This topic contains a solution. Click here to go to the answer

Author Question: BMtvel79AIZk6NZz4ejzgRSjZiHgRiu0pWbKUlCl3mwwePsZEBDvEcNAECdielasolHNbzlkaYyxZmvLcwUa4de5kbI8KUauuZ3dGVBNhfWeUOwfjbU8kQC2KTM72qL1jGZXIFv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnj (Read 68 times)

cabate

  • Hero Member
  • *****
  • Posts: 537
BMtvel79AIZk6NZz4ej zgRSjZiHgRiu0pWbKUl Cl3mwwePsZEBDvEcNAE CdielasolHNbzlkaYyx ZmvLcwUa4de5kbI8KUa uuZ3dGVBNhfWeUOwfjb U8kQC2KTM72qL1jGZXI Fv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnjvx/GEXWLK+S/ljWSy1gdZYyvjjfBfZE1ob5M2bz4rY0wMOKyIAxWvnnntuooiAn4iK3LnzyP1Vq8uIMZP0gy2R2ToYsdS0DgjpRZSdX9qgSRRiwgSFOgUUGF8il6WJrHjugO3ndVs8E/pE+Ekef3F/UpSxSnodBL58oldUZGwSWyHlGn1vGgmoA8BpffBRW3MCkydPNocXkPogzUbDMrIRvq7GO4MSJUuqmCgjvfoOsIlMRoIlJrgTm8xqfFHitrShDh1R6LlDZMDYx7hDRKh8YNImFRGu9iExf5wD2GdRhcteJdRAwB34ihFhEi/VCIX3BbeJIocMG6NOrIK0bv1e9EkDUhvMyQEDBlgfhngRCofY+pk9Rw5LS4+fPNO4Y7ZHDazZHquvWZ/I9sAdbEPM9nzvarTgjdVpcant4fC1BBHhtniyPAZncBL+clvIE6ro4Q/Ohp08m7c5/ti2UH0PbicYtseJZc7aIIrs1at39GkDUhsUdw8cONBOZS2UL39MRFSvXl2KFS0ql11+uTRu+oJMnDpHOIod/viMhOePE6IJ/HG+C0G6K2Fp7HD8QUR07mJ2hmA8njtmfyL+eN/l+bMV+xPxx4op1Qb6Qlx8F/zp0qOvFCxcVEaOHBV92rTH74oIvnjWJa+//vpEjoCf1ErkyJFTVdGLMmUmyxrqDPTCWTOZbeteNBj0aOCLwUgjJlhq8OljUo1ElnapsPhRCeBERCGZNnWaHLS0Dw4D0ZFwcX8ea+qNCUwnS3U4vJYvhoMMvjEQ4oF9/b36DbIeAWyrCji+YG2btDSFcvHZCKLLAgUKyt33VJHvRo23TnKuPoIGTk5IxNfXeCEBfyhYQzDSEwL+WJoxuugTguH3WzzZbkUk6QRHYu7s0cfGJq8aCN8MBu7wukxg3gOFnyY+9aK7INv7HnjwQX3d3dGnDDgeQIRSU0OBpbc5/meZSEi0fKu1ZSOwO0T4GFscAYbX257Yjh+4o84AJ0APAJeiVj4QzHCpoIQrSUUEhn8fRZlxF/dnaY0dPNgfHAz2jegR8Yn4ZRmDYkrOaXAOYLkVFBcvUUrqN2hoji7g+AARSoE1foSxjM9EkOEqXaaMbetnWczzB/+An7ClMRV+zP+16xK6WZrt2eZEBNxJlj8xEeH6RGB3CGAS84fld8cfC34T8WdLAn/09ZetjJZRI/szZMRYKX/7nVaMm57wuyICjBkzRq655horVGECx0/msiowChctJq++0cpS0wzGXB0MnIEVWkaDgSPAwVNtSsEcDt+nGLnYScGEpKjkwMEfzfh7EWFV82rwvehwl95XH8NzbNX7MsiWeVDjzxoSr2nbYVRA4ASIIhmIgUNHyu133CVNmjYNxXAnAFRK4whoHhTvCLiIKLNmyy4PPVJTnfNUE6GOOxpRqpBYusI1gmFCMbEYX+OOXpZijLhj/FEx4Fod708iIrbrJP7