Question 1
Identify a reaction that follows a different decay process than the rest.
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxzXxW+M/iD4d/FLwvoyeJvAW3WtStrKDwbeyNFrd3bylkN1FO1wqrhlOI/s7BthUSFmAHQ+Pfhz8QvEXj6z13RvGXhix0qwjH2DSda8L3N/9nnIIe43x6jArSEEqpKfIpIXG5y1bxx8F/E3xOF1oXinxlYX3gS4uorxtPtdDNvqatHIsqRrei4KKgkQYIg8zZx5m756Wtk10e3/B13/Dye1SS113XT+unyu+634n9m/9pXXPjP40k0+fUPDV4kdlPPq2gWNncWeqeGLpJhGtrdGaZ/tOSJV8xI4hmMNtKutfS1eR/D/4K6z4c1zwzeeIfEum63aeE9Pk0vQYdN0P+z5Y4HSONjcyGeXzW2QxjESwR7tzGM4QR+uVbtZJfr387+m723bJ3bf9f18l6HHfFHx+/wAPPD9pdW1gmp6nqOoW2k6faz3P2aB7meQJH5s2x/LjyeWCO3ZVZiqnjfD/AMY/GPitPEOjaV4O0Cfxx4d1BLLVbB/FDf2ZCrwrMjrdraNMWKOo2NbIQwbOAFZu6+J+gTeKPAesaVb+HtA8Vz3UQRdI8UOV064O4HE2IZiVGN2PLOSoHy53DxzSPgP4w+Evw/k0f4e2vhqfVddvzeeIZkvZfD1tDFsCi302KC2uRbxhQEH8Sjc24yPvXNX1vt0/D/g3fZ2Surl21j87/jr+VvNdb6ex/C/xz/wsnwFpHiNtNn0aa8jYT6fcMHe3mR2jlj3Lw4DowDjhhgjrXU1z3gC11Sw8I6bZ6vouleHbq1iFumm6JfyXtrBEnyxqkrwQMRsC8eWMdOcZroa0lu/6/wAzNbahRRRUjCiiigD/2Q==)
U →
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxzHxZ+MniP4f/FDwxodv4q+H8La5qVtY2vhHUmdNYuIJSyG7SY3CgBXB/di3YN5ZUSb3AHR+Pfhz8QvEXj6z13RvGXhix0qwjH2DSda8L3N/9nnIIe43x6jArSEEqpKfIpIXG5yyeKPhJ4p8eXx03xL4v0zU/A5v4NROmR6AYtQ3wypPHF9rFwUEQkQDiDzNnHmbvnpLp6/1rrv+Hk9qnZJ21dvx/wCB12u+63Z4Fv8A4pL8Qk0jxN4h8H65pttYfaNTXRPD1zYSW0z8QxrLJfzh87ZGIMakKqk43qD63XLfDnwZceCtCnh1HU/7c1u+u5b/AFLVPJ8n7TO5xlY9zbERFjiRdx2pEgySMnqaetlci1jifjN8T7X4OfDrU/Fd5AlxDaPBEFmnFvCrSzJErzTEMIoVMgZ5CDtRWOGIAPnth+0P4m1H7JosXgzSH8ZX2qzabZIniN30S6WK2FzJLHqAtN7bV3IUFuW8xWGNqs49C+MPg/UvHHgmXTNLFjcTi5guJNO1SR47PUoo5FaS0nZFcrFKoKMdjjB+ZHXKnyG2/Zz1O2+Huu6RB4A+GMaazqkF1D4QvkkvvDuhqkIje5hhNtGJ5mI3mNY7VWLkbwwaSSVzPm+VvvX/AAVv620b00dl6/1/Xyu9D174RfEyL4qeFZtTFrDY31lf3OlX9rbXi3cMV1byGOVY5lA8xNwyrFUYgjciHKjtq4r4PfCvTfg14DsfDOmTSXSQtJPPdSqqNPPIxeR9igLGpYnaigKihVAwBXa1bM1fr/S6fgFFFFIYUUUUAf/Z)
