Question 1
Refer to the information provided in Figure 6.1 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD6ASADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAplPooA+WvjZ+0j8UPhKNc1UfC3TZ/Cdlq1npVlqN/r5hmvnmdE85YUgfam58cv2r1X4X+MPHOrXOvWvjzwfZeEprG4SOyuLHVftttqKMud8bFEZCvTaUry3/AIKIazp+j/AKy+23UVt5vifR9hmbG7ZeRu//AI4j1xHipPAHiH9qD4kQ/G69sToEOj2E3hC31648nTXsnhf7bLBk7Gm877/8X3MUAfaskyR/fdU/3jUf2qIOq703P9z5vvV+a/wo8M6V8S/G3wF0rx213q9le2/iaDT7XWruVZ77R4Zk/s37Sm/5v49m/wC/srnbbw54V8Nfs4at460+5kTxV4W+Jv8AZmjas+oSvLp9mmpxolsnz/6ryd/ye9AH6C/D/wCIWueKvHHxB0PVdEt9OsPDl7DBY6jBd+cl9G8PmHd8o2On8S9t4r0iKZJk3IyuvqvNeCfti2thdfAye1l8TWXhOO+1Ox2X+o27y6fM/nI/k3nlf8sZtmxm6fPWF+w/rNvd+EvGFjB4b0fQV0zxBNBLP4XvpbzRb6QxRs81m7/cX++n9/NAH0sbmPeF8xNzfdG7rQk6uPkdX2/e21+YnxM8D+CP+FRftO+L7W5ceJfDfjSb+x9TXUZfP0x3e2f/AEb5/k3u83+//wAAru/H+jw/CPx5400n4PhtM1zW/hPNqcVlpdy8sl3fpOmy5RHf55vJd/n++9AH3+l1E7uqSq7J98Bvu0G4i3Kvmpvb7o3da+AbWD4X2Oq/AOX4M3kVz4x1DVLZdb/s+6ea5uNK8l/t76l8/wD6O/jrgdO8K+DfBf7LWj/E3RJdni3SviF9l0/WvtzvMlt/bLw/Zt+//U/Zv4P+B0AfZXxb/aYt/AfhLx7qegaONe1HwZqNhZ6jbXNx9mT/AEnyfnR8Nu2pOh6V6L8S/Glz4G+GnifxLp1lFrN9o+nzXi2Ulx5KTOke/Zv+bZX52/EPw74D8M6N+17ZsllpHiCbXrNLdPtGy5FnN9id3RP7m/e++vR/iT4e8JfBP4y+JtE8JNDoOha/8JNYvdQtUuGeG7uEf9zM+5/9bsd/n6vQB9l/Cbxx/wALK+GPhXxXLarp8+t6Xbai1ssvmeT50avs3fjWx4kvrnTfDuoXmmWkV/e29u8tvavL5Syuq/Km/wDhr4E+FHjjw1+z0/hfx34nilHhHxX8LNNto9UhSaaGO/s02TWbbPuPMjp/wNK+sP2cfAF34C/Zx8M6Hd2r22pvpjzXFs7M7RzTbpfL/wCA79v4UAdF8B/ifL8X/hH4U8X3djFpN5rdiLxrCObzvK/2d/8AFXf/AGqLZu3pt9d1fl14P8M+DLP4CfCS48BukXx+g8R2dmyW9039pxul46XkNym/5bZYvM+R/krd+KXjLwj4L/Zm/aU+HuoX9vpGv2vjC/utL0WeVkuhFNNDNDNEn39n333+xoA/Q3xjrVxoPhnVb+xt4r29t7WWa2s5Z/JWd0Tcqb/4elc/8EviW/xY+D3hHxpe2cWkSa7p8V41oJt6RM/8G/8Air5Cl1X4beLfiv8AF6X4wahp08tvpdjJ4Oj1i72Wz6U9nv8AOsufmd5t+90+f7lcb8Jb3wXf6J8I5viqj6h8L4vh1DbaT5ySy6fFrCTOl5HOq/8ALxs2bN/+3QB+lP2qHyfN81fLx97dxXK+KPiPo/hHxJ4T0S9ZmvPE13NaWQQfJvSF5m3/APAEr8yvAGuN4c0P4RaVqdlod18M9Zi1vUNOj8V6s9tps159sf7N9vfY++ZLbZshf/0Ouys/hz8OtI8Q/s43Gu+INI8VaJL4h16OXVx50Omw7086Gztnkf8A1KTPsT+/QB+mW/5fmqNLuF4vNWVTH/e3V80ftwauNI8PfD2HWLi4svh5eeKrSLxbdQs6ItjsfYkzp92FpvLDmvFPGtp8JtO8ceBtK8M3+PgZfeJ7lvFn2K7lfRk1L7H/AKHC7/cSHf8AfRH2b/v0AfoEtxHIiOrKyN91qEnVx8jq+3722vzH+MNv4XttD+O9p4Jvzb/Cmxfw/LYS2N6wsrfXftiCZLJ0f/nj99E+Xf6Gu8+L3hHwX8LPil428JeHPEf/AArrQvEfw3kn1Cayaa4RLn7aiJcuifP9x33v/c30AfaPxC+JejfDXws+v6rIz2Qu7ayBthvdnmmSFP8Ax966zz0/vp/33X5Y+IdI8Mah8HvHdhr3hrwiqeHtf8M3M2v+DL6WbQ7tJrpEd0R2/czeTvE3++ld/ofhT4Y6d8bPj1rGm2D+K9E8F6NpviPw94f0jVZnh877E/nPDsf777ESgD9ChdxSI7RMs23+FGrl/AHjGfxv4RttZutB1PwnLI0u7TNZVEuogkjpucK7jtu61+enwy1rw94Y+MXwI1rSfE3hGwt/FUNxY63ofhJHS1t7eWzd40vLl5n86beNm99j70eqvwi0Xwr460f9lfSNSuDqNrcax4q0y+tPtr/6RbedO6QzfP8AOm/Z9/79AH6NeOviJpHw/wBHstT1OVvs13fW2nxeUM75ppkhT/x9xXWbxX5heOPDPgi18H+OfDd8LSfwV4P+MGmw2UNxcOItJs7nyftMaNv+SHmT/wAfr9JvDMOl2/h3TYtD8kaOlui2n2dtyeTt+TZ+GKANmiiigAooooAKKKKAKl3YQXsey4ginT0lQPXBfG/xf4R+F/w31Pxd40srW70PRFSYpPbpMVJdUTZv/i5FekV+av8AwWc+My6H8O/Cvw2tJs3Ot3P9pXqDtbw8J/327/8AkOgD9FLP+ztUhstRgSCeN4ke3uQgPyNyu39KmGj2QiaP7FAYmbdsMS7fyr5i/wCCa/xk/wCFw/sp+Fzcz+fq/h8HQrzLfN+5/wBS3/fop+VfVtAFG8sbe/s5LWeCKe2lTY8Eqb0ZPTZRp+m2mlWcdrZW8NpbxD5IoU2Iv/ARV6igDP8A7Isdkiiyt9kh3OnlL89PTTrVJkmSCJJkTYjhRuVfSrtFAGRZeHNL026u7q102ztbq6/4+JoLdUeX/fI+9U/9j2PleR9it/J3b/L8tdm76VoUUAZ8miWEzs01lbzO33neJSTRJpNjM+6W0gkbbty8ak7a0KKAPIfFXwEtvG3je11XXPEWq33hmylgubTwX+5i01LmLlJn2IHm+b59jvs39q9bp9FAGTb+HtLs9Sn1ODTbSHUJh+9uY7dFmf8A3n6mm3Xh3StQvWu7jTrKe6ZPKeaa3V3Kf3N1bFFAGPceGdHu5bJ59LsZnsv+PdntkbyP9z+7Xm/xB+C/iDxF4pg13wp8Sta8CXC2n2OezsbO2ubOZN+/f5UyMEk6/PXsFFAHlnws+A3h74WeBLjwxGJPEcF3fTanfXOsokz3l3K++SZl27AT/srXob6PYtbpA1pb/Z4vuRmJdifhWhRQBSvLCC/tpLe4jS5glXa8Uq7kaq0fh3SodJ/suLS7RNN2bfsS26CHHpsxtrWooAy7XQdNtNOSwg0+0hs1+5bR26rGv/AOlTPptq83mNaxPJs2bzGv3P7lXqKAMix8OaVp2nCxtdNtLazzv+zQ26pH/wB8dKng0mytG3wWlvA+3b+7iVa0KKAMO08IaJYoFt9H0+BPN8/ZHaov7z+90+971dTSLKHYUsoE2fd2xKNtX6KAM86RZMkqm0tyknzOPKX5qtQwJCioiqiL91VqaigAooooAKKKKACim7xWfbaxZXVq11BdwTW0e7dNHKrom373zUAaVeefFzwboGteEtXvNT0TTNRuYrQos97aRzOi/wC89dZo3iPS/ENt9o0vUbTU7cNt86znSZN31Ws34mf8iJrf/XsaANHQfDGkeGoHi0fSbLSYpG3sllbpCrn6LWrWZr+v2HhfQdR1jVLlLPTdPt3ubm5k4SKNFLM/5V8tfAf47ePNf/aHm07xrF/ZXhfxz4f/ALf8HaZKpSa0ht5tjxy5/wCWrxSJM4/CgD67ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZQG3dKAH0UUUAfPH7TPxDePWPCvwt07xBH4Z1LxcZn1HWpLhIW07SoQPtMkbP/wAtn3pCn++X/gr5S0C60S3+A3hr4X6BqEaeHtd+MM2h3VrbXW9/7KN5I+x3379j7E+f+P8AGv0F8Y/DHwr49kgm1/w3pGuXNurLby6nYpc+V/33Xzn4Y/YStdE+F+ueHptW0mDxDca//wAJFpPiHSdES1m0+5WYTIu3cd8KP8gTpsP5AF+HSNP+FH7dXhjR/CthBoui+KfB12+o6Xp8Pk2zTWkyeTNsXC7tjule0fF/xVDofgzWo7iy1KZFtC7T2tm8yf8Ajlcr4D+DGvwfFmf4k+ONestd8Sx6T/YlhDpVk1taWVvv3yt87u7u7+v9wfh6L8TP+RE1v/r2NAHi/wC0jpusfG3TfAvgzRtKvdZ+H3ifUYZvE+saZcoiJpy/P5P39/7x/LD7P4N9ch8SPgJe+Bfj78FPFfgLQvEetppeo3MGs3N1qz3MNpYTQeU//HzN/f2P8n9yvdtT0u7+HeqXOuaHA15oty3n6no1unzq38dzbJ/f/vp/H/v/AH+60fWLLXdNtr/T7iO8srhN8M8PKMtAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j+0VPHafBHxpNcXc9nBFp0jvNbq7uB9E+f8A75r5i+E/je28B/ESDxL4gsfEkGvalb3d5rw/sa7h3wyzokM2yZ9iWNsmxE/j+f7lfVnxrfRk+FHib/hIFun0cWT+eun/APHyf7vk/wC3v27PevnnwD4W8ZeKPEd74b+LN34jstd1vSprTSL+eWxlT7CsiPc2/wDoybEuXTZvd/4fudDQB9hRvvQNT6hgiSGJET7qrtWpqACiiigArlviZ/yImt/9exrqa5b4mf8AIia3/wBexoA6f+CvNdV0m8+Hmp3Wv6DBLd6Ncv52q6NB95W/jubZP7/d0/j/AN+vTKbsFAFHR9Xstf0221DT7lLqxnTzIZ4W+V19a0K801TTL34e6pc69oNq95o1w/naposC/MG/jubZP7/d0/j/AN+u70bWLPX9Ntr+wuI7yyuF3wzw/cdfWgDQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDw79o3xfq2ieGNZ0yT4dzeLfCMumFtQv01mGx2F32eSu75933H31wvwb0bxT4a+Lujw+NdP8AEF3fXWnXkWm6h4j8Q2199miTy98MCW8KfO/7su7/AD/JX0R4403Q9Y8J6tY+JBbtoVxbvDem5fYhhbrlq4PwJ8GPDvw48WxajL4h17xBrktpJZaefEWrPdyW9sNjOluh/wCAb3+9x1xQB65T6ydd1y18O6JqGq6hJ5FlYwPc3Dbd2yNF3P8ApXnPhH406n4t1bSII/hp4s0zTNQy66tqUVskMSbHZGdEmdxvxj7n8dAHrlFMp9ABXLfEz/kRNb/69jXU1y3xM/5ETW/+vY0AdTRRRQA1+leb6tpl78O9Tudd0O3kvtGuX87VdGt1+cN/Hc2yf3/76fx/7/3/AEqmUAUtI1iy1/TbfULC4S7srhN8U0bZR1rQrzXU9JvPh5qVzrmhWzXmjXL+fqejW6fOr/x3Nsn9/wDvp/H/AL/3+60fWLLXdNtr/T7iO8srhN8M8PKMtAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeQftM+GvCuufCHXrrxVoi67YadbvMlt9pe3y/3fvp93+GvNfg/8O3+Fvxd0m18R+GPCltq+qaZcPpupeG7m8d7dEKedC6XDv8AL86fvU2fdwRzXsHxv8daR4L+HPiSW/i03U5hp8jjR9RuEhS7Rvkw+/8Ag5+b2zXkv7Pnw0/4V/47Se21DwFPb3tk8bJo17eXl+yLsZEhe4mfZCn9xf8AYoA7b9o/w1d6h4Xm1aCXxrepa2lxDJofhK6SD7ZvTP74P977mz5f79ed/CHT9Zg8W+BVt9M+LtlYRZFynivUIv7Otk+zP8jpne/z7ESvo3x5HfT+DNcj0ySeDUDp9x9nltV3TJN5Z2bP9r0r5r+Bnh/QP+E28L3EPwj1jS/ENlv+267deJIbx7GZ7Z973KJcu+9/ufOn8dAH1rT6ZT6ACuW+Jn/Iia3/ANexrqa5b4mf8iJrf/XsaAOpoplPoAKKKKAGum+vNtU0y8+HepXWu6HBJeaNcsZ9U0eBPnVv47m2T+//AH0/j6/f+/6XTKAKWj6vZa/p1vqFhcR3djOm+GaJso61oV5rqumXvw61G51zQrZrvRrlzPqujQ/fX+/c2yf3+7p/H/v/AH+60bWLLX9NttQ0+6jvLK4XzIZ4eUdaANCiiigAooooAKKK8i+L/wC1D8MPgJeWVl458X2Wh3t6u+G1k3vKydN+1clVoA9dorxD42/tIWPw2+FmheOPD2mr4707W9Qs9PsU0+9SL7T9pfZEyORj73FQR/tFap4Y8c+HPDnxD8EXPg6PxFdfYdK1mLUYr+xmvNuVtndQjxO/8G9Pn6UAe7UUyn0AFFFFABRRRQAUUUUAFFFFABRRRQB4l8XPEHwd0nxTI3xHstAGoWmkrdJfa9aQuv2fzWQJG7j5n35+Rf79XfA0fwXTxlZ/8IavgweJGhm8n+wfs32jyf4/9T/B9yr37Q9tZR/B/wATajc6HpuvzWVk88UOpWguYU/2yn91fv8A/AK8p+DlvY6F8XNF06w8Y6D8R0v9Jub1r2y0mxgm0n7nzo9snyRTb9mx/wC5QB9DeNtJvdZ8Ia1YaVdix1O6spobW6P/ACymdCiP+dfNXwj8Fiz+IHgj+zfhSfhndaFDNBrGryyW6HUyYXTyU8ly9zvfE29/7n9+voz4mzeV8OfE83mXUOzS7l99mP3yfuX+5/tV86/A74dvpHiDwJq03wh8HeH5/JaR9dsNa+0Xib7d/nRPL+dm/j+d+H/GgD61ooooAK5b4mf8iJrf/Xsa6muW+Jn/ACImt/8AXsaAOmp9FFABRRRQAUUUUAN2CvNtT0m9+H+qXWvaBby3ujXLmbVtFgHz7v47m2T+/wB3T+P/AH69Lpr9KAKOjavZ69pttf6fcx3dlcLvhmhOVdK0K811XSr3wDq1zr2g2r3ukXDmbVtFgX5y/wDHc2yf3+7p/H/v13WjaxZa/pttf6fcR3llcJvhmh+46+tAGhTK4X436zD4Z+DfjnWJ5JYY7HRLycyQSeW6bIXPyv8AwnjrX57WPimzk+D3wi0jwp478ZxfGHXmsN/ibU9Wv4dKhnfY8yTPN+5m+TeiQp9+gD9Q6/J7/go9+w38WPiX8e7jx34M0WXxdpWr29tA0MEqedZOibChVv4ON+73Nfq/HvCKGYMw+9UtAH5taP8ADab4A/D39lj4P+Odf0+LU5fGT+INQhnuV8m3SFJpkh3P/BvdF/369j+PXi+w/aO+KPw2+GvgW6h1/wDsTxJZ+JfEerae/nWmm29tl0R5k+TzZG+UJX09rvgHwz4qnSfW/D2lazOq7Fk1CyimdV/4GpxV3QvD2leGbL7JpGmWWkW33vJsbZIU/wC+FoA1KfRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHOeOvFcHgjwdrHiC4tLi/ttOt3uZLa2XdI6oOdorjvhp4k+FK3sNl4FvPCkN7rCG8a38Pm233G377v5PX7/U1o/HSzvb74SeLoNP06LV7qXT3RbKe3+0pIP4h5P8fy5+T+LpXgH7MvxB0jxN8SbfQdHOjeJLrRre7hv/ABDpmgpYnyv3L20zsqJ5bvueF4f+mOaAPqbxY+mxeGdXfWN/9kpaSm82bv8AU7Dv+5833c9K83+HHwU+EWiDwx4n8K+FdH06byUm0m9gj2TbHhP/ALI713fxAu3s/AniKaG0mvXh0+4dba2cpJLhG+RHX7re9fI/7PI8D6X428F6anh/wsPF8N3J5NzoGo3Nx+5lsHmS6RHf/fhm3/x0AfcNFMp9ABXLfEz/AJETW/8Ar2NdTXLfEz/kRNb/AOvY0AdTRRRQAUUUUAFFfOv7X37Y3hn9kTwzpuoaxYXGt6xqsjxafpds6o7bPvyO5+6nKdq8O1D/AIKJw/Fn9l7xR4z8ATL4O8baNqGn6fLZasiXKQ/aZkRH/wBpH+f5v9igD77or528IXXi3WPGei2+m/HnQPGBt2S41jRoNMsy8tt9xyjwvuT59lfRNADdgr4J/wCChP7Rnij9j3TtIb4d+XZX3jCW4kn+1wCW2t3j2F5oV6LK2/5v4T97rX3xXmvxu+APgj9oXwkPDfjnSF1XT0k82FkkaKWB/wC8jrypoA+AfgF+0V8Wv28f2cvip8NHttKvPGCwW0KaxcP9jhe0mf59+xH+cBD/AN9+1fSHj74NfFz49+FfD3gLxJpHhXwP4Ksrqwub6407UZb+8lS2dHWK2/cokP3AN9dl8OvgB4c/ZR02dvhvokx0CcrJrOmsxmu5tn/LzG7fO7oP+Wf8Q+583X3bR9Yste0y11DT7mO7srhPMhni+460AXo/uinUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHiX7RHxktPAPhnV9HsL7ULTxhPpj3Nh9h0m4vWQb9m/5I3QPw2wP6Vx/wLvkh+IdrZeEtf8AG/iPw1cafNPrD+L7WdUiudyeU6Sywx/O/wC83onyV6x8c9au/D/wg8YahYX8umXlvYu8V1Au+ZH/AOmf+2fup/tkV5l8HbJh8QdKnbQvizYv9km/feLtR+0WCfKnySJ5z/P/AHPxoA9v8b6tdaH4N13UtOihmvbGxmuYEmfYjOiFl3H+7mvj/wCEuq+DPhX4x0Hxnb/Ebw5r7+KkY+I2OmWdn9nLQvMJoXiRHRN42bH3799fbFzaw39tJbzxJNBKu143XcrrVaHQdNgtkt00+1SBE8tUWFdqp/doAtWtzFd28dxC4eGRFdZP7y1aqONEgj2quxFqSgArlviZ/wAiJrf/AF7GuprlviZ/yImt/wDXsaAOpooooAKKKKAPlr9uH9iqz/a/8OaKkOrjQPEWhu72N7JD5sLI/wB+J0/4Ahz7V8yWv7D8n7NHhXwX4dTRdb+JU2teLLDWPFd5pOlPNbRWFnvdIdnO753/AOB+lfqBTKAPn/4d+I/DsHxLsbPwr8FdW8MfbLN11HxJPoCaVDDEnzpD/fdmf+DFfQdMp9ABRRRQA1+leb6tpV74A1S517Qrd7vSLl/P1bRrcfPu/jubZP7/AHdP4/8Afr0qmFd3WgClo+sWWv6Zbahp9xHd2Vym+KaPlXStCvNdW0q98Aapc674ftWutIuX87VtFhX5/wDbubZP7/d0/j/367rRtYstf0221DT7qO8srhfMhnh5R1oA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKAOH+LWgy+JPhn4k0u2srzUZ7uyeFbWwuUtZpd39yV/kRv8AarxT4UaFr/hv4x+H7TXdK8UaTDNpd49u2t+Nf7YhldPJyiw/3/n3769A+Nd54ot9O1iLdoVl4E/svffavqmszadNbvvfftkiT5F27PnzXl37KFreeJvEt94qHw8OkeHRbPb6X4o1PW7y8ub1H2c20Nz88MLdd/yb6APrGn0UUAFFFFABXLfEz/kRNb/69jXU1y3xM/5ETW/+vY0AdTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADK851fSr34fapc65oEEl3pVy/n6ro0A+b/bubZP7/8AfT+Pr9/7/pNMoApaRrFlr+m22oafcx3dlcJvimjbKOvrWhXmmr6Ve+ANUudf0C1e80i5czatosCfPv8A+fm2T+//AH0/j/367jRtYstf0221DT7pLyyuE8yGaH7jrQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQB4L8Z/gNrnxg+IXh7VJvElrB4W0W386Hw5faaby2ub/fxcTJvTf5abdiN/HzXWaL4W+Iln4y0291Xxpp+qeH7eGeO40y30j7I7u+zyW3eY/3MPXpdPoAKKKKACiiigArlviZ/yImt/wDXsa6muW+Jn/Iia3/17GgDqaKKKACiiigAooooAKKKKACiiigAooooAKKKKAGV5xq2lXvgDVbrxBoFu97pFy5m1bRYE+bf/Hc2yf3/AO+n8f8Av16VTX6UAZ+j6zZa/plrqGn3CXVlcJvimjb5XrSrzXVdKvfAGq3Wv6BbS3ekXL+fq2iwD5t38dzbJ/z07un8f+/XdaNrFlr+m21/p9xHeWVwm+GaH7jr60AaFFMryDxZ+0v4S8NeK9Q8O2UGteL9Z0yPfqFl4Y0uW/ax/wCuzp8iP/sZ3+1AHsVFcR8L/ih4b+MPg+28S+FNQ/tHTJneEuYmheKZDteN43+ZHXn5TXb0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFct8Sf+RE1v/r3NcJ8Rvjff+HfiRpvgDwj4Zk8Y+LbjT31a5tWvVs7aytFk2eY8zI+HdzsVPx4xUngb4lQ/tA/CbV7zR7GTStTSa50i90y/f57G9hbZNC7p7/xD1oA9gorlv7U8VEfL4fsk/wB7VP8A7TS/2j4s/wCgFpf/AIMn/wDjNAHUUVzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHS7BXnOq6VfeA9Wude0C3lvdJuX87VtDgHzFv47m2T+/3dP4/9+uh/tTxb/wBALTP/AAaP/wDGaP7S8W/9ALTP/Bo//wAZoAo+KvFm74V694k8NSx38i6Tc3mnvD8wmdYXdP8Ax6vH/wDgn3p2mWn7KHgnV7aZLq+1+ObV9V1Bn3vc380z+e7v3ff8n/AK7Gey8U+DfF9pfaZpOmQabrd55V7pv9ovsNw6O/2lP3Pyt8vz/wB+uEuP2RfDy3WpCz8PXuk6Rqkr3N9oGk+Lry20y4d/v+ZbpHgb/wCPZQB7b8O7TwsmiS33g77A+k6hd3F7JNpz74Z7l3/fPuHfep/Kuyrg9BsNY8J6LY6Po3hbRtM0uyhSG3srS+KRwov8CKIa1f7U8W/9ALTP/Bo//wAZoA6Sivkr/goN4o8ZeHv2TPGeoW0cWh3Nv9mdb7TNUdZov9Jj+78iGvj/APY//aT/AGzvFM1tBo/h6b4heHs7Te+KbX7NCi+158mf/H6AP14orB8Jz61deH7CXX7K207WHiBurWzuDPDE/ojlF3fkK3qACiiigAooooAKKKKACiiigD5Zgu7fwT+394gvtduorGz8R+CLZNMurxkjRnt7l/OhRj/vo9T/ALDtqb3Sviz4niy+i+JfHupahpU38Fzb/JF5yf7Luj1734x8A+GviBYJZ+JdB0/X7WJ96w6hbpOit9GrU07TrXSLOC1s7aK2tYE8uKCFNiIv91VFAF2n0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO+vbfTbOW6uJkgtok3yzO+1EXu1XK5P4l+C9K+JHw/wDEPhjXZJYdH1ayls7uSGXynWF0w/z/AMPFAHEeGP2jfhX8RvEmlaHpviS2vdWuS1xpqTQTQpeMn33t3dFSbH+wT3q+/wC0f8NU8a/8Is3iy1GtfbP7P8so/k/bP+fbztvk+d/sb99fP2naVd/tA+LfBWqeF4JLb4R/CrdNo+uXYJm8SalDC0KeT/07J/z0x87fc6V555Nv/wAOhX1Aqv8Aaf2R9T87+P8AtL+1d+//AH/OoA/RWn1l+H5JbjQ9MluAPtL28Ty/7xQZrUoAzdZ0XT9fsXs9U0+31O0f71tdQrLG31VuKtRQR28KRxIqIo2qij5VqxRQAUUUUAFFFFABRRRQAUUUUAFMp9fOv7X3jH4n+BNB8JX3wvvtOj1e912DSX0jVLRJIb7zd2xPOP8Aqvudf9ugD6Hor5R1r9pPWPif8J/BfiLwHq3/AAiOtXHiyw8O+IdJ1CyS5n0+Z5/JubZ0f7jp99G/i49a9vb45eAIPCN74qfxfpKeHLC8fT7rU3uk8mK5R9hiZv726gD0Km7xXmHir9pH4XeB9TutP1/x5oOl3tpMlvc211fIjxO6b0DLn+7RafHHwP461TVvCnhPx5od74uitZXW1t7hLh4Tt/1mwff2/wD66APTqfXy3+yj+1z4Z+I3w08D2fi/xvoD/EvV0kS406OZIXmmWZ0VUT+/tRPlr1/xF8d/h74P8Sp4e1rxno+ma1I6J9hubpEdHf7m/wDubv8AaoA9Forz3Sfjr8Pdd8T23hzTvGOi3mu3Vxc2sOnwXiPM81v/AK9NnX5Kv/EH4seEPhba21x4r8Rad4fhunMdub2YI0z+ir1agDsKN618w/tK/tR6T4V8D+BJ/BvjrRLCTxnrkOmW3iR9l5DaW3zefchD8jbMInzf362v2ofiL4s+Dn7N/wDwk+j6/ZnXNOl01LvU57FGiuVeZI5pNn3U37t/+xQB9D0V5x4T+P8A8OPG1rrU+h+NdE1OHRY/O1J4LxT9lT++/onH3ulM8J/tD/DXxtBqsug+NdH1RNMtvtt6be5H+j2//PZ/9j/a6UAelUyvJbX9q34O3txJBD8SfDUkkdt9tcJqMfEON3mV518eP2moNO8CeA/Gnw88baJceGLrxjZ6NrN4VWeF7aR9kyb/APlk6UAfUVFeV6b+0t8K9V8Naz4itPHuhT6NorImoXqXiGO0L/c3/wB3dXQ6z8VPB/h/VINN1DxHp9lfT6fLq0UE0+x3s4v9ZN/uLmgDs6K8uj/aW+Fj2moXaePvD72un20N5dzLfpthhm/1Ln/fqbwx+0V8M/GNjq93o3jrRNRttGh8/UZYrxMWif3pf7lAHpdct8RfAtl8SvAut+FdSnvLew1e2e0uJtPm8mcI/wB7Y/8ADXLaf+0l8LdWsvtlr480J7X7XDp4le7RB9ol/wBXH8396q1x+1T8IYbSwu2+Ivh4Wl87pbz/AG5Nr7H2P/4/8tAHLeDf2OPDXg3V/C13H4t8cavZeGZUn0zSNU1zzrCF0TYh8kIv3e1S/wDDH/g77c8H9o66fB7at/bn/CGfak/sn7Z5nm79nl79m/59m/Zvr1jxn8QfDnw90Fda8S61Y6HpLypCL28mCQ73PyLuP96sXwX8d/h98Rtd1DRfDHjDR9c1ewTzLmzsrtHeNP73B+770Ad9T68stf2j/hdNquoaZF470J7zT4Zp7hPtqfIkP+ufdn5tn8Vbngv4ueC/iJf32neF/E+ma7e2MUFzcw2FykrwxzLvidsdN46UAdvRXlWs/tL/AAr8OazJpWp/EHw/Zail2+ntbT3yI6XKffR/7h+Yda1vB3xu8BfELXtS0Tw34u0jXNW01fMu7Gyu0keFM7dxwfu+9AHf0V5p4d/aC+G3i/xQPDejeONE1TXt7othbXiO7un39n9/b/s1RtP2nvhLf6vp+kwfEPw9PqF/cta21ut8heaZH2FP97euPwoA9Wor5M+Mf7YVvHZ/G7w94K1zSrPxd4G0mO9s5pP9Je4lCO9wnk/7GxE+r17L8Jfjz4H+KccGmaL4w0fXvEUFlFc31pY3Ku6ZVNz7OoTcaAPUaKKKACiiigArwL9qm71GJ/hh/Z3hvXvEItPGFhqd2dFsXufs9vDv3u+3/fr32mUAfIH7QP7OmuR/HXwN8Q/AkU/9mar4j0o+MdIgT5Jltp98N/s/vJ9x/wDYrzT4tWfinSvg7+0N8L4fh54o1PXNf8R3mraVLpulvNZ3FnNJDN5yTfcymx/kzv31+g9PoA+KrHwTf6x8TPj9rs/gbVZLbXvAmm22lz3WjOHu5UtJkmgTf/HueD5P9j/Yqx4M8C6hoo/ZK8jwRq2nPoljc22rOmmMn9nO+n+T/pP9zfN/8XX2af4aZQB+dmhfDjWdZ/Zr8I/AqLwDrOn/ABA0nxHDNd6vNpnk2VisOoec9+l59x98P3Nh3vv2VVtPh54rOs+P/h18QdL8a6jp2s+LrnVvsXhfQleDxFC8yPC82qPwiJ8iOnybNlfpBTHoA+Y/2cfAFro/xq+N2q3fgq40S4v/ABGlzYaheaZ5KTWyWyJuhf8A3/O+7/f3d6Z8UrbUPh5+1lo/xM1Tw5qfiPwlJ4VfQ4rnSbR76bRrz7T5ryeSo37Zk+Xeg/gr6ipf46APzvX4Z+KhqWg+JF8Aa3aaFq/xhh8U2mhppm+bS9NS1eGaaeJf9T5z/Psr6M/bm8Mar4x/Zv1zRdE0S+8Q39ze2BTT9PtvtLuiXUTv8n93Yj19AU+gD46+Omh+MdI+M+v+Ivh14IuL3UB8MbnT7aSTTf8AQ5rv7Sjw20n8Duib9if8Arzbw5pepT/Gn4W+LItC+JniSBNB1XSdf1bxBpLonnS23yWyW3lpsTzU/ubPuV+hdPoA+BfCXwm1LTfhf+yHYz/D7Uobrw/rfna3bf2N89j+5mR5Jh/B++dH3/8AA6pfED4W+I7y9+MN1D4F1i/0u0+JuieKodPXT8LqdnCkaXLW0Z+Sb7j/AO/X6EJ0pKAPhL4i/D7Wfj/4p+Kvi3wl4N1HTNNu/hzN4dt/7XsTYza5fvN5ybIn+f8Acqmze+Pnf2rTHjPUPHPxc+EGrD4beMbXRdK8OarpOqXOpaE6bLma2h2Qun8f+pf5/ufPX23/AAUh/hoA/PL4cfBjWfDX7PPwBv08CyQeIfCXiSa/1fwte262l/qP/Hz+8hSX/WuiusyJ/sf7Fcv8S9P8WeP/AB/8VtY8LeGtR0XU7XxF4b12+8E3enpNeXdhbq++/e237Jt78eTv/wCWNen/APBXK9uNE/Zz0LVNOuJbDU7LxPam2vbVzHNAfJl5R1wV/Aisf/gkHeXHiP4SeLvEOrTyapr91qkcVxqt65mupkVPlV5WyzAdgTxQBlfEH4dt8TPhL8SNePhLx5448VeIZNHtptS1bw8lg8sMNzv8mztE+dERN+9/9v79dP8AtCeDtT0bxzqeq/DLQ/FfhzXtQ0S0tbWwtvDcV/4f8RJ+8dLa5h2f6MyF33s+z79fdr9KjXp/wOgD57/bLsmvv2NPH8epWcBu10RXltkXekU3yfc+hrxT4t+E9V+P/ibwZb/Cvwnq/hS+8LaHqtvda/qGlvpSoJrN4YdPjdtm/e77/k+RPv133/BUG6nsv2N/G5t5pIC0lohMTFcr58fHHb2r2z9nq7nvvgR8Prm5mkuLmXRrJpJpWLO58peSTyaAPkL4NeFNQ8RW3gm08YeFfGtzqngjR7m2t/D3/CMJpujaNN9jeF33/wDL47/cTY779+/ZXv8A+wp4E/4QP9mrwXpd74am8NeILW08nU4Lyx+zXLTb3dt/GW+/X0NSp0oA+F/F3ww1a80v9sgjwPqFzceI3iTRzHpO99T/ANDRP3P9/wDff/F1p/Eb4Y+INe8T/D/T/Cvh3UNBnuPhrrGhf2mmnvFDp1zNDB5EMzfwfOj/AO5X2r/HQnSgD4Lm0rVPiF8Kfgx8MNA+GuveF/GHhfVtKmvby60xra10RLR83MyXONj+dsk2bPv76i134Xajcfsr/HCwsfh3q0Gs6t46udT0vTo9GZLmZPtkLwzIn+4jfPX3xRQB8G/Fjwv4iGsftTW9t4D8RXzeNvD1h/Yl3Z6U8yXTJZ7Hh3p9x97/AHK9MufBt/Z/tD/s76rpXhW9s9I07wzqVnql7Dp3lQ2aPbQ+RDM/8Hzo/wAlfU1FAH//2Q==)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARALUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACvkb4q/tO+LPAv7RvibwHefEH4Z+BfD9l4ft9c0+88U6TcS3N1JI7x/ZVC6jD5rAxM2Y13YZVEZPJ+ua8VtfgHrS/tJ+IPiXeeJ9KvtA1vQ4vD9z4Yl0FizW0Zd0JuDclS2+R92YdpQ7doPz0JXmr7a3+52/G366Clfl030/NX/C4z4aftB2t38OvG3i3xxruiW2neG9buNNuLnTtPv7QW4jWECKWG6jWVpzJJjEasG3xhdxJp1v8Atj/C2fxPD4dfUPENnrMl7a6d9lv/AAfrNqY7m5z9njkMtoojMmGK7yMhSegJry/4qfC/Vvg1+z18ZP7X1/SfEK+Ldf8A7Zjmfw2VtNLmuJoVL3QkupB9mjMcbNOCrQqryAMyqB5B8GPA/wASvi9r934eg8SfDOax0+7sPFg+IPgm91PxQjanazqILK8ub66Z5/3XmEQrMpiUq2QHCu6d5uKfaN/uXN92tu7sle5pKKjGTT6yt6XtH73a/ZH1zqn7XHwr0Lw9/buq+IrrSdHXW38OzXuoaLf28Vrfrt3RTs8A8gfOvzybUPOG4OLNv+1R8MLv+xnt/Ectzbaqto0N7Bpd5JawfatptluZ1hMdq0gdCqztGSHU4wQa8rvv2OPGU+g3+lw/FDSpVufHa+PFuNR8JtcOtyHV/IYC9RGi3qMfKCF464I3Nb/Y8tNR+Omq/EZX8Gav/bEllPe2PizwZHqs1vNAoRpLG6+0Rvb71VThhKFYbgO1EVoube6v5Lli3/5M5JdrLR3uTO1nyedr/wCJpf8Aktm/V69Cx8f/ANqa1+GXjX/hELPVLPQbqz0r+29X17UdCvtZt9OtjIY499tZlHw5WTdM8kccYVcli4WvQvjP8TNX+Gfwo1PxboWgQ+MJbCwm1CQLfJZ2qwxQPM8rSHe20hMKEVyWdAdq7nXj/jB+zPd/Efxdr+s6P4tXw7B4p8Pp4Z8RWs+mm8NxaJJIySWzedGIJwJplDssqfMCYyRze8XfBLxjrvgHxx4OsPiBZ2+g67p8ej6Zbaj4fFyNHsvszQTorR3ELzyPkOHkbCEY2sDWTUnTaW+v5v7tLbdns7XuDj7aPP8AB19LL9b/AIdNvQ/hl4luvGfw28J+IL5IYr3VtJtL+dLdSsaySwo7BQSSFyxwCScdzRVP4Q+DtY+Hvw38P+Gdb1mz1+70izisEv7HT2sUliiQJGWiaabD7VG4h8E5IVRxRXTVcHUk6fw3dvQ56XNyLn3tr6nY0UUVkaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z)
Refer to Figure 6.1. Assume Tom's budget constraint is
AC. At which point does Tom consume only hamburgers?
