This topic contains a solution. Click here to go to the answer

Author Question: BMtvel79AIZk6NZz4ejzgRSjZiHgRiu0pWbKUlCl3mwwePsZEBDvEcNAECdielasolHNbzlkaYyxZmvLcwUa4de5kbI8KUauuZ3dGVBNhfWeUOwfjbU8kQC2KTM72qL1jGZXIFv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnj (Read 50 times)

cabate

  • Hero Member
  • *****
  • Posts: 537
BMtvel79AIZk6NZz4ej zgRSjZiHgRiu0pWbKUl Cl3mwwePsZEBDvEcNAE CdielasolHNbzlkaYyx ZmvLcwUa4de5kbI8KUa uuZ3dGVBNhfWeUOwfjb U8kQC2KTM72qL1jGZXI Fv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnjvx/GEXWLK+S/ljWSy1gdZYyvjjfBfZE1ob5M2bz4rY0wMOKyIAxWvnnntuooiAn4iK3LnzyP1Vq8uIMZP0gy2R2ToYsdS0DgjpRZSdX9qgSRRiwgSFOgUUGF8il6WJrHjugO3ndVs8E/pE+Ekef3F/UpSxSnodBL58oldUZGwSWyHlGn1vGgmoA8BpffBRW3MCkydPNocXkPogzUbDMrIRvq7GO4MSJUuqmCgjvfoOsIlMRoIlJrgTm8xqfFHitrShDh1R6LlDZMDYx7hDRKh8YNImFRGu9iExf5wD2GdRhcteJdRAwB34ihFhEi/VCIX3BbeJIocMG6NOrIK0bv1e9EkDUhvMyQEDBlgfhngRCofY+