Ac
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdwzxv4r8e+C/GugXZn8OXvhDU9Wj0x9ISznTUoomikZroXRn8tvL8syPF5AxGrnzCV5Tx78OfiF4i8fWeu6N4y8MWOlWEY+waTrXhe5v/ALPOQQ9xvj1GBWkIJVSU+RSQuNzlqWpfCn4h6p4+vdbufGvhW60q4T7HHYXXhS5ee0smwJooZhqQRXkwS0piJJ25BVFUK7STXnv+vk/wTutbGjUXfXp+Pl6b+bVtVu34M/He0+NfiK4udG8U+FTpK2xmj8MQSi411IiV8q7uds4+zK4biFoWIDITIGYxr7NXi/wq/Z/1DwDfeFRqniHTNW0rwdp82l+HbbTdCGnzRQSBFb7VL50gmfZFGP3SQIW3MyMdmz2itJJKyi7r+v66+WmiyV93/X9fI4n4zfE+1+Dnw61PxXeQJcQ2jwRBZpxbwq0syRK80xDCKFTIGeQg7UVjhiAD5pf/ALT+qaJ4ail1Xwxo1lrt14ij8OWcv/CRltAnlkgMyyf2l9lDBflMWPs5bzsIAc7h6X8YfB+peOPBMumaWLG4nFzBcSadqkjx2epRRyK0lpOyK5WKVQUY7HGD8yOuVPi8H7NWt2Xh6dbfwj4Ej0u41UXs3wuW7mHhpoxamDHmfZCu8yYuCPsYQuoG3ePPOSb95tdrfetfzX5paN3pZK3f+vlv0vtc9w+Ffje8+IXg231jUNHGiXjTTQSW0Vz9qgYxyMnmwT7U82F9u5H2ruVgdo6V11cD8Evh9c/DTwONIuUsbPfeXF5FpWlO7WOlxyyF1tLYuFJijBwPkQddsca4Re+rSWjJ7/P/AIAUUUVIBRRRQB//2Q==)
Ra →
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxH458TfEXwj4z0Ge1PhzVfDWratHpSaGtpcR6iqvFI32gXfnFGCFDI8Yt+I1chyV5PHvw5+IXiLx9Z67o3jLwxY6VYRj7BpOteF7m/8As85BD3G+PUYFaQglVJT5FJC43OWpan8NPinN49vvEtl498HfMn2ewt9T8G3dy2nwHG5I2TVY1y5ALvsDNhQflVQBdPV/18/wvfc0ajZ69Px/4G77tW1W+p4G8SePLb4mal4V8XTaDrVr/ZMeqwaloFhNZfZGaZ4/s88cs828sFLJIGTd5Uo2DaDXqFeW/CT4d+PPA1/eSeJfF/hzxLBel57uex8NXFjfXNwcBZJJnv51Kqo2iNY1CgKF2quK9Spu1l/X9W2893rczfxO23/A/V6+V7LSxxPxm+J9r8HPh1qfiu8gS4htHgiCzTi3hVpZkiV5piGEUKmQM8hB2orHDEAHk9A+P1y/hy+uPEHhyK31uPV10XT7Hw9qQ1K21m4eISItpcvHAGwN4cuqCMxSFjtUtXWfGHwfqXjjwTLpmlixuJxcwXEmnapI8dnqUUcitJaTsiuVilUFGOxxg/MjrlT4LffslajdaTZ3cXhHwNbx2uuDVY/htFe3CeHBEbJrSVPNW2A3PvMzYtPLLAKUJLStMbvmv8vw12fmuvmtrt2srb6/8D/Ppfoz6a8MXOuXejxyeItO0/StVLMJLbS7972BVydpErwwsSRgkbBg8ZPU61effA74czfC7wKNGmh0/TxJe3N9HpOjs7WGmJNKZBa2xcKTEm4gHZGCSSscakIvoNXK19CQoooqRhRRRQB//9k=)
Rn