B/h/PH7hDF0Jf+0Da2xcxIT5xQH4nz7yFGkHOd6flPf1sQylYqJDMmzs3+oQBxxPUK3EgF6cIx3OHi90aRYuXlHZfdbJshAtglpsj8CKUsYxxh26WZCT0QoQaJ+J4gVNgfdtHkr7ZFI7Aiw5/GYd2afCi/OH5sGvWzE5Fi6WgzQE4/pCGphB3zMRp8tCjNaVQ4UKybl3Y0nkiwIFcyYkI+EPzxHLlK0i3Xv0sgEGEev7gN3wmPVn+RDbnEP786Pjjt3hagKP8iedObOlU+YP9ifFHg5d4/hCEI0DxXXMWLLdi0Aeq1rAGeVu3pn0xZTz+UESQzqtbt65ceOGFdh5CfER5xx1RNzmNKtu276CO2lWvzyEqiJvMPjWEUsdgUzRCwaVLETEwTuEhCqxNqBp/tuaw5swXb/+jq2Xscu2ynXjw6t8tXSBc3AC4DIQrhlthnTaLFC1ubVF5/oATA9LSV111VbIilCxXtuzZ5dHHa2uUNi3GH6I2FDiGePXaSEhEa9ybNvs+JBF/dBLCBRoFYezjRQTjzCQ2fsXxh/vzHKh/uBPLXK1CPKwx3vL6Tnwut0ruFi+/JvnyFbDdQwEnBhh+iuEIYuLrsrjIjBYoWNDO9Gn/VZdYka6PKL0jcNksWvITxMAf0tNOiDoOObvDWvQ+FZzs4okXERj82H2iK54/2DSe3wKXlesi8eD4g+2Byxz0Rvo8b/4CMiXU0ZwwJCci/I6fChXKy80332LHxH8z8DsTeggJ448GnvH8wfa4ZnbuitmcQ/hD9iNBRNBsjM678dzBl/EYW3KP5w8dUeP4E9tJqNc4FRA1Hn7cAi+KjtMb/lBEgOXLl1srUYosk65vk5qm4r5sufK2Y2NqlJEgssQIo6ZsjTtKLzIoOAUmNV+iv2yAtmxTR7DPjL8XEQwCqWY/gP4y8WDqf5M5ACYx61lspfIdBSEEe7JdBqKSqs8ismTJkuhTBZwIsAe+QYMGtr59qAh12SwyEo88Vts6oTKZSTGyTul7SLio0hVb+m1YjH88d/jJJE0qIshQxDuQGHcQD3Hc4TVIZcId1kctBa0CgnXT5198TfJgGLp0jT5VwInCnDlzrAMqPWvgi7c9/MQW5cp1sxQsVMSCmFnKHaJKOul620NQQWSH7cHuIBgZ/3g+EIxw0WbdUuCRiKD7KQbfOIYNii7+JvWM7YGTLF2QuXL8cQdrmaBRDtFhs2GT5yR//kIyaPDg6FMFnAgkFRHURCAiPH/4Hb92V+X7pM+3g2O2B0FKjQ3jadl0HV/vt4w/cdxJjj9eRHC8uInNOO54/sR8V8Qf812R/Yn3XeMmTZfqDz0mRdTHTpgwIfpk6QtHJCJA7969rW8EneRwBH4yczGZ86vKzq+RwQsvvy5jJ84wEcGE9pEB6goxgbGmVgFnQHYCFbZ+I73L3d/bd6hyixMRpHu4j7tvwsWAkn7GASBQUHAuenQOACOCmuNwrdsqVLQ9whikgBMP23tfuLBkzpz5EBFqk/m2cnLjjVmlQhQVMImtGVVcwZMXEwkFuy7ChAvwh8nNhI1vew2PyFDY5E/KHXUqLH3hYHhe+GncUd5Q8Q93fAqarnD0Kwk48aBQ9tNPP7WD9thuzgnDnj/89FuJCWLafNrOdl6Z7Zm7SMeSZlSuPosxxk64JTLHA4Rk/LVj595IROSL2l7/ZktoSe9rHMIB6HPFC1DbgWH2xzkAamg4tPC6626QDh06Rp8o4EQhXkTQOOz++++PLWfE8yebBjHlyleUdl+6pTGr74sTogjEeP54O+L54GsZPH+8iDCxiWCI/m9XZLOS2h98l+MPwQu7HVfI4GGjpVqNRyR/gYK2bTW94ohFBBHeSy+9JP/4xz9st0b8ZPYX+7gLqbN4+NFa8u2g4TJbnXn8ehNfFOuErrmHm4B041odZShwDhS5bd+mIkJfY+qUqab0+F/8hXrjvrZ8oQPg1x8ZAETL/EUr7XXf++ATKVW6nL3XSZMmRZ8kIC1AQxaK5HLkyBGbwJ43iFKyFPS8J2PEZLZmMCoi2PmDKGRSGXf0WsY2UM8d5YFNSP25cfN2M/w9vIhQHnGuhruPiySMO/o4Hs/yBdwhCkDouh1GFAavkt79Bsl9D1SVK67MIF980T76FAFpAZZUa9WqZfURdNJlPnvueB6xtFG8ZCl56ZU3LHs0e77aHnUGcAe7g5PH7iAoYnwwTiAqnbC0szMSiYhfjVOOO+5+a7i8A1D7g6ilfoctwCYesHNLV8u3A4cpf6pJxoxXSfv2gT9pAS8i6FhJrQKdLOFP0mxoeRUSOVSIsjTG1nPO2CGLZHU2+tMVeyfwx/shzwsCmHj+FNRAm7MzEA0EOgkcgzs8LiH4xX/BH5f9dOKBpfhuPfpZ/V6um2+2c53SM45YRIC9e/faZOaUxqST2Q8IuzbY31353vulzSft3ICoY/cVsHxJGGyb2GqsEyb3WstUsPbEmQeIiClTplgHQ+cwEi7UG/dlK2l8CmguDkAHYMDg4VL7yacle45cUuX+B6xxVkDao1OnTna4EilEuBIvJGwyly8vOVVolCpT1lLAQ0eM1Ynl9ta7wjkmtONOzDEoB8hS0COA0/gw/F5EwCNaD/sIwnOHXhQ8xtYebfkC/uhPfU742urt9zSyvV2yZMlinVsD0h4YZ6JGhIQ/nCve9pDhogAzj457hdvvlM7d+1hBmueON9AWyES84SRPnAJCAGOOYNgeHaDkRQRNz+ANwoPL7bpwdVfwx+yPctJnr7Bx7334qb6HSsqf66SbcjEgbZB0OQP7kilTJuNRUiHBRXCcN18BebTmE9HyBkJiSRQEOzFh/LFgRvmjNsRnuYw/Wxx/2FbaWW0dvEE0eO4Yf7A/8CeyP5xIDX8Quzz/lOnzbNdR4cLFzI9yuFZ6x1GJCEBHrscff1z+/e9/26RNmpHgdwaJUxxLlipt+7m76IRmQJjEDAgXqUYGxiI/U3qr7Vqryo1mIcUKcQDXFDX6ruNbwhUZf/3iffqQ512yYp1V+XOewe0V75Q//enPdl7C8a6BoGPhk08+aa1Wn3/+edtaFA9uYy2Oi9+Twj/+mWeekfr168tzzz0ntG7l4vZ69erZzyNtipXe3k88eI7333/fOqEyQeBKcpOZpY9bcueROytVVof+voweN9XGmOgAI83loz43sRGjK22CxkREXkTENoscE5yG45hrPBbVPigHUf4891cdu8lDDz8mV1+TSXLnyWNLeAHpBwQDZKx8RiKpkODvYsWLy5VXXmFLmE2bvyhDho8xGxMfyDjuuO6jPsrk4rRglsAQEd1VRHA6MNkueIPR58Jx4EiwP5b5NPGwSuYtWinde38rd99zn2TLnlNFREUrKg5IO3gRgSBUH2ft+DkYkHN9kgoJzx8EKrV/LK2+/For66wLT+ANfiueP9iPRPxR3wV/vIggsCHY9dyJ5w/2B+GA3SHwpR7jyw5dpPpDj8pVV19jfvW7776LPkn6xlGLCEBqqHbt2nbaHmKBLz+pkOAqXqK4rVfSD6Bm7bry+RcdZerM+TJfv3j7Auc7QTHHBAYd3ZZZpBgTEZOn2CBxYmjCtVA4xW/qjHl2nvqYCdPtfP+69RpYKvyiiy9WAfEne3+8z6MFa7BkXI4UNBPBGfOaXERMAOf91FNP2W2NGzeWJk2a2O/sdIl37Dz+hRdeiD2eC+AMmzZtan/z2CM9Lz49vZ/NmzfbMlg8+LtNmzYWEVxxxRVWY8N2q/iLvhL5CxTQyXS15Mx1s5S97XZp9vzL0qPPAGswNGnaXDuECS7BCRrGsHzF5KS5lDvFk45u2zRSWKccQ3jAt2XR7xqVktHQyTtu4gz5rN3Xcnfle9UBlbTPV0Gj2qFDh0bvOCA9YdGiRValThADT5IGMd4WUT+RO8+tcu/9VdUZtJSBQ0bKAhWP7JYwu6MXP01IqEFHFJBlSCQilEuLNWjB0PM42z0U2S2LTPX54FO3Xt9YB1zsD/y5u3JlmT17dvSOA9IKXkTQPRIRAZjXCAjqs8iaJ82m33mnC4LzahDCbhqO7X7z7ffsrCiWyRPxZ4HjD4KA5SwEpxcRnTp2MntEbYxxJ44/iBD+JnjBdrF8e/e9VaR02duMP3dWuvOkyp6nSEQAHC1V96xj+z4Ahyi7aHIXL17CGlOVu62CNet58dU3pKc6hAmTZ5mCdwPDwUZLVKmtNRFBYSV9Iux0zu8P6LXfXRzXbHtv99mWPpoPLVi4WHr07Gnp8u7qQEhBHzxCp5scxoweLW0+/FCmT5tu5y4cCf75z39a8RfEBfyEENzmQT0JtyUVNzjWq9VhNm/e3P7PUdoerOOl5JTItHo/ZBuoZXn5xZdk0MCB0a2HgnU+xmvQoEH2e9KLbqkcyNZfoznGk0Nsli5b4RpN6bjb3n2atkR82Ksc2bf/B33vrmOlFxGL1AnY9j+dvBj9xSoq2DL1dafu0qjp81b5TObq7//4u31WjMr8+e6kxoD0CdoZ33fffcZfH8TE2x5EBH9TfY8zKFi4sNxz3wPyRN168mXHbjJxymxZsFQFhQYuJgr0IpghUmQJLEFE/GJic2bEH+zUQuUTTmPwd6Ok9QefWLbsXn3uKzNkkDP+eoZUvvvusHyaThAvIggOPchI3K3jxLJ8AQ1Wksumc5trqJjDOozeW+VBW2LFbhzCH8tSLFX+4LtURORHRHQ0TmF72DXE0hq+Dv4gQjjA75XX3rTMZ1kVD2efc7aceeaZdtTEyXYoW4pFBMCZtG3bVnLlymWdCUlDs687qZjwA0TkgJhgJ8f9D9awva+P1aojb7RqbWuY3Xp9a4cbYfzJREydMkU2btwg69au0Wtt4mudu9avWyebN20yR7hbScNyCwJn/fr1smrlyqO+Vq9eLQP697dmV+VKl5GG9etbagpBs2rVqmTT+LwmBo3MjHfa8bexREC0n/Q+HnTn48AY7sdx1TgzliPY1cC6PBH90eBEvh8eu2LFChk3dqxNnGfr1ZOypUpLruw55NtvvrHvM+l3vHbNGtm5Y4fs2UPTsJ2WLTncxf/36HuncdSmjRt1vBPG3q6IDzznxg3ro+WM7uYI4BGZC3jFyaFvvNXasmIPVK1uByARqbJXPONVV5kT4DMyxgHpHxzzzngRxMBJ1ruTRpXmDBATt5Wzpmf0JCFbUL3Go1LziadMBNBGeOiIcdZNcsWaTbamHS8i5ixcJqPHTZGBQ0dJxy695IUXXzXhwK4LliwyKm8yXJnBsmos8wX+pB9gm5ITEYBl7ieeeMLGjeUL+JIcf/BliAmWQW65Jbfccedd6rcek1pPOv507dlPRo6ZpPyZLitWbzb++OUMApjpcxYZt/oOGCrtvuoszyt/4GDVag9Z47qsGoDD4SuvvNIyvOnlPIyjwTGJCA+6WlapUsUGhEiVdcvDiQkGinQk2QnOVmAACxcpaoND449aT9S1c+DLliwlo0eNkvsq3yMlihaTMhy8cwKuckqYOypUkFwqdi48/z9yzl/PlMsvuVTuUIPx3nvv2Wdlu1A8jtVpQxzS+zhVgNPm4ihrvh9+Hg2O9/vxIoLvYdy4cVbncN8998gVOhn+pt8X39stOW+SO/U74/tM7ntO7au4cugejS54T3169bYD3NauXSc1az+pRv9uNfh3SJGiRW09lOi1tApECjzPO+9c4ystulOS8QlIOzBeHVW4YuQ54wdDj805nDOg+JJAhuP/s2bLZkcpIybvf6CaZSqqPfSI2R4CCH8U+GM1a8uDVWtIlQeqWsYqnzqIzJkzSVG1STflusn6n7B0QjDF/QPSD35PRADGi+MPGD/qbPBHv8cfdnHAH3iGHTT+3HufVK3+kPLnQduOCX9KKjc+Vz7cd39VO1/qoUce098fVDFb3pZvr818rS3b8hzwFn9IVpYA6GREqogIQPTarl07az5Fyhwn5JsLMSgMRPygOEHhRAZGgCJNUo98oaj50jpAEydMkH59