ77e93UUwkD2N/2yrZq2Ko+j0KcJsFlEAigYwyTJ+Beh982uBs6fvx4trOGyfq0sIbZVQcOHGBrhNTWbVslLPDatW+X7bhzciIs+ObNmxea0A2Tm61btzYnl0ybc5MuxKUNuf9lVL+IwoU47GYjMd3uBuaXBEjAzwRiPc+Rr7lz54Y+MOD3B0N39Tlu90T6mTvTTgLRCOj6ZdXGMgsfFMejEeR2pwhgEqPbbx+UNo7Idd0MF+JgFaiH2uEYWProQCFOk+DSzwTgngSim3YTAeE9mTOZom2pfS5ikpfHn3hcYjiqFwNEwAYNrlBt4aLnFpHTpk/LIr57Mc1eShOFuByWhn4RsZGYQ5A8nQRIgARcJhDrea6Thme9Pk7PCI7fFOI0IS5JIHkEdF2zamMhForjyWPNK5FAIgR03QwX4nAN+AaHOI5jMMnR9u3b1aUpxCVCmMd6jQAsvxYufE2WLlNK3dv169dLmfCu4ypTtrSKq0LF8nLlyhWeQfL999/L3n1uVmlDXR86dEjU2ZI9k2gPJoRCXA4LRb+I2EjMIUieTgIkQAIuE4j3PEfyMJEKfN/oY/WSQpzLhcfoA0lA169obSxkmuJ4IIuemfI4AV03rYQ4JB3+8czHYMgehTiPFyqTF5XAJ598EprlFBNSohPICT/4sL578KEH5Tn58qr61KZtG1cnUIM/u4cfeTjkzw7Dz700UUTUAvToDgpxOSwY/ZJhIzGHIHk6CZAACbhMwM7zHEk0+wDV51CIc7nwGH0gCej6FauNRXE8kEXPTHmcgK6b0YQ4fLDDYkgf169/XwpxHi9TJi+SAN4vt912q5qEBNado0bdL3/77bfIA1O8xWyBBv9xgwYNlEeOHLGMVdc5LGfPnm15TPjGeCI5LPRef32pLHfJxapOY4bXFSuWh1+GvxMkQCEuQWDhh+ubnY3EcDL8TQIkQAL+ImDnea5zpKdm1+dQiNNkuCSB5BHQ9StWGwuxURxPHnNeiQTsENB1M5oQh2vs2rVLwscVjj39jNyy2w1dQ8LcQxMfshMNjyEBVwjA5+PUJ6eG7t8uXTtHzALsRsK2bdumJmZAnULd2rxlc0QydN3EskDB/LZmLo0nxGlXLLje5CmT5YkTJyLi5YbECVCIS5xZljP0zc5GYhYs/EECJEACviNg93mOjKF3Eo5p9TkU4nxX3EywDwjo+hWvjYWsUBz3QYEyiYEhoOtmLCEOmZ01a1boPanPwZJCXGBuhcBl5K231kjc17hPa9epJTdu2uipPMI6bcGCV2XdupfJDRs3RKTNXM+w3rBhg7gTKMQT4jpd30nCqvXQoUMR8XFD9gmcglMFQ7YJnJbrVHVux47Xinkvz4t5nYyeIDF//vzQMffee5+4L+OPgQRIgARIwH0CY8aOUYkof2l5ce2118ZN0Pr168T6DRvUcQ0bNhQNGzSMew4PIAESsE8gkTbWwYMHRdVqVUTGcB0VAdtY9jnzSBJIlICum+XLlxcff/RJzNMzPuLFokULsxwzbtx4MXzY8Czb+IME3CSwZ88eMfzO4WLp0iWiSJEiYtwD40X37t3Fv/71LzeTlXDcum6aTxxxzwgxatRo86Ys6xk+70TPXj3UNtbNLGhS+oNCXA7x6pvdjhDHRmIOYfN0EiABEiABEiCBtCFAcTxtipoZ9RkB/f1jR4g7evSoqFW7pti/f38ol/zYD6HgissEMny+iQcfnCAmTZ6kUjL49sHirrvuFnny5HE5ZdmLXtfNvHnziowhtiJjwgdx+umnizVr3hJ1atexvCiFOEssKd9IIS6HiNlIzCFAnk4CJEACJEACJEACJEACJOAbAvpj344Qh0y98cZKcU2Ha8Rff/2l8kghzjdFHdiEZgzxFC+99JK4+567BIxl2re/Wkx8aKIoVaqUr/Nsrpvdut0gRoy4R+WnbNmy4t133hP58uWLyB+FuAgkjmygEOcIZkZCAiRAAiRAAiRAAiRAAiRAAv4noA0RChcuLPr3628rQ/jY37N3jzq2adOmon69+rbO40EkkGwCWz7YIgbffrvAslKlSmLSo5NEo0aNkx2NK9czC3Hbt30oWrRoLjJ8yam09OjRQzw747mIdFGIi0DiyAYKcY5gZiQkQAIkQAIkQAIkQAIkQAIkQAIkQAJuEMiYaEuMGHmPeOGFF0TBggXFmDFjxc033Sz+7//+z43kpCROsxAH/43ffvutGhp++PBhccoppyif9h06dMwSN4W4LDgc+0EhzjHUjIgESIAESIAESIAESIAESIAESIAESMApAidOnBCPPf6YGD9+nPjjjz/EgNsGZAzZHGk5TNOpNKUqnnAhDvFAaOt1U0+BOTrz588vPtiyVRQvXjyUBApxIRSOrlCIcxQ3IyMBEiABEiABEiABEiABEiABEiABEkg1AfiCq16jmvj8889F69ZtxMMTHxblypVLdbSuXd9KiENibrq5l7IExHrLlq3EksVLQpaAFOJAxflAIc555oyRBEiABEiABEiABEiABEiABEiABEgghQRgBXbXXXeKJk2aKAEqhVF54tLRhLhffvlF1KxVQ+zbt0+lc/z4CWLYHcPUOoU4d4qOQpw73BkrCZAACZAACZAACZCADQIrV64QGzduFI0bNxbNm7eIesaKFcvFpk2bBBzBN23aLOpx3EECJEACJEACQSQQTYhDXt95952Md2MT8ffff4vcuXOLjRs2iWrVqqmhqz179VA4OKOxc3cFhTjnWDMmEiABEiABEiABEiCBBAgsWLBAdO3WRfm2gaPpuS