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdwfEz4s6n4S8f+AvD+kafbX1tq+sDT9VuZnO+3VrO6niSJQR+8Y2+SWOFXsd4Ij8e/Dn4heIvH1nrujeMvDFjpVhGPsGk614Xub/7POQQ9xvj1GBWkIJVSU+RSQuNzluJ+Mv7I1z8T/G+ieIdN8a3nh77NfpqeoWzXmsTJdTiFoCYUj1SKG2Hltj5Ii3ABYoXR6g0rcy01/4HfT8u25o+XV+X42/r8ddm637N/wC0rrnxn8aSafPqHhq8SOynn1bQLGzuLPVPDF0kwjW1ujNM/wBpyRKvmJHEMxhtpV1r6WryP4f/AAV1nw5rnhm88Q+JdN1u08J6fJpegw6bof8AZ8scDpHGxuZDPL5rbIYxiJYI925jGcII/XKHayS/Xv539N3tu2Z7tv8Ar+vkvQ474o+P3+Hnh+0urawTU9T1HULbSdPtZ7n7NA9zPIEj82bY/lx5PLBHbsqsxVTxWi/tFxi317Tdf0WC38aaRq0OiHQdA1NNRS8u5oPPgjgmdITkxZZvOSLYEkJ+Rd5734n6BN4o8B6xpVv4e0DxXPdRBF0jxQ5XTrg7gcTYhmJUY3Y8s5KgfLncPn69/Ywg0nwloY0/SfC3ibWLXXH1rUtA1CJ9K0C+Elq9sbWKGJJhBBEjgojRzBih35Z2cQk/ev8AL8PXXfVprXbS45bJrz/XX0208nrrp9KeGLnXLvR45PEWnafpWqlmEltpd+97Aq5O0iV4YWJIwSNgweMnqdavPvgd8OZvhd4FGjTQ6fp4kvbm+j0nR2drDTEmlMgtbYuFJiTcQDsjBJJWONSEX0Grla+hIUUUVIwooooA/9k=)
Cm →
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdw74kfFfUvCvxD8AeHdJsbS7tNZ1kadq13cOS1sr2lzPGkaqR+8Y2+SW4VexLqRD49+HPxC8RePrPXdG8ZeGLHSrCMfYNJ1rwvc3/ANnnIIe43x6jArSEEqpKfIpIXG5y3G/F39ky6+I/j/w/4n0zxneaAbLUo9Wv7V73WpUu7hYWhJhSLVYYrUGNsZjj3cAFipdG0pOKa51pr/wPl/Vty3yq762/G35/8HXZvuPB3xX1LxV8bPE/hb7DaReHNP0az1GwvUcvPdtJcXUMrnnaI82+FAGTgtnDAD1GvAPhh+y5d/DD433/AI1tPF9xeaDNpaaTbaDeXGrXcsECO7x5uLrU5kcgyMMeSFA+4sZZy/v9E3FqPL2X3ky+J220/Jfrc474o+P3+Hnh+0urawTU9T1HULbSdPtZ7n7NA9zPIEj82bY/lx5PLBHbsqsxVTz3gn41vrVn4xttd0e3sPEvhO6js9R0zQ9RGpxSSyxpJAkEpjhZmcSIu2SOMhiR93DHqfifoE3ijwHrGlW/h7QPFc91EEXSPFDldOuDuBxNiGYlRjdjyzkqB8udw8d0v9lvUPA/w3ntfCOvDRPGEmoHWZP7Bgs9L0x7jy/KS3iims71ba2jQ4QLG75G5mZmLVhqlJv5fh+Wr6p3ta6HbWNv6/4D0X9aeufCHx+fip8L/C3jA6edJOt6fDfGxM3nGDeobZv2ruxnGcDNdfXlP7L/AMPPFXwo+CPhvwj4xvbbUNZ0iH7L59ndC4iMS8IFYWtuQAOArIWHd3PNerV01uT2kvZ/DfT06E3T2CiiisQCiiigD//Z)
Pu
