This topic contains a solution. Click here to go to the answer

Author Question: What will result from applying positive pressure below the critical opening pressure to alveoli that ... (Read 59 times)

student77

  • Hero Member
  • *****
  • Posts: 567
What will result from applying positive pressure below the critical opening pressure to alveoli that are collapsed?
 
  A. The patient's hypoxemia may be corrected.
  B. The collapsed alveoli become overdistended.
  C. The lung's pressure-volume relationship changes sharply.
  D. Ventilation fails to enter these alveoli.

Question 2

Calculate a patient's alveolar ventilation (A) when the respiratory rate (f) is 12 breaths/minute, the tidal volume (VT) is 600 ml, and the dead space volume (VD) is 150 ml.
 
  A. 7,200 ml/minute
  B. 5,400 ml/minute
  C. 4,000 ml/minute
  D. 1,800 ml/minute



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

cclemon1

  • Sr. Member
  • ****
  • Posts: 312
Answer to Question 1

ANS: D
A. Incorrect response: Perfusion will continue past collapsed alveoli.
B. Incorrect response: The collapsed alveoli do not inflate at all when the critical opening pressure is not achieved.
C. Incorrect response: The lung's pressure-volume curve remains flat because volume does not change as no gas enters these alveoli.
D. Correct response: Because the critical opening pressure is not reached, these alveoli fail to open, and ventilation continues to be absent while perfusion persists. Consequently, the patient's hypoxemia remains uncorrected.

Answer to Question 2

ANS: B
A. Incorrect response: See explanation B.
B. Correct response: This patient's alveolar ventilation (A) is calculated as follows:
STEP 1: Determine the dead space ventilation (D).
D = f(VD)
= (12 breaths/minute)(150 ml)
= 1,800 ml/minute
STEP 2: Find the minute ventilation (E).
E = f(VT)
= (12 breaths/minute)(600 ml)
= 7,200 ml/minute
STEP 3: Calculate the alveolar ventilation (A).
A = E  D
= 7,200 ml/minute  1,800 ml/minute
= 5,400 ml/minute
Alternatively,
12 breaths/minute (600 ml 150 ml) = 5,400 ml/minute

C. Incorrect response: See explanation B.
D. Incorrect response: See explanation B.




student77

  • Member
  • Posts: 567
Reply 2 on: Jul 16, 2018
Excellent


gcook

  • Member
  • Posts: 343
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Patients who have been on total parenteral nutrition for more than a few days may need to have foods gradually reintroduced to give the digestive tract time to start working again.

Did you know?

Prostaglandins were first isolated from human semen in Sweden in the 1930s. They were so named because the researcher thought that they came from the prostate gland. In fact, prostaglandins exist and are synthesized in almost every cell of the body.

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

Did you know?

The most destructive flu epidemic of all times in recorded history occurred in 1918, with approximately 20 million deaths worldwide.

Did you know?

Historic treatments for rheumatoid arthritis have included gold salts, acupuncture, a diet consisting of apples or rhubarb, nutmeg, nettles, bee venom, bracelets made of copper, prayer, rest, tooth extractions, fasting, honey, vitamins, insulin, snow collected on Christmas, magnets, and electric convulsion therapy.

For a complete list of videos, visit our video library