++JK677rqIK8yePVv07nOz2g7H268teE20bXtlxHHcQAIkQAIkQAJBJRBLiEOeHxj3gBg9epTKfvny5cX7720WCxcuFBTiFBJH/1GIcxQ3IyMBEiABEiABEiABErBLoEPHDuL115eGDm/RoqVYvmx56LdeadSooert1787d+4sXpjzov7JJQmQAAmQAAkEnkA8IQ4TV8AqbvOWzYpF7969xeX1r6AQ58KdQSHOBeiMkgRIgARIgARIgARIID6B4cOHiclTJocOHDhgoHj00Umh33qlb79bxMyZM/VPMTJjRrz77x8V+s0VEiABEiABEgg6gXhCHPK/e/duUa9+XXHs2DFx6qmnio4dO4pXXnlFoeHQVOfuEApxzrFmTCRAAiRAAiRAAiRAAgkQOHnypIDItm7dugz/cM3Fk1OfEqeddlrEFdDL3+eW3sqXXMuWLcXUJ55UHxgRB3IDCZAACZAACQSUgB0hDll//vnn1TszHAOFuHAiqftNIS51bHllEiABEiABEiABEiABEiABEiABEiABEkg5AbtCHBLS6fpOYtGihVnSRCEuC46U/qAQl1K8vDgJkAAJkAAJkAAJkEB2CRw5ckQseG2BWLlypThw4LvQZYoWPVc0aNBAdL+xuyhatGhoO1dIgARIgARIIF0JJCLEHT16VNSqXVPs378/hItCXAhFylcoxKUcMSMgARIgARIgARIgARJIhMCff/4pHnn0EfHggxPEWWedlTEDaltRqlTp0CW++fpr8fqy18XPP/8s+vXtJ8aOfUDkzp07tJ8rJEACJEACJJBuBBIR4sDmjTdWims6XCP++usvhYpCnHN3DIU451gzJhIgARIgARIgARIggTgE4EC6fft2YsfOHeLee+9TQluuXLkizvrnn3/E/PnzxbDhd4giRYqIVW+8KQoVKhRxHDeQAAmQAAmQQDoQGDN2jMpm4cKFRf9+/W1lee7cuWLP3j3q2KZNm4r69erbOo8H5YwAhbic8ePZJEACJEACJEACJEACSSKAyRkaNLhC/PLrL2LRwsWiXLlyca986NAhJdyd/POkWLP6LVGgQIG45/AAEiABEiABEiABEnCLAIU4t8gzXhIgARIgARIgARIggSwEBg0aqHzCrVu7XpQtWzbLvlg/YEVXs1YN0aRJEzF92oxYh3IfCZAACZAACZAACbhKgEKcq/gZOQmQAAmQAAmQAAmQAAjs2rVLVKpcUbz80suiQ4eOCUNZteoN0S5jSIPkqIUAAAReSURBVOsHW7aKypUrJ3w+TyABEiABEiABEiABJwhQiHOCMuMgARIgARIgARIgARKISWDIkMFi/Yb1YtvW7TGPi7ZTSikaNWooLi1/qXjm6WnRDuN2EiABEiABEiABEnCVAIU4V/EzchIgARIgARIgARIgARAod8nF4qabbhZ3Dr8z20CeevopMWHCeLH/q6/Fv/71r2xfhyeSAAmQAAmQAAmQQKoIUIhLFVlelwRIgARIgARIgARIwDaB03KdKpYuWSpat25j+5zwAzdv2Swuv7y++PGHwyJfvnzhu/mbBEiABEiABEiABFwnQCHO9SJgAkiABEiABEiABEiABCDELV+2XLRo0VLBwG+74c+Tf6lDd+/eLcpXuFTs3PGFKFOmjN3TeRwJkAAJkAAJkAAJOEaAQpxjqBkRCZAACZAACZAACZBANALJEOI2btqYMXNqY3Hk8E8ib9680aLidhIgARIgARIgARJwjQCFONfQM2ISIAESIAESIAESIAFNoFTpkmLgwEHi9kG3600JL2c8O0Pcf/994sB33yd8Lk8gARIgARIgARIgAScIUIhzgjLjIAESIAESIAESIAESiEmgR8/u4ocffhQrV6yMeVysnZ2u76QmaZj38rxYh3EfCZAACZAACZAACbhGgEKca+gZMQmQAAmQAAmQAAmQgCawZs1q0fbKtuKDLVtF5cqV9Wbby127dolKlSuKha8tFG3bXmn7PB5IAiRAAiRAAiRAAk4SoBDnJG3GRQIkQAIkQAIkQAIkYElASilatGwh/vnnH7H6zdXKss3ywCgbr77manHgwHdiy+YPohzBzSRAAiRAAiRAAiTgPgEKce6XAVNAAiRAAiRAAiRAAiSQQQCznl5Wt4647rrrxNNPPSNOOeUUW1xGjLhHPPnUk2Ld2vWiatWqts7hQSRAAiRAAiRAAiTgBgEKcW5QZ5wkQAIkQAIkQAIkQAKWBLZu2ypatWopataslSHGPS1KlixpeRw2Hj58WAwZOlgsWLBAPD9rtujUqVPUY7mDBEiABEiABEiABLxAgEKcF0qBaSABEiABEiABEiABEggRgL+3G7vfIHbu3Cm6desm2l3VTpQvX0EUK1ZMHDp0SHzyycdi1apV4rmZz4mLLrpIzH5+jqhevXrofK6QAAmQAAmQAAmQgFcJUIjzaskwXSRAAiRAAiRAAiSQxgT+/vtvMXfuXPHi3BfFhg3rBX7nzp1bnDx5Ug1ZrVG9hujZq5fo2aOnyJUrVxqTYtZJgARIgARIgAT8RIBCnJ9Ki2klARIgARIgARIggTQkcPz4cbFv376Mv72iRImSGX8lxNlnn52GJJhlEiABEiABEiABvxOgEOf3EmT6SYAESIAESIAESIAESIAESIAESIAESIAEfEGAQpwviomJJAESIAESIAESIAESIAESIAESIAESIAES8DsBCnF+L0GmnwRIgARIgARIgARIgARIgARIgARIgARIwBcE/h8QANCBzkAipAAAAABJRU5ErkJggg== />

