Find the roots of the polynomial x
3 - 1. Give the multiplicity of each.
◦ Roots are x = 1 and x = -1, each with multiplicity 1
◦ Roots are x = 1, x = -
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
+
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAoABgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U68D+KVsPHXxnudIu38WvpnhPwzBf/2R4R1y802bV7rUruWOEs9vcW4XyF0qYAyuYz9tYkx+Xl+x8a+G/Gtp4mi8X6LrVxqyabMAvg+32W0N7p5gZZ4d8jFGu2mMc0c0hRQLaK3Bt1muZ5PPvhR43i+Ivh34k/E/wnpWoePPD3izWIoNEudNulsL+50mCwt7Z0t2uHhaFYr5dSKxu8OHkmlQ/vQzzK6Wg1ud98AL/Rbvwtq9vo9l4s0qax1WW01HTvGWr3Gp31rdLHESnnTXNwCmxo2AilaP5iRyWoqt+z78PdS8AaX4i+0DVdP0nVdS/tDTtD13U21O+05XijEyzXLSyl3eYSPtEsqrkYc5IBV720tt9/Xv18yV1/rTp+Ak3wg8V28Tyy/Hnx9HGilmdrLw6AoHJJP9ldK4P4baNa+KNR1bw/4X+O3xD0++sXe/utMufDOjaXI32iaR3ukjn0SMypLKZWMyBlZmYliW5+jry6SxtJ7mRZGjhRpGWGJpXIAydqKCzHjgKCT0ANeN/Cjx3pfxJ+It74guNF8T6TrTaebKxtdZ8J6ppqWlmJN7h7i4t44nmkfYzIrkARqFzh2YinJ/1fZ/16XfkU1aDfp+ev4fjbudr4K8Aa74V1WW71P4leKPGNu8JiWx1u20qOGNiykSA2llA+4BSMFyuGOVJwQV2tFIQUUUUAFFFFAH/9k=)
i, x = -
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
-
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAoABgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U68D+KVsPHXxnudIu38WvpnhPwzBf/2R4R1y802bV7rUruWOEs9vcW4XyF0qYAyuYz9tYkx+Xl+x8a+G/Gtp4mi8X6LrVxqyabMAvg+32W0N7p5gZZ4d8jFGu2mMc0c0hRQLaK3Bt1muZ5PPvhR43i+Ivh34k/E/wnpWoePPD3izWIoNEudNulsL+50mCwt7Z0t2uHhaFYr5dSKxu8OHkmlQ/vQzzK6Wg1ud98AL/Rbvwtq9vo9l4s0qax1WW01HTvGWr3Gp31rdLHESnnTXNwCmxo2AilaP5iRyWoqt+z78PdS8AaX4i+0DVdP0nVdS/tDTtD13U21O+05XijEyzXLSyl3eYSPtEsqrkYc5IBV720tt9/Xv18yV1/rTp+Ak3wg8V28Tyy/Hnx9HGilmdrLw6AoHJJP9ldK4P4baNa+KNR1bw/4X+O3xD0++sXe/utMufDOjaXI32iaR3ukjn0SMypLKZWMyBlZmYliW5+jry6SxtJ7mRZGjhRpGWGJpXIAydqKCzHjgKCT0ANeN/Cjx3pfxJ+It74guNF8T6TrTaebKxtdZ8J6ppqWlmJN7h7i4t44nmkfYzIrkARqFzh2YinJ/1fZ/16XfkU1aDfp+ev4fjbudr4K8Aa74V1WW71P4leKPGNu8JiWx1u20qOGNiykSA2llA+4BSMFyuGOVJwQV2tFIQUUUUAFFFFAH/9k=)
i, each with multiplicity 1
◦ Roots are x = 1, x = -
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
+
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
i, x = -
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
-
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmAA0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9D/iT4+1vwZ4v+H9haWlhJpXiHW10m4mmZ2nXNpdzkoowq4+zIMktne3yjaCfRK8x+L/wy8U/EDX/AARf6D4n0jQIPDWqf2uYNR0OW/a5m8iaALvS7gCJsuJONrHdtOQAVb06q93lVt9SpNXVu343f6WPmD4s/Br4bfDSMaxbfs1/DfW/CVoYjql6um2MN9EjOFZ7e1+yMs4QNkhpYmOCFDHGfonwt4T0PwNoVronhvRtP8P6La7vs+naXapbW8O5i7bI0AVcszMcDksT1Ned/ErTfiZq3jOxOjeHPCmueErHyrqK31XxNdadNLeK25ZJUj0+dWWMhWRd+Nw3nJCbfV4i5iQyKqSEDcqNuAPcA4GR74FJK0b3/r+v+HfRS0Y+iiikI//Z)
i, each with multiplicity 1
◦ Roots are x = 1 with multiplicity 1, and x = -1 with multiplicity 2
◦ Root is x = 1 with multiplicity 3