+hoJWOfupROb7Tq9evSUTh06SvvP28nnn7VN1audDv5LL74ol198iTnCZ556Wj5u08ZelwPBVmrUHV9DAFLLabOMA5FwyjhthBm7GVhnOxoc7/dDhgBQF0F2YsaMGTJk8GD59JNPpHGjRpI7Vy659MILpVGDhvZ9Jvc9H+5q1/Zz6fDVV5ZN6Nu7j/Tu2VN6du9hxZLdux7+4ujmvsoVHAv3ZzmMLAjrmwUK5LfOqhU0WoWPudWJYDRoYkSdx9zQxvqkBulpllYZT8bVL3Ec3u44J0ERndXf5M9vW/xy577FMmWc/Mh8R0QX1mgR0UHlPsWc8ImMKz1zyNax1EcBeED6gfozu7BPbLfEdwBsGbcnBf2IGEfGkyCDJY4/4g+CFP4UK17MhEGOnDli/CmtATK2MHv2bJItW1Z7PkQDLRDImCFazj///FPG/qSaiPBgvfLtt982MXHOOeeY00HhsT5JdsJnKLj8oPgB4zGPPPKIrFmzRkrpQEycONHWxHuoeECpvdu6tTRr1kxeeeUVmXgc+z5AqnffeUdGjRx5RA48tZx2fMbhEyUhjpvH8FxHg+P9fpLePx4Y3tGjR8sHKjyGDRsW3Xp04IjkDz74QOrUrSOvvf667bOHA5yl0FNFBb9351Lj4K+uXbtKv379YiLCZSLW2pZkJi6GnywZtSJMYopMKbJKzqgEnHxg6YHxxBlwYCDr3dRqYbjj7Y63OfEXt2N7Hn/sMVkfZSLYFsjS5WN6G/dBPNDnhIJOnE3Dhg1t+x1zKSB9gawDjQW//vpryZPrZmmvwS3Nn7gtuYwEYBy/+eYbefrpp825M87UQxDUwh3805Hyh0wEr/nwww/HuEeg7J+Xn/D0VLE/qS4iPHAEH330ke0EQMGfffbZNrEx5GQcMOoYd758f5G5YOshIoJ6BIrr+MJxXlwYf9YdeV6yAkkzAqkBigpxPhQIHg1wTjhYTwocLe85vpARh81tSQsZOdGPdd34HQ88D/fleztaEQHS+v0wWckoHW2KDmeAEO3SpYvtsMEJkPLjtS+44AIr+GR7KOoeDvkLThEdUA/Tp3dv6zPC69MumfeMQ6F3PgKXI+DD0sWpCTiLcWaHUeXKlS1jgOHG7hAxYmOwNRTW8X9/EWkiGKivQUSQiYBL8Ip5dNZZZ5m9Yt0a8ZCSLc4BJwbYKtvOqQIiU4arpHTJklKyeDHzSX8EgiDGl3FmvL3fwg9hc3zb7HjuJOVPqWLFbTmDTAX2ClsMDxEi8BJ+xtvWkx36fR8fEeHBl0VkT2SJoKCYhYnMuhIOjcnpr7/+9a9WV7Fi+XITEWPHjLV0D6r/ww8/lFmzZqW7Lx9jQpofJ8dF1Ti34YgRO9zm02H8zvbG+GOAue8999xj/4OM3jhxH5YRyOawVHSkSG/v51iAoENQkH149dVXrW/FAw88YClo3kdS7lxyySUmiPr26SOF8xew4to333zTLgwDfwecPsBpkLXCITz66KO2pOX5gmNAXPgLQ0/2beXKlVKscJFYTQSRKUsltN4m7QwnA9I/CBJqP15TrrriSluabqZ+5GjGjvsiRPA7jRo1Mv4QDGN3uOK5k5Q/LGe0/ewzEw01a9Y04QAPsWWnIo67iIgHCpF19unTp9v2PYpaPtMvO/6iwI00OhOZ3RlE0Ol54kJWHDEpdy5IFx/lElG/9dZbdnXu3Dm6NQH+8XwX/EwaIfdRh3g0GZf09n5SE0SGHAZHC3Pqb5Jyh/QlIhMHkP/WW2XH9h2W2Qg4vUFWDJtCBgreENC0aNHC+qlg4P1FlmrDxo1SuEBBa1AEdygiPlkL3k53jB0zRrJck8muWTNnRrcePeDPhg0bjD/YRXjye/yhHquj2iJqxVgaPtVxQkXEkQLhUEgjyenTpkW3BAQcGRCq3bt0MxGxc8fRNxsLOL2B7UnaoCjg5MR2DVgL5stvRfpJd9QdL3j+IEJPF6RLEUFKmmggiIiAowVRA7s1gogISAniRcThivACTg6QRX36qafltVdeTbRkezxxOvIniIiAUwpBRAQcC4KIOHXwswoHdmX0/7b/CVvWDCIinYCBCCIiIKXwImL3rqPf1RJweoOdR94JBJzcoJZl7pw5smTx4hNWV3c68iddiQgGne2du3butMJKDrFhJ0DoBBfwR0D1U/zkO1ayFkpRE9XSoTAu4I+Ak6EnDMW7tC2mOJcU+PYdO0JG4iSF+jUrtGYc+f14Av7sUL/FFlHPn/0H9lsR+vF+7bRGuhIR9GYg/dTy9dfllptukpYtW8qrL7+coj4JAacXmKgcXFPr8ZrSsEEDyZk1m3XPZBdQet7dE5A+gFDg4L3nmze3c19efeUVebpuXVm+bNkp7wQCjh0sl3D0e6uWb8rNOXNK08ZN5ImatY763KOTEelKRDCRh333neS4MatkuOxyaxbSSoVE2KYXcCQgC1GjWjXJmS277Q/Pd+utdjhYQMCRYNHChbYdENuTL08euefuynb4W0DAHwGhSUsCfFfGy6/QIDiX1Hrs8VifnVMZ6UpEAIoqOQXysgsvlkwZM8r8efOi/wQE/DGGDh0imTJkNBHRvGmzE1aVHXDyA67Ur/eMOYGrr7xSevXqGf0nIL0B50zX0XvvvdeOSkjqrGkORatpLv6fFP7xNNbzz0EmHA74LpT8/2iW0lm6qFG1qlx56WWSOeNVdrLx6YB0JyL+p4qOlqE3XJtFaj3+eJo1Ngo4OcG6drkyZeTG666TSROP3/kqAacmRo4YKddnvlby35o30dkxAekLOHvfgZfLt+7nDAy69HIbTcW4+B2hEC80ePzHH38cezwX2QSWPunMe+aZZ0rr1q2POgih5T78IRD27+lUR7oTEYA22bfefLMdrMTABgQcKSiipMVtjqzZZPu2ozv9NCBg48aNlpJ+tl69UJCbzoFvoN00xyewow/wE0EQf0YQZ59wW1KnzjI5rarfe+89OeOMMywrAXhezlpJSQDLKZ43Z88hb7ZsedrUYqVLEUGV/a235Jbx48ZFtwQEHBmYuJy18eQTT5wW65EBqQscR90nn5TOHTsGEZHOQcE9AuFYTivmRFbuQzt/hMb9999vOwS5PSVFkezuue+ee2XwoEGnTQCcLkUE61DPaCSw5TSobA1IXVCcy5G/nMKY9NyPgIA/Apzp3KmTne8Ttnamb6SGiCATwbZM4Jc11q1bJ1mzZk2RiOD12nz4oZ3xc7ogXYoI0kw0mgqRQEBKQAZi4cKFYVdPwFEDm8NpnaE3TfpHaokIfpLB5KRNTgPmlOBLL71UduzYEd3zyEFx5vjx4+11TxekSxEBmMz6vqK/AgKODhREBf4EHC3gDI4gIP2DDIIXCIgHwE/+5sKR02yK+8TXTXhwojQiIj7j0Lt3b8tGJCc6jgTw53RbRtXPnD5FREBAQEBAwOFAptGLCC/8cPyIgPjCSv7PbUkLK8lUZM6cOdEJn2QkuO/ZZ5+dIhFxOiKIiICAgICAkwosN9EDAofPVapUKRMDCAuyCey2yJ8/v11/+ctfpFevXomWN3l8yZIl7bElSpSICQnu061bNzn33HPtyIWAP0YQEQEBAQEBJxXIPPTt21eGDBliF7/HL0PR7h4xwMXvSeEfP2jQoEMeC6hrCIXZR4Y0FxEownLlykmZMmXsKlCggF3+79tvv932bt9xxx2mNsuWLZso/RRw+iJwJ+BYETgUkFIE7jikuYhAAXbq1CmWlurQoUOivzt37mwFMuz95+927dodohoDTk8E7gQcKwKHAlKKwB2HNBcRgGIW33nMI/5vfX9SrVo1OyUtICAegTsBx4rAoYCUInAnnYgItupQQXvWWWfZtpvy5cvLn//8ZxsM+tdzGErXrl2jewcEJCBwJ+BYETgUkFIE7qQTEcG+WvbrUgTDyWlt2rSx3uWkgSpUqGBNQAICkkPgTsCxInAoIKUI3EkHIoLiFApOUG5stRk2bJjdfskll9gWnpBCDDgcAncCjhWBQwEpReCOQ5qLCN8chHaj3377rd1WsWLFWHHK0R7FGnD6IHAn4FgROBSQUgTuOKS5iKBN6TnnnGMNQQDVrH4Qhg4dGs7PCDgsAncCjhWBQwEpReCOQ5qLCIpRLrzwQunfv79Vum7fvt3+DmnEgD9C4E7AsSJwKCClCNxxSHMRwb7Z2bNnR38d+ndAwOEQuBNwrAgcCkgpAncc0lxEBAQEBAQEBJycCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIuCUwK+//gqZ7frll19iF7cHBBwp/ve//8V4A5eA/xkQkBySsz3w6HSBfu70JyLWrVsnzZo1k++//z66JSDg8IAnefPmlWuvvdau6667Tq6//nq7cuTIIX379pV9+/ZF9w4ISB4LFy6Ut99+W3LmzCm1atWSadOmyeLFi6VEiRKyY8eO6F4BAQlIzvZkz57deDRr1qzTQoCmSxHRqVMnufTSS2XMmDHRLQEBh8dvv/0mkyZNkj/96U92jRs3TubNm2cXXMqQIYM8/PDD8sMPP0SPCAhIjJ49e5rg7Ny5s8yfP19Wr14tc+bMkWrVqsk555wj27Zti+4ZEJCApLZnwoQJxp+uXbvKDTfcIK1atbLMxKmMdCcifvzxR2nUqJEULVpUGjdubH8HBPwR4Mk//vEPu+KXMIgUzjjjDDn33HNl9+7d0a0BAQlYsmSJZa3atGmTyN5g/L/77ju5+uqrZevWrdGtAQGJ4W3P3//+9xh/+PnRRx9JxowZZfz48XbbqYp0JSIw/lOmTJGRI0dKu3btLIKcPHly9N+AgMMDgeAn8qZNm+TgwYOyatUqadu2rVx22WXSo0cPixoCAuIBJz755BP5z3/+Y2IiKdQ2yoYNGwJ3Ag6LeNuza1eCK12+fLnxqmXLlqd0bVa6EhGsW5P++emnn2Tjxo1y4YUXylNPPWV/x4OJzW38DAgATOTzzz9f/vznP8s111xj65NEASyLffXVV9G9AgISY8+ePXLxxRebE9i5c2d0a0DAkeNwIoLf//nPf5ofO5WzoOlGRCAI5s6dK19++aWloLmeeeYZcwIUPMWD+5IuCiIiwINJyoRl/Xrq1KlWEDdx4kRp0aKFrXWf6inFgJQB3px99tnmAE5lQx9w/HA4EYFA5Xb4FX/7qYZ0IyJIF37wwQeSKVMmiyKzZMkil19+uZx11lnSunXrQ9KJQUAExCN+IscXUG7ZssXEReXKlUNhZcAh+Pnnn6Vu3bpy3nnnWfo5OZxO2/UCjh6HExErV6605Yw6deockk0/lZBuRATrju+//74sWrRIli1bFruoqr/yyisPO8EDAgBLYX4ik8Xy2L9/v/ztb38zIREizYDkwC4wMp6ff/75IWvXCE8q7hEbAQHJId72xG8l7927ty2VffPNN9EtpybSXESQUaAAjuKToUOHHpJhoMDyzDPPlCZNmtiaZdL/BwTACXqLkLX661//astfe/futWvUqFFWK1G+fHk5cOBA9IiAgASwC4OdGezxHzRokIlQuEOBLn+zhe9ULowLSDm87cFHca1du9b4w1IqfKpfv74FMqcy9DtIWxHBZL3pppvkggsusGUMRINfuiBCYCBQeaSFcuXKZetMAQHxgENww0cDV111lS2LcWXOnNmq79evXx8EaMBhQaaBXWHvvvuubfeENzS8wxmELETA4RBve7go6oY/r776qgwcOPCUFxAgzUUE642oN9TcmjVrEokEtulxOxGB/39YnwxICs8heMJFoyCyW1zcfqo3ewlIPRBFev7QpTJwJ+D3kNT2wBv4czoFu2kuIgICAgICAgJOTgQRERAQEBAQEJAiBBEREBAQEBAQkCIEEREQEBAQEBCQIngRceqXkAYEBAQEBASkKlQ/HEBErEZNhCtc4QpXuMIVrnAd+fV/q/8fYFOuTF4n2qYAAAAASUVORK5CYII= width=529 height=159 />


