This topic contains a solution. Click here to go to the answer

Author Question: Why are winds blowing over mountains generally stronger than winds blowing at the same level on ... (Read 52 times)

anshika

  • Hero Member
  • *****
  • Posts: 510
Why are winds blowing over mountains generally stronger than winds blowing at the same level on either side?
  What will be the ideal response?

Question 2

How can winds be observed by satellites?
  What will be the ideal response?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Carissamariew

  • Sr. Member
  • ****
  • Posts: 359
Answer to Question 1

ANSWER: When wind meets a barrier, it exerts a force upon it. If the barrier doesnt move, the wind moves around, up, and over it. As stable air flows over a ridge, it increases in speed. Thus, winds blowing over mountains tend to be stronger than winds blowing at the same level on either side. In fact, one of the greatest wind speeds ever recorded near the ground occurred at the summit of Mt. Washington, New Hampshire, elevation 1909 m (6262 ft), where the wind gusted to 201 knots (231 mi/hr) on April 12, 1934. A similar increase in wind speed occurs where air accelerates as it funnels through a narrow constriction, such as a low pass or saddle in a mountain crest.

Answer to Question 2

ANSWER: Geostationary satellites positioned above a particular location show the movement of clouds. The direction of cloud movement indicates wind direction, and the horizontal distance the cloud moves during a given time period indicates the wind speed. In addition, a specialized satellite-borne instrument called a scatterometer (a type of radar) can measure surface winds above the open ocean during all kinds of weather by observing the roughness of the sea. From the satellite, the scatterometer sends out a microwave pulse of energy that travels through the clouds, down to the sea surface. A portion of this energy is scattered (bounced) back to the satellite. The amount of energy returning to the scatterometer (called the echo) depends on the roughness of the searougher seas have a stronger echo because they scatter back more incoming energy. Since the seas roughness depends upon the strength of the wind blowing over it, the echos intensity can be translated into surface wind speed and direction. Surface wind information of this nature can be extremely valuable to the shipping industry, as well as to coastal communities. Hurricanes and other storms over the open ocean can be carefully monitored to see how their winds are changing. And incorporating sea surface wind information into computer forecast models may have the benefit of improving weather forecasts.




anshika

  • Member
  • Posts: 510
Reply 2 on: Jul 13, 2018
Wow, this really help


mcabuhat

  • Member
  • Posts: 344
Reply 3 on: Yesterday
YES! Correct, THANKS for helping me on my review

 

Did you know?

There can actually be a 25-hour time difference between certain locations in the world. The International Date Line passes between the islands of Samoa and American Samoa. It is not a straight line, but "zig-zags" around various island chains. Therefore, Samoa and nearby islands have one date, while American Samoa and nearby islands are one day behind. Daylight saving time is used in some islands, but not in others—further shifting the hours out of sync with natural time.

Did you know?

The word drug comes from the Dutch word droog (meaning "dry"). For centuries, most drugs came from dried plants, hence the name.

Did you know?

Warfarin was developed as a consequence of the study of a strange bleeding disorder that suddenly occurred in cattle on the northern prairies of the United States in the early 1900s.

Did you know?

Before a vaccine is licensed in the USA, the Food and Drug Administration (FDA) reviews it for safety and effectiveness. The CDC then reviews all studies again, as well as the American Academy of Pediatrics and the American Academy of Family Physicians. Every lot of vaccine is tested before administration to the public, and the FDA regularly inspects vaccine manufacturers' facilities.

Did you know?

The effects of organophosphate poisoning are referred to by using the abbreviations “SLUD” or “SLUDGE,” It stands for: salivation, lacrimation, urination, defecation, GI upset, and emesis.

For a complete list of videos, visit our video library