Author Question: How to calculate the time it takes for an object to go from its maximum height it its landing position? (Read 3004 times)

xclash

  • Hero Member
  • *****
  • Posts: 681
I totally don't understand how to calculate this. Hint: Use potential energy calculation (PEgravitational=mgh) m=mass, g=gravitational field pull (9.8) and h=height, estimated mass, and kinetic energy formula (KE=.5mv^2). I'll try figuring this out again, but it's a problem I've been stuck on! Thank you in advance!



frankwu

  • Hero Member
  • *****
  • Posts: 549
OK:

At its maximum height, assume the object is not moving up or down.  The object posseses

(1)  PE = mgh

When it hits the ground, it will have lost all its PE, which will have been converted into KE:

(2)  KE = .5*mv^2

The force acting on the object as it falls is

(3)  F = ma, where the "a" represents acceleration imparted to m when the force F on it is converted into motion.  In the context of the earth's gravity, the "a" is what we symbolize by g:

(4)  F = mg,  where

 g  = 9.8 m/s^2 = 9.8 (m/s)/s, (meters per second) per second.

Velocity is meters/second, and acceleration is the rate of change in velocity, or velocity/second.

If you know the acceleration, then you know the velocity after t seconds:

(5)  v = gt

Putting all of the above together:

(6)  mgh = .5*mv^2      since KE = PE at impact.  Substituting for v from (5), we get

(7)  mgh = .5 * m * (gt)^2  = .5 * m * g^2 * t^2  

Canceling terms common to each side, we get:

h = .5 * g * t^2

Rearranging and solving for t, we get

(8)  t = ?(2h / g)   <<---ANSWER

Notice that the time is not dependent on the mass.
.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

The eye muscles are the most active muscles in the whole body. The external muscles that move the eyes are the strongest muscles in the human body for the job they have to do. They are 100 times more powerful than they need to be.

Did you know?

The human body's pharmacokinetics are quite varied. Our hair holds onto drugs longer than our urine, blood, or saliva. For example, alcohol can be detected in the hair for up to 90 days after it was consumed. The same is true for marijuana, cocaine, ecstasy, heroin, methamphetamine, and nicotine.

Did you know?

Women are two-thirds more likely than men to develop irritable bowel syndrome. This may be attributable to hormonal changes related to their menstrual cycles.

Did you know?

Addicts to opiates often avoid treatment because they are afraid of withdrawal. Though unpleasant, with proper management, withdrawal is rarely fatal and passes relatively quickly.

Did you know?

To maintain good kidney function, you should drink at least 3 quarts of water daily. Water dilutes urine and helps prevent concentrations of salts and minerals that can lead to kidney stone formation. Chronic dehydration is a major contributor to the development of kidney stones.

For a complete list of videos, visit our video library