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxJrPj7xRo/x88PeFXtdKbwvq+j6jexeUJHvmmtWtBksWWNFb7Sy7NrH5A28biq1/Hvw5+IXiLx9Z67o3jLwxY6VYRj7BpOteF7m/+zzkEPcb49RgVpCCVUlPkUkLjc5ZvjT4SeKfFvxY8NeKo/Fmk2OkaTpt3pkumf2HM9zOl0YftDJci8URt/o8ew+U2zLZ35GHHb7/AL7O3fS/rbsa+6nrrp/Vv12vr8+C/Zv/AGldc+M/jSTT59Q8NXiR2U8+raBY2dxZ6p4YukmEa2t0Zpn+05IlXzEjiGYw20q619LV5H8P/grrPhzXPDN54h8S6brdp4T0+TS9Bh03Q/7PljgdI42NzIZ5fNbZDGMRLBHu3MYzhBH65TdrJL9e/nf03e27Zlu2/wCv6+S9DifjN8T7X4OfDrU/Fd5AlxDaPBEFmnFvCrSzJErzTEMIoVMgZ5CDtRWOGIAOR4E+L2oa94Y8Rajr/h6HT7vRrv7IE0HUf7UtNRYojJ9kuDFCZGLOIirIm2QFScDNa/xh8H6l448Ey6ZpYsbicXMFxJp2qSPHZ6lFHIrSWk7IrlYpVBRjscYPzI65U+SaZ+zr4o0fwdq7eHZtO+G2qyaimp6b4V8G3cC6PaSJB5JXzrrTZlXzMtKzRWceG28MwaR803abfy/DXz6/5bXrR2S/ry/q2++57F8IfH5+Knwv8LeMDp50k63p8N8bEzecYN6htm/au7GcZwM119eU/sv/AA88VfCj4I+G/CPjG9ttQ1nSIfsvn2d0LiIxLwgVha25AA4CshYd3c816tXRW5PaS9n8N9PToTdPYKKKKxAKKKKAP//Z)
Po →
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxNqvjzxPpf7QHhvwnLBpI8LazpGo3kToJXvvNtWtBuZsqiKftTDYFY/IG3jdtFXx78OfiF4i8fWeu6N4y8MWOlWEY+waTrXhe5v/ALPOQQ9xvj1GBWkIJVSU+RSQuNzlneLPhV4q8SfGDwr4vi8VaRZ6To2n3WnS6UdEna4uEujCbhlulvE8pv8AR49hEbbMtnfkYqFtL+f5O1/K/wB3Y091N310/q367X16byeDvivqXir42eJ/C32G0i8Oafo1nqNheo5ee7aS4uoZXPO0R5t8KAMnBbOGAHqNeAfDD9ly7+GHxvv/ABraeL7i80GbS00m20G8uNWu5YIEd3jzcXWpzI5BkYY8kKB9xYyzl/f6qbi1Hl7L7yJfE7bafkv1ucT8Zvifa/Bz4dan4rvIEuIbR4Igs04t4VaWZIleaYhhFCpkDPIQdqKxwxAB5bw18VvH3i/QdSOl+BdCm16w1E2bk+KHOjTx+Wr+bDerZtJIQX2FPs42ujgkYBPU/GHwfqXjjwTLpmlixuJxcwXEmnapI8dnqUUcitJaTsiuVilUFGOxxg/MjrlT5HpPwi+JHgTwvqln4I8O+CvDEOuagk134b0jX7qwsdLt0iVHWymSwbEs7KWd1t4duflBkzMco/a5vK34a/mv0WjdKzsvX+vX8++6Pafhf45/4WT4C0jxG2mz6NNeRsJ9PuGDvbzI7Ryx7l4cB0YBxwwwR1rqa57wBa6pYeEdNs9X0XSvDt1axC3TTdEv5L21giT5Y1SV4IGI2BePLGOnOM10NXLd/wBf5ma21CiiipGFFFFAH//Z)
Pb