   
  a.
  A
   
  b.
  B
   
  c.
  C
   
  d.
  D
   
  e.
  A and C"

Question 2

How large a pressure increase (in atm) must be applied to water if it is to be compressed in volume by 1.0? The bulk modulus of water is 2.0  109 N/m2 and 1 atm = 1.0  105 N/m2.
   
  a.
  50 atm
   
  b.
  100 atm
   
  c.
  1 100 atm
   
  d.
  400 atm
   
  e.
  200 atm



Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340


cabate

  • Member
  • Posts: 537
Reply 2 on: Jul 28, 2018
Gracias!


Missbam101

  • Member
  • Posts: 341
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Fatal fungal infections may be able to resist newer antifungal drugs. Globally, fungal infections are often fatal due to the lack of access to multiple antifungals, which may be required to be utilized in combination. Single antifungals may not be enough to stop a fungal infection from causing the death of a patient.

Did you know?

A recent study has found that following a diet rich in berries may slow down the aging process of the brain. This diet apparently helps to keep dopamine levels much higher than are seen in normal individuals who do not eat berries as a regular part of their diet as they enter their later years.

Did you know?

The horizontal fraction bar was introduced by the Arabs.

Did you know?

In women, pharmacodynamic differences include increased sensitivity to (and increased effectiveness of) beta-blockers, opioids, selective serotonin reuptake inhibitors, and typical antipsychotics.

Did you know?

Allergies play a major part in the health of children. The most prevalent childhood allergies are milk, egg, soy, wheat, peanuts, tree nuts, and seafood.

For a complete list of videos, visit our video library