◦
A◦
B◦
C◦
DQuestion 2
Refer to the information provided in Figure 6.1 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD6ASADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAplPooA+WvjZ+0j8UPhKNc1UfC3TZ/Cdlq1npVlqN/r5hmvnmdE85YUgfam58cv2r1X4X+MPHOrXOvWvjzwfZeEprG4SOyuLHVftttqKMud8bFEZCvTaUry3/AIKIazp+j/AKy+23UVt5vifR9hmbG7ZeRu//AI4j1xHipPAHiH9qD4kQ/G69sToEOj2E3hC31648nTXsnhf7bLBk7Gm877/8X3MUAfaskyR/fdU/3jUf2qIOq703P9z5vvV+a/wo8M6V8S/G3wF0rx213q9le2/iaDT7XWruVZ77R4Zk/s37Sm/5v49m/wC/srnbbw54V8Nfs4at460+5kTxV4W+Jv8AZmjas+oSvLp9mmpxolsnz/6ryd/ye9AH6C/D/wCIWueKvHHxB0PVdEt9OsPDl7DBY6jBd+cl9G8PmHd8o2On8S9t4r0iKZJk3IyuvqvNeCfti2thdfAye1l8TWXhOO+1Ox2X+o27y6fM/nI/k3nlf8sZtmxm6fPWF+w/rNvd+EvGFjB4b0fQV0zxBNBLP4XvpbzRb6QxRs81m7/cX++n9/NAH0sbmPeF8xNzfdG7rQk6uPkdX2/e21+YnxM8D+CP+FRftO+L7W5ceJfDfjSb+x9TXUZfP0x3e2f/AEb5/k3u83+//wAAru/H+jw/CPx5400n4PhtM1zW/hPNqcVlpdy8sl3fpOmy5RHf55vJd/n++9AH3+l1E7uqSq7J98Bvu0G4i3Kvmpvb7o3da+AbWD4X2Oq/AOX4M3kVz4x1DVLZdb/s+6ea5uNK8l/t76l8/wD6O/jrgdO8K+DfBf7LWj/E3RJdni3SviF9l0/WvtzvMlt/bLw/Zt+//U/Zv4P+B0AfZXxb/aYt/AfhLx7qegaONe1HwZqNhZ6jbXNx9mT/AEnyfnR8Nu2pOh6V6L8S/Glz4G+GnifxLp1lFrN9o+nzXi2Ulx5KTOke/Zv+bZX52/EPw74D8M6N+17ZsllpHiCbXrNLdPtGy5FnN9id3RP7m/e++vR/iT4e8JfBP4y+JtE8JNDoOha/8JNYvdQtUuGeG7uEf9zM+5/9bsd/n6vQB9l/Cbxx/wALK+GPhXxXLarp8+t6Xbai1ssvmeT50avs3fjWx4kvrnTfDuoXmmWkV/e29u8tvavL5Syuq/Km/wDhr4E+FHjjw1+z0/hfx34nilHhHxX8LNNto9UhSaaGO/s02TWbbPuPMjp/wNK+sP2cfAF34C/Zx8M6Hd2r22pvpjzXFs7M7RzTbpfL/wCA79v4UAdF8B/ifL8X/hH4U8X3djFpN5rdiLxrCObzvK/2d/8AFXf/AGqLZu3pt9d1fl14P8M+DLP4CfCS48BukXx+g8R2dmyW9039pxul46XkNym/5bZYvM+R/krd+KXjLwj4L/Zm/aU+HuoX9vpGv2vjC/utL0WeVkuhFNNDNDNEn39n333+xoA/Q3xjrVxoPhnVb+xt4r29t7WWa2s5Z/JWd0Tcqb/4elc/8EviW/xY+D3hHxpe2cWkSa7p8V41oJt6RM/8G/8Air5Cl1X4beLfiv8AF6X4wahp08tvpdjJ4Oj1i72Wz6U9nv8AOsufmd5t+90+f7lcb8Jb3wXf6J8I5viqj6h8L4vh1DbaT5ySy6fFrCTOl5HOq/8ALxs2bN/+3QB+lP2qHyfN81fLx97dxXK+KPiPo/hHxJ4T0S9ZmvPE13NaWQQfJvSF5m3/APAEr8yvAGuN4c0P4RaVqdlod18M9Zi1vUNOj8V6s9tps159sf7N9vfY++ZLbZshf/0Ouys/hz8OtI8Q/s43Gu+INI8VaJL4h16OXVx50Omw7086Gztnkf8A1KTPsT+/QB+mW/5fmqNLuF4vNWVTH/e3V80ftwauNI8PfD2HWLi4svh5eeKrSLxbdQs6ItjsfYkzp92FpvLDmvFPGtp8JtO8ceBtK8M3+PgZfeJ7lvFn2K7lfRk1L7H/AKHC7/cSHf8AfRH2b/v0AfoEtxHIiOrKyN91qEnVx8jq+3722vzH+MNv4XttD+O9p4Jvzb/Cmxfw/LYS2N6wsrfXftiCZLJ0f/nj99E+Xf6Gu8+L3hHwX8LPil428JeHPEf/AArrQvEfw3kn1Cayaa4RLn7aiJcuifP9x33v/c30AfaPxC+JejfDXws+v6rIz2Qu7ayBthvdnmmSFP8Ax966zz0/vp/33X5Y+IdI8Mah8HvHdhr3hrwiqeHtf8M3M2v+DL6WbQ7tJrpEd0R2/czeTvE3++ld/ofhT4Y6d8bPj1rGm2D+K9E8F6NpviPw94f0jVZnh877E/nPDsf777ESgD9ChdxSI7RMs23+FGrl/AHjGfxv4RttZutB1PwnLI0u7TNZVEuogkjpucK7jtu61+enwy1rw94Y+MXwI1rSfE3hGwt/FUNxY63ofhJHS1t7eWzd40vLl5n86beNm99j70eqvwi0Xwr460f9lfSNSuDqNrcax4q0y+tPtr/6RbedO6QzfP8AOm/Z9/79AH6NeOviJpHw/wBHstT1OVvs13fW2nxeUM75ppkhT/x9xXWbxX5heOPDPgi18H+OfDd8LSfwV4P+MGmw2UNxcOItJs7nyftMaNv+SHmT/wAfr9JvDMOl2/h3TYtD8kaOlui2n2dtyeTt+TZ+GKANmiiigAooooAKKKKAKl3YQXsey4ginT0lQPXBfG/xf4R+F/w31Pxd40srW70PRFSYpPbpMVJdUTZv/i5FekV+av8AwWc+My6H8O/Cvw2tJs3Ot3P9pXqDtbw8J/327/8AkOgD9FLP+ztUhstRgSCeN4ke3uQgPyNyu39KmGj2QiaP7FAYmbdsMS7fyr5i/wCCa/xk/wCFw/sp+Fzcz+fq/h8HQrzLfN+5/wBS3/fop+VfVtAFG8sbe/s5LWeCKe2lTY8Eqb0ZPTZRp+m2mlWcdrZW8NpbxD5IoU2Iv/ARV6igDP8A7Isdkiiyt9kh3OnlL89PTTrVJkmSCJJkTYjhRuVfSrtFAGRZeHNL026u7q102ztbq6/4+JoLdUeX/fI+9U/9j2PleR9it/J3b/L8tdm76VoUUAZ8miWEzs01lbzO33neJSTRJpNjM+6W0gkbbty8ak7a0KKAPIfFXwEtvG3je11XXPEWq33hmylgubTwX+5i01LmLlJn2IHm+b59jvs39q9bp9FAGTb+HtLs9Sn1ODTbSHUJh+9uY7dFmf8A3n6mm3Xh3StQvWu7jTrKe6ZPKeaa3V3Kf3N1bFFAGPceGdHu5bJ59LsZnsv+PdntkbyP9z+7Xm/xB+C/iDxF4pg13wp8Sta8CXC2n2OezsbO2ubOZN+/f5UyMEk6/PXsFFAHlnws+A3h74WeBLjwxGJPEcF3fTanfXOsokz3l3K++SZl27AT/srXob6PYtbpA1pb/Z4vuRmJdifhWhRQBSvLCC/tpLe4jS5glXa8Uq7kaq0fh3SodJ/suLS7RNN2bfsS26CHHpsxtrWooAy7XQdNtNOSwg0+0hs1+5bR26rGv/AOlTPptq83mNaxPJs2bzGv3P7lXqKAMix8OaVp2nCxtdNtLazzv+zQ26pH/wB8dKng0mytG3wWlvA+3b+7iVa0KKAMO08IaJYoFt9H0+BPN8/ZHaov7z+90+971dTSLKHYUsoE2fd2xKNtX6KAM86RZMkqm0tyknzOPKX5qtQwJCioiqiL91VqaigAooooAKKKKACim7xWfbaxZXVq11BdwTW0e7dNHKrom373zUAaVeefFzwboGteEtXvNT0TTNRuYrQos97aRzOi/wC89dZo3iPS/ENt9o0vUbTU7cNt86znSZN31Ws34mf8iJrf/XsaANHQfDGkeGoHi0fSbLSYpG3sllbpCrn6LWrWZr+v2HhfQdR1jVLlLPTdPt3ubm5k4SKNFLM/5V8tfAf47ePNf/aHm07xrF/ZXhfxz4f/ALf8HaZKpSa0ht5tjxy5/wCWrxSJM4/CgD67ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKZQG3dKAH0UUUAfPH7TPxDePWPCvwt07xBH4Z1LxcZn1HWpLhIW07SoQPtMkbP/wAtn3pCn++X/gr5S0C60S3+A3hr4X6BqEaeHtd+MM2h3VrbXW9/7KN5I+x3379j7E+f+P8AGv0F8Y/DHwr49kgm1/w3pGuXNurLby6nYpc+V/33Xzn4Y/YStdE+F+ueHptW0mDxDca//wAJFpPiHSdES1m0+5WYTIu3cd8KP8gTpsP5AF+HSNP+FH7dXhjR/CthBoui+KfB12+o6Xp8Pk2zTWkyeTNsXC7tjule0fF/xVDofgzWo7iy1KZFtC7T2tm8yf8Ajlcr4D+DGvwfFmf4k+ONestd8Sx6T/YlhDpVk1taWVvv3yt87u7u7+v9wfh6L8TP+RE1v/r2NAHi/wC0jpusfG3TfAvgzRtKvdZ+H3ifUYZvE+saZcoiJpy/P5P39/7x/LD7P4N9ch8SPgJe+Bfj78FPFfgLQvEetppeo3MGs3N1qz3MNpYTQeU//HzN/f2P8n9yvdtT0u7+HeqXOuaHA15oty3n6no1unzq38dzbJ/f/vp/H/v/AH+60fWLLXdNtr/T7iO8srhN8M8PKMtAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5j+0VPHafBHxpNcXc9nBFp0jvNbq7uB9E+f8A75r5i+E/je28B/ESDxL4gsfEkGvalb3d5rw/sa7h3wyzokM2yZ9iWNsmxE/j+f7lfVnxrfRk+FHib/hIFun0cWT+eun/APHyf7vk/wC3v27PevnnwD4W8ZeKPEd74b+LN34jstd1vSprTSL+eWxlT7CsiPc2/wDoybEuXTZvd/4fudDQB9hRvvQNT6hgiSGJET7qrtWpqACiiigArlviZ/yImt/9exrqa5b4mf8AIia3/wBexoA6f+CvNdV0m8+Hmp3Wv6DBLd6Ncv52q6NB95W/jubZP7/d0/j/AN+vTKbsFAFHR9Xstf0221DT7lLqxnTzIZ4W+V19a0K801TTL34e6pc69oNq95o1w/naposC/MG/jubZP7/d0/j/AN+u70bWLPX9Ntr+wuI7yyuF3wzw/cdfWgDQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDw79o3xfq2ieGNZ0yT4dzeLfCMumFtQv01mGx2F32eSu75933H31wvwb0bxT4a+Lujw+NdP8AEF3fXWnXkWm6h4j8Q2199miTy98MCW8KfO/7su7/AD/JX0R4403Q9Y8J6tY+JBbtoVxbvDem5fYhhbrlq4PwJ8GPDvw48WxajL4h17xBrktpJZaefEWrPdyW9sNjOluh/wCAb3+9x1xQB65T6ydd1y18O6JqGq6hJ5FlYwPc3Dbd2yNF3P8ApXnPhH406n4t1bSII/hp4s0zTNQy66tqUVskMSbHZGdEmdxvxj7n8dAHrlFMp9ABXLfEz/kRNb/69jXU1y3xM/5ETW/+vY0AdTRRRQA1+leb6tpl78O9Tudd0O3kvtGuX87VdGt1+cN/Hc2yf3/76fx/7/3/AEqmUAUtI1iy1/TbfULC4S7srhN8U0bZR1rQrzXU9JvPh5qVzrmhWzXmjXL+fqejW6fOr/x3Nsn9/wDvp/H/AL/3+60fWLLXdNtr/T7iO8srhN8M8PKMtAGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeQftM+GvCuufCHXrrxVoi67YadbvMlt9pe3y/3fvp93+GvNfg/8O3+Fvxd0m18R+GPCltq+qaZcPpupeG7m8d7dEKedC6XDv8AL86fvU2fdwRzXsHxv8daR4L+HPiSW/i03U5hp8jjR9RuEhS7Rvkw+/8Ag5+b2zXkv7Pnw0/4V/47Se21DwFPb3tk8bJo17eXl+yLsZEhe4mfZCn9xf8AYoA7b9o/w1d6h4Xm1aCXxrepa2lxDJofhK6SD7ZvTP74P977mz5f79ed/CHT9Zg8W+BVt9M+LtlYRZFynivUIv7Otk+zP8jpne/z7ESvo3x5HfT+DNcj0ySeDUDp9x9nltV3TJN5Z2bP9r0r5r+Bnh/QP+E28L3EPwj1jS/ENlv+267deJIbx7GZ7Z973KJcu+9/ufOn8dAH1rT6ZT6ACuW+Jn/Iia3/ANexrqa5b4mf8iJrf/XsaAOpoplPoAKKKKAGum+vNtU0y8+HepXWu6HBJeaNcsZ9U0eBPnVv47m2T+//AH0/j6/f+/6XTKAKWj6vZa/p1vqFhcR3djOm+GaJso61oV5rqumXvw61G51zQrZrvRrlzPqujQ/fX+/c2yf3+7p/H/v/AH+60bWLLX9NttQ0+6jvLK4XzIZ4eUdaANCiiigAooooAKKK8i+L/wC1D8MPgJeWVl458X2Wh3t6u+G1k3vKydN+1clVoA9dorxD42/tIWPw2+FmheOPD2mr4707W9Qs9PsU0+9SL7T9pfZEyORj73FQR/tFap4Y8c+HPDnxD8EXPg6PxFdfYdK1mLUYr+xmvNuVtndQjxO/8G9Pn6UAe7UUyn0AFFFFABRRRQAUUUUAFFFFABRRRQB4l8XPEHwd0nxTI3xHstAGoWmkrdJfa9aQuv2fzWQJG7j5n35+Rf79XfA0fwXTxlZ/8IavgweJGhm8n+wfs32jyf4/9T/B9yr37Q9tZR/B/wATajc6HpuvzWVk88UOpWguYU/2yn91fv8A/AK8p+DlvY6F8XNF06w8Y6D8R0v9Jub1r2y0mxgm0n7nzo9snyRTb9mx/wC5QB9DeNtJvdZ8Ia1YaVdix1O6spobW6P/ACymdCiP+dfNXwj8Fiz+IHgj+zfhSfhndaFDNBrGryyW6HUyYXTyU8ly9zvfE29/7n9+voz4mzeV8OfE83mXUOzS7l99mP3yfuX+5/tV86/A74dvpHiDwJq03wh8HeH5/JaR9dsNa+0Xib7d/nRPL+dm/j+d+H/GgD61ooooAK5b4mf8iJrf/Xsa6muW+Jn/ACImt/8AXsaAOmp9FFABRRRQAUUUUAN2CvNtT0m9+H+qXWvaBby3ujXLmbVtFgHz7v47m2T+/wB3T+P/AH69Lpr9KAKOjavZ69pttf6fcx3dlcLvhmhOVdK0K811XSr3wDq1zr2g2r3ukXDmbVtFgX5y/wDHc2yf3+7p/H/v13WjaxZa/pttf6fcR3llcJvhmh+46+tAGhTK4X436zD4Z+DfjnWJ5JYY7HRLycyQSeW6bIXPyv8AwnjrX57WPimzk+D3wi0jwp478ZxfGHXmsN/ibU9Wv4dKhnfY8yTPN+5m+TeiQp9+gD9Q6/J7/go9+w38WPiX8e7jx34M0WXxdpWr29tA0MEqedZOibChVv4ON+73Nfq/HvCKGYMw+9UtAH5taP8ADab4A/D39lj4P+Odf0+LU5fGT+INQhnuV8m3SFJpkh3P/BvdF/369j+PXi+w/aO+KPw2+GvgW6h1/wDsTxJZ+JfEerae/nWmm29tl0R5k+TzZG+UJX09rvgHwz4qnSfW/D2lazOq7Fk1CyimdV/4GpxV3QvD2leGbL7JpGmWWkW33vJsbZIU/wC+FoA1KfRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHOeOvFcHgjwdrHiC4tLi/ttOt3uZLa2XdI6oOdorjvhp4k+FK3sNl4FvPCkN7rCG8a38Pm233G377v5PX7/U1o/HSzvb74SeLoNP06LV7qXT3RbKe3+0pIP4h5P8fy5+T+LpXgH7MvxB0jxN8SbfQdHOjeJLrRre7hv/ABDpmgpYnyv3L20zsqJ5bvueF4f+mOaAPqbxY+mxeGdXfWN/9kpaSm82bv8AU7Dv+5833c9K83+HHwU+EWiDwx4n8K+FdH06byUm0m9gj2TbHhP/ALI713fxAu3s/AniKaG0mvXh0+4dba2cpJLhG+RHX7re9fI/7PI8D6X428F6anh/wsPF8N3J5NzoGo3Nx+5lsHmS6RHf/fhm3/x0AfcNFMp9ABXLfEz/AJETW/8Ar2NdTXLfEz/kRNb/AOvY0AdTRRRQAUUUUAFFfOv7X37Y3hn9kTwzpuoaxYXGt6xqsjxafpds6o7bPvyO5+6nKdq8O1D/AIKJw/Fn9l7xR4z8ATL4O8baNqGn6fLZasiXKQ/aZkRH/wBpH+f5v9igD77or528IXXi3WPGei2+m/HnQPGBt2S41jRoNMsy8tt9xyjwvuT59lfRNADdgr4J/wCChP7Rnij9j3TtIb4d+XZX3jCW4kn+1wCW2t3j2F5oV6LK2/5v4T97rX3xXmvxu+APgj9oXwkPDfjnSF1XT0k82FkkaKWB/wC8jrypoA+AfgF+0V8Wv28f2cvip8NHttKvPGCwW0KaxcP9jhe0mf59+xH+cBD/AN9+1fSHj74NfFz49+FfD3gLxJpHhXwP4Ksrqwub6407UZb+8lS2dHWK2/cokP3AN9dl8OvgB4c/ZR02dvhvokx0CcrJrOmsxmu5tn/LzG7fO7oP+Wf8Q+583X3bR9Yste0y11DT7mO7srhPMhni+460AXo/uinUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHiX7RHxktPAPhnV9HsL7ULTxhPpj3Nh9h0m4vWQb9m/5I3QPw2wP6Vx/wLvkh+IdrZeEtf8AG/iPw1cafNPrD+L7WdUiudyeU6Sywx/O/wC83onyV6x8c9au/D/wg8YahYX8umXlvYu8V1Au+ZH/AOmf+2fup/tkV5l8HbJh8QdKnbQvizYv9km/feLtR+0WCfKnySJ5z/P/AHPxoA9v8b6tdaH4N13UtOihmvbGxmuYEmfYjOiFl3H+7mvj/wCEuq+DPhX4x0Hxnb/Ebw5r7+KkY+I2OmWdn9nLQvMJoXiRHRN42bH3799fbFzaw39tJbzxJNBKu143XcrrVaHQdNgtkt00+1SBE8tUWFdqp/doAtWtzFd28dxC4eGRFdZP7y1aqONEgj2quxFqSgArlviZ/wAiJrf/AF7GuprlviZ/yImt/wDXsaAOpooooAKKKKAPlr9uH9iqz/a/8OaKkOrjQPEWhu72N7JD5sLI/wB+J0/4Ahz7V8yWv7D8n7NHhXwX4dTRdb+JU2teLLDWPFd5pOlPNbRWFnvdIdnO753/AOB+lfqBTKAPn/4d+I/DsHxLsbPwr8FdW8MfbLN11HxJPoCaVDDEnzpD/fdmf+DFfQdMp9ABRRRQA1+leb6tpV74A1S517Qrd7vSLl/P1bRrcfPu/jubZP7/AHdP4/8Afr0qmFd3WgClo+sWWv6Zbahp9xHd2Vym+KaPlXStCvNdW0q98Aapc674ftWutIuX87VtFhX5/wDbubZP7/d0/j/367rRtYstf0221DT7qO8srhfMhnh5R1oA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKAOH+LWgy+JPhn4k0u2srzUZ7uyeFbWwuUtZpd39yV/kRv8AarxT4UaFr/hv4x+H7TXdK8UaTDNpd49u2t+Nf7YhldPJyiw/3/n3769A+Nd54ot9O1iLdoVl4E/svffavqmszadNbvvfftkiT5F27PnzXl37KFreeJvEt94qHw8OkeHRbPb6X4o1PW7y8ub1H2c20Nz88MLdd/yb6APrGn0UUAFFFFABXLfEz/kRNb/69jXU1y3xM/5ETW/+vY0AdTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADK851fSr34fapc65oEEl3pVy/n6ro0A+b/bubZP7/8AfT+Pr9/7/pNMoApaRrFlr+m22oafcx3dlcJvimjbKOvrWhXmmr6Ve+ANUudf0C1e80i5czatosCfPv8A+fm2T+//AH0/j/367jRtYstf0221DT7pLyyuE8yGaH7jrQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQB4L8Z/gNrnxg+IXh7VJvElrB4W0W386Hw5faaby2ub/fxcTJvTf5abdiN/HzXWaL4W+Iln4y0291Xxpp+qeH7eGeO40y30j7I7u+zyW3eY/3MPXpdPoAKKKKACiiigArlviZ/yImt/wDXsa6muW+Jn/Iia3/17GgDqaKKKACiiigAooooAKKKKACiiigAooooAKKKKAGV5xq2lXvgDVbrxBoFu97pFy5m1bRYE+bf/Hc2yf3/AO+n8f8Av16VTX6UAZ+j6zZa/plrqGn3CXVlcJvimjb5XrSrzXVdKvfAGq3Wv6BbS3ekXL+fq2iwD5t38dzbJ/z07un8f+/XdaNrFlr+m21/p9xHeWVwm+GaH7jr60AaFFMryDxZ+0v4S8NeK9Q8O2UGteL9Z0yPfqFl4Y0uW/ax/wCuzp8iP/sZ3+1AHsVFcR8L/ih4b+MPg+28S+FNQ/tHTJneEuYmheKZDteN43+ZHXn5TXb0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFct8Sf+RE1v/r3NcJ8Rvjff+HfiRpvgDwj4Zk8Y+LbjT31a5tWvVs7aytFk2eY8zI+HdzsVPx4xUngb4lQ/tA/CbV7zR7GTStTSa50i90y/f57G9hbZNC7p7/xD1oA9gorlv7U8VEfL4fsk/wB7VP8A7TS/2j4s/wCgFpf/AIMn/wDjNAHUUVzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHT0VzH9qeLf+gFpn/g0f8A+M0f2p4t/wCgFpn/AINH/wDjNAHS7BXnOq6VfeA9Wude0C3lvdJuX87VtDgHzFv47m2T+/3dP4/9+uh/tTxb/wBALTP/AAaP/wDGaP7S8W/9ALTP/Bo//wAZoAo+KvFm74V694k8NSx38i6Tc3mnvD8wmdYXdP8Ax6vH/wDgn3p2mWn7KHgnV7aZLq+1+ObV9V1Bn3vc380z+e7v3ff8n/AK7Gey8U+DfF9pfaZpOmQabrd55V7pv9ovsNw6O/2lP3Pyt8vz/wB+uEuP2RfDy3WpCz8PXuk6Rqkr3N9oGk+Lry20y4d/v+ZbpHgb/wCPZQB7b8O7TwsmiS33g77A+k6hd3F7JNpz74Z7l3/fPuHfep/Kuyrg9BsNY8J6LY6Po3hbRtM0uyhSG3srS+KRwov8CKIa1f7U8W/9ALTP/Bo//wAZoA6Sivkr/goN4o8ZeHv2TPGeoW0cWh3Nv9mdb7TNUdZov9Jj+78iGvj/APY//aT/AGzvFM1tBo/h6b4heHs7Te+KbX7NCi+158mf/H6AP14orB8Jz61deH7CXX7K207WHiBurWzuDPDE/ojlF3fkK3qACiiigAooooAKKKKACiiigD5Zgu7fwT+394gvtduorGz8R+CLZNMurxkjRnt7l/OhRj/vo9T/ALDtqb3Sviz4niy+i+JfHupahpU38Fzb/JF5yf7Luj1734x8A+GviBYJZ+JdB0/X7WJ96w6hbpOit9GrU07TrXSLOC1s7aK2tYE8uKCFNiIv91VFAF2n0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO+vbfTbOW6uJkgtok3yzO+1EXu1XK5P4l+C9K+JHw/wDEPhjXZJYdH1ayls7uSGXynWF0w/z/AMPFAHEeGP2jfhX8RvEmlaHpviS2vdWuS1xpqTQTQpeMn33t3dFSbH+wT3q+/wC0f8NU8a/8Is3iy1GtfbP7P8so/k/bP+fbztvk+d/sb99fP2naVd/tA+LfBWqeF4JLb4R/CrdNo+uXYJm8SalDC0KeT/07J/z0x87fc6V555Nv/wAOhX1Aqv8Aaf2R9T87+P8AtL+1d+//AH/OoA/RWn1l+H5JbjQ9MluAPtL28Ty/7xQZrUoAzdZ0XT9fsXs9U0+31O0f71tdQrLG31VuKtRQR28KRxIqIo2qij5VqxRQAUUUUAFFFFABRRRQAUUUUAFMp9fOv7X3jH4n+BNB8JX3wvvtOj1e912DSX0jVLRJIb7zd2xPOP8Aqvudf9ugD6Hor5R1r9pPWPif8J/BfiLwHq3/AAiOtXHiyw8O+IdJ1CyS5n0+Z5/JubZ0f7jp99G/i49a9vb45eAIPCN74qfxfpKeHLC8fT7rU3uk8mK5R9hiZv726gD0Km7xXmHir9pH4XeB9TutP1/x5oOl3tpMlvc211fIjxO6b0DLn+7RafHHwP461TVvCnhPx5od74uitZXW1t7hLh4Tt/1mwff2/wD66APTqfXy3+yj+1z4Z+I3w08D2fi/xvoD/EvV0kS406OZIXmmWZ0VUT+/tRPlr1/xF8d/h74P8Sp4e1rxno+ma1I6J9hubpEdHf7m/wDubv8AaoA9Forz3Sfjr8Pdd8T23hzTvGOi3mu3Vxc2sOnwXiPM81v/AK9NnX5Kv/EH4seEPhba21x4r8Rad4fhunMdub2YI0z+ir1agDsKN618w/tK/tR6T4V8D+BJ/BvjrRLCTxnrkOmW3iR9l5DaW3zefchD8jbMInzf362v2ofiL4s+Dn7N/wDwk+j6/ZnXNOl01LvU57FGiuVeZI5pNn3U37t/+xQB9D0V5x4T+P8A8OPG1rrU+h+NdE1OHRY/O1J4LxT9lT++/onH3ulM8J/tD/DXxtBqsug+NdH1RNMtvtt6be5H+j2//PZ/9j/a6UAelUyvJbX9q34O3txJBD8SfDUkkdt9tcJqMfEON3mV518eP2moNO8CeA/Gnw88baJceGLrxjZ6NrN4VWeF7aR9kyb/APlk6UAfUVFeV6b+0t8K9V8Naz4itPHuhT6NorImoXqXiGO0L/c3/wB3dXQ6z8VPB/h/VINN1DxHp9lfT6fLq0UE0+x3s4v9ZN/uLmgDs6K8uj/aW+Fj2moXaePvD72un20N5dzLfpthhm/1Ln/fqbwx+0V8M/GNjq93o3jrRNRttGh8/UZYrxMWif3pf7lAHpdct8RfAtl8SvAut+FdSnvLew1e2e0uJtPm8mcI/wB7Y/8ADXLaf+0l8LdWsvtlr480J7X7XDp4le7RB9ol/wBXH8396q1x+1T8IYbSwu2+Ivh4Wl87pbz/AG5Nr7H2P/4/8tAHLeDf2OPDXg3V/C13H4t8cavZeGZUn0zSNU1zzrCF0TYh8kIv3e1S/wDDH/g77c8H9o66fB7at/bn/CGfak/sn7Z5nm79nl79m/59m/Zvr1jxn8QfDnw90Fda8S61Y6HpLypCL28mCQ73PyLuP96sXwX8d/h98Rtd1DRfDHjDR9c1ewTzLmzsrtHeNP73B+770Ad9T68stf2j/hdNquoaZF470J7zT4Zp7hPtqfIkP+ufdn5tn8Vbngv4ueC/iJf32neF/E+ma7e2MUFzcw2FykrwxzLvidsdN46UAdvRXlWs/tL/AAr8OazJpWp/EHw/Zail2+ntbT3yI6XKffR/7h+Yda1vB3xu8BfELXtS0Tw34u0jXNW01fMu7Gyu0keFM7dxwfu+9AHf0V5p4d/aC+G3i/xQPDejeONE1TXt7othbXiO7un39n9/b/s1RtP2nvhLf6vp+kwfEPw9PqF/cta21ut8heaZH2FP97euPwoA9Wor5M+Mf7YVvHZ/G7w94K1zSrPxd4G0mO9s5pP9Je4lCO9wnk/7GxE+r17L8Jfjz4H+KccGmaL4w0fXvEUFlFc31pY3Ku6ZVNz7OoTcaAPUaKKKACiiigArwL9qm71GJ/hh/Z3hvXvEItPGFhqd2dFsXufs9vDv3u+3/fr32mUAfIH7QP7OmuR/HXwN8Q/AkU/9mar4j0o+MdIgT5Jltp98N/s/vJ9x/wDYrzT4tWfinSvg7+0N8L4fh54o1PXNf8R3mraVLpulvNZ3FnNJDN5yTfcymx/kzv31+g9PoA+KrHwTf6x8TPj9rs/gbVZLbXvAmm22lz3WjOHu5UtJkmgTf/HueD5P9j/Yqx4M8C6hoo/ZK8jwRq2nPoljc22rOmmMn9nO+n+T/pP9zfN/8XX2af4aZQB+dmhfDjWdZ/Zr8I/AqLwDrOn/ABA0nxHDNd6vNpnk2VisOoec9+l59x98P3Nh3vv2VVtPh54rOs+P/h18QdL8a6jp2s+LrnVvsXhfQleDxFC8yPC82qPwiJ8iOnybNlfpBTHoA+Y/2cfAFro/xq+N2q3fgq40S4v/ABGlzYaheaZ5KTWyWyJuhf8A3/O+7/f3d6Z8UrbUPh5+1lo/xM1Tw5qfiPwlJ4VfQ4rnSbR76bRrz7T5ryeSo37Zk+Xeg/gr6ipf46APzvX4Z+KhqWg+JF8Aa3aaFq/xhh8U2mhppm+bS9NS1eGaaeJf9T5z/Psr6M/bm8Mar4x/Zv1zRdE0S+8Q39ze2BTT9PtvtLuiXUTv8n93Yj19AU+gD46+Omh+MdI+M+v+Ivh14IuL3UB8MbnT7aSTTf8AQ5rv7Sjw20n8Duib9if8Arzbw5pepT/Gn4W+LItC+JniSBNB1XSdf1bxBpLonnS23yWyW3lpsTzU/ubPuV+hdPoA+BfCXwm1LTfhf+yHYz/D7Uobrw/rfna3bf2N89j+5mR5Jh/B++dH3/8AA6pfED4W+I7y9+MN1D4F1i/0u0+JuieKodPXT8LqdnCkaXLW0Z+Sb7j/AO/X6EJ0pKAPhL4i/D7Wfj/4p+Kvi3wl4N1HTNNu/hzN4dt/7XsTYza5fvN5ybIn+f8Acqmze+Pnf2rTHjPUPHPxc+EGrD4beMbXRdK8OarpOqXOpaE6bLma2h2Qun8f+pf5/ufPX23/AAUh/hoA/PL4cfBjWfDX7PPwBv08CyQeIfCXiSa/1fwte262l/qP/Hz+8hSX/WuiusyJ/sf7Fcv8S9P8WeP/AB/8VtY8LeGtR0XU7XxF4b12+8E3enpNeXdhbq++/e237Jt78eTv/wCWNen/APBXK9uNE/Zz0LVNOuJbDU7LxPam2vbVzHNAfJl5R1wV/Aisf/gkHeXHiP4SeLvEOrTyapr91qkcVxqt65mupkVPlV5WyzAdgTxQBlfEH4dt8TPhL8SNePhLx5448VeIZNHtptS1bw8lg8sMNzv8mztE+dERN+9/9v79dP8AtCeDtT0bxzqeq/DLQ/FfhzXtQ0S0tbWwtvDcV/4f8RJ+8dLa5h2f6MyF33s+z79fdr9KjXp/wOgD57/bLsmvv2NPH8epWcBu10RXltkXekU3yfc+hrxT4t+E9V+P/ibwZb/Cvwnq/hS+8LaHqtvda/qGlvpSoJrN4YdPjdtm/e77/k+RPv133/BUG6nsv2N/G5t5pIC0lohMTFcr58fHHb2r2z9nq7nvvgR8Prm5mkuLmXRrJpJpWLO58peSTyaAPkL4NeFNQ8RW3gm08YeFfGtzqngjR7m2t/D3/CMJpujaNN9jeF33/wDL47/cTY779+/ZXv8A+wp4E/4QP9mrwXpd74am8NeILW08nU4Lyx+zXLTb3dt/GW+/X0NSp0oA+F/F3ww1a80v9sgjwPqFzceI3iTRzHpO99T/ANDRP3P9/wDff/F1p/Eb4Y+INe8T/D/T/Cvh3UNBnuPhrrGhf2mmnvFDp1zNDB5EMzfwfOj/AO5X2r/HQnSgD4Lm0rVPiF8Kfgx8MNA+GuveF/GHhfVtKmvby60xra10RLR83MyXONj+dsk2bPv76i134Xajcfsr/HCwsfh3q0Gs6t46udT0vTo9GZLmZPtkLwzIn+4jfPX3xRQB8G/Fjwv4iGsftTW9t4D8RXzeNvD1h/Yl3Z6U8yXTJZ7Hh3p9x97/AHK9MufBt/Z/tD/s76rpXhW9s9I07wzqVnql7Dp3lQ2aPbQ+RDM/8Hzo/wAlfU1FAH//2Q==)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARALUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACvkb4q/tO+LPAv7RvibwHefEH4Z+BfD9l4ft9c0+88U6TcS3N1JI7x/ZVC6jD5rAxM2Y13YZVEZPJ+ua8VtfgHrS/tJ+IPiXeeJ9KvtA1vQ4vD9z4Yl0FizW0Zd0JuDclS2+R92YdpQ7doPz0JXmr7a3+52/G366Clfl030/NX/C4z4aftB2t38OvG3i3xxruiW2neG9buNNuLnTtPv7QW4jWECKWG6jWVpzJJjEasG3xhdxJp1v8Atj/C2fxPD4dfUPENnrMl7a6d9lv/AAfrNqY7m5z9njkMtoojMmGK7yMhSegJry/4qfC/Vvg1+z18ZP7X1/SfEK+Ldf8A7Zjmfw2VtNLmuJoVL3QkupB9mjMcbNOCrQqryAMyqB5B8GPA/wASvi9r934eg8SfDOax0+7sPFg+IPgm91PxQjanazqILK8ub66Z5/3XmEQrMpiUq2QHCu6d5uKfaN/uXN92tu7sle5pKKjGTT6yt6XtH73a/ZH1zqn7XHwr0Lw9/buq+IrrSdHXW38OzXuoaLf28Vrfrt3RTs8A8gfOvzybUPOG4OLNv+1R8MLv+xnt/Ectzbaqto0N7Bpd5JawfatptluZ1hMdq0gdCqztGSHU4wQa8rvv2OPGU+g3+lw/FDSpVufHa+PFuNR8JtcOtyHV/IYC9RGi3qMfKCF464I3Nb/Y8tNR+Omq/EZX8Gav/bEllPe2PizwZHqs1vNAoRpLG6+0Rvb71VThhKFYbgO1EVoube6v5Lli3/5M5JdrLR3uTO1nyedr/wCJpf8Aktm/V69Cx8f/ANqa1+GXjX/hELPVLPQbqz0r+29X17UdCvtZt9OtjIY499tZlHw5WTdM8kccYVcli4WvQvjP8TNX+Gfwo1PxboWgQ+MJbCwm1CQLfJZ2qwxQPM8rSHe20hMKEVyWdAdq7nXj/jB+zPd/Efxdr+s6P4tXw7B4p8Pp4Z8RWs+mm8NxaJJIySWzedGIJwJplDssqfMCYyRze8XfBLxjrvgHxx4OsPiBZ2+g67p8ej6Zbaj4fFyNHsvszQTorR3ELzyPkOHkbCEY2sDWTUnTaW+v5v7tLbdns7XuDj7aPP8AB19LL9b/AIdNvQ/hl4luvGfw28J+IL5IYr3VtJtL+dLdSsaySwo7BQSSFyxwCScdzRVP4Q+DtY+Hvw38P+Gdb1mz1+70izisEv7HT2sUliiQJGWiaabD7VG4h8E5IVRxRXTVcHUk6fw3dvQ56XNyLn3tr6nY0UUVkaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z)
Refer to Figure 6.1.
AC represents Tom's budget constraint. Point
E then represents a point that is
◦ an available option, as Tom is just spending all of his income.
◦ available, but at which he does not spend all his income.
◦ not available because it represents a combination of hamburgers and hot dogs that he cannot purchase with his income.
◦ outside his opportunity set but not on his budget constraint.