The lone pair on the ring nitrogen atoms cannot resonate into the ring and therefore they should be more basic.

Question 6

When 2-hydroxybenzaldehyde is reacted with two equivalents of dimedone, a product different from the dimethone structure shown in Equation E24.2 is obtained. The new compound consists of two dimedone units linked together by the aldehyde. The molecular formula of C23H26O4 suggests that it has lost water, but it is not a dimethone anhydride. Propose a structure for this molecule. Hint: Consider what the 2-hydroxy group of the starting aldehyde might do once it is part of the dimethone structure.

Question 7

A student accidentally used the 4:1 mixture of ethanol:water intended for Part II in Part I. What effect(s) might this mistake have on the outcome of the reaction in Part I?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

stallen

  • Sr. Member
  • ****
  • Posts: 336
Answer to Question 1


Answer to Question 2

The external amino group is the least likely of the three possible sites of protonation since the lone pair on that group can resonate with the aromatic ring.

Answer to Question 3



Answer to Question 4

The external amino group is the least likely of the three possible sites of protonation since the lone pair on that group can resonate with the aromatic ring.




tfester

  • Member
  • Posts: 534
Reply 2 on: Aug 23, 2018
YES! Correct, THANKS for helping me on my review


milbourne11

  • Member
  • Posts: 322
Reply 3 on: Yesterday
Excellent

 

Did you know?

In the United States, an estimated 50 million unnecessary antibiotics are prescribed for viral respiratory infections.

Did you know?

The first-known contraceptive was crocodile dung, used in Egypt in 2000 BC. Condoms were also reportedly used, made of animal bladders or intestines.

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

Did you know?

Persons who overdose with cardiac glycosides have a better chance of overall survival if they can survive the first 24 hours after the overdose.

Did you know?

The toxic levels for lithium carbonate are close to the therapeutic levels. Signs of toxicity include fine hand tremor, polyuria, mild thirst, nausea, general discomfort, diarrhea, vomiting, drowsiness, muscular weakness, lack of coordination, ataxia, giddiness, tinnitus, and blurred vision.

For a complete list of videos, visit our video library