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxH458TfEXwj4z0Ge1PhzVfDWratHpSaGtpcR6iqvFI32gXfnFGCFDI8Yt+I1chyV5PHvw5+IXiLx9Z67o3jLwxY6VYRj7BpOteF7m/8As85BD3G+PUYFaQglVJT5FJC43OWpan8NPinN49vvEtl498HfMn2ewt9T8G3dy2nwHG5I2TVY1y5ALvsDNhQflVQBdPV/18/wvfc0ajZ69Px/4G77tW1W+p4G8SePLb4mal4V8XTaDrVr/ZMeqwaloFhNZfZGaZ4/s88cs828sFLJIGTd5Uo2DaDXqFeW/CT4d+PPA1/eSeJfF/hzxLBel57uex8NXFjfXNwcBZJJnv51Kqo2iNY1CgKF2quK9Spu1l/X9W2893rczfxO23/A/V6+V7LSxxPxm+J9r8HPh1qfiu8gS4htHgiCzTi3hVpZkiV5piGEUKmQM8hB2orHDEAHk9A+P1y/hy+uPEHhyK31uPV10XT7Hw9qQ1K21m4eISItpcvHAGwN4cuqCMxSFjtUtXWfGHwfqXjjwTLpmlixuJxcwXEmnapI8dnqUUcitJaTsiuVilUFGOxxg/MjrlT4LffslajdaTZ3cXhHwNbx2uuDVY/htFe3CeHBEbJrSVPNW2A3PvMzYtPLLAKUJLStMbvmv8vw12fmuvmtrt2srb6/8D/Ppfoz6a8MXOuXejxyeItO0/StVLMJLbS7972BVydpErwwsSRgkbBg8ZPU61effA74czfC7wKNGmh0/TxJe3N9HpOjs7WGmJNKZBa2xcKTEm4gHZGCSSscakIvoNXK19CQoooqRhRRRQB//9k=)
Rn →
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9APjJ4l+IPgq3PiHw9J4eutDspbWOXQruynkv9TMk6RskFysyJDId+1FMMu5toJXdxJrPj7xRo/x88PeFXtdKbwvq+j6jexeUJHvmmtWtBksWWNFb7Sy7NrH5A28biq1/Hvw5+IXiLx9Z67o3jLwxY6VYRj7BpOteF7m/+zzkEPcb49RgVpCCVUlPkUkLjc5ZvjT4SeKfFvxY8NeKo/Fmk2OkaTpt3pkumf2HM9zOl0YftDJci8URt/o8ew+U2zLZ35GHHb7/AL7O3fS/rbsa+6nrrp/Vv12vr8+C/Zv/AGldc+M/jSTT59Q8NXiR2U8+raBY2dxZ6p4YukmEa2t0Zpn+05IlXzEjiGYw20q619LV5H8P/grrPhzXPDN54h8S6brdp4T0+TS9Bh03Q/7PljgdI42NzIZ5fNbZDGMRLBHu3MYzhBH65TdrJL9e/nf03e27Zlu2/wCv6+S9DifjN8T7X4OfDrU/Fd5AlxDaPBEFmnFvCrSzJErzTEMIoVMgZ5CDtRWOGIAOR4E+L2oa94Y8Rajr/h6HT7vRrv7IE0HUf7UtNRYojJ9kuDFCZGLOIirIm2QFScDNa/xh8H6l448Ey6ZpYsbicXMFxJp2qSPHZ6lFHIrSWk7IrlYpVBRjscYPzI65U+SaZ+zr4o0fwdq7eHZtO+G2qyaimp6b4V8G3cC6PaSJB5JXzrrTZlXzMtKzRWceG28MwaR803abfy/DXz6/5bXrR2S/ry/q2++57F8IfH5+Knwv8LeMDp50k63p8N8bEzecYN6htm/au7GcZwM119eU/sv/AA88VfCj4I+G/CPjG9ttQ1nSIfsvn2d0LiIxLwgVha25AA4CshYd3c816tXRW5PaS9n8N9PToTdPYKKKKxAKKKKAP//Z)
Po
Question 2
If 1.0 gram of an isotope has a half-life of 15 hours, the half-life of a 0.50 gram sample of the same isotope is ________.
◦ 60 hours
◦ 30 hours
◦ 7.5 hours
◦ 15 hours
◦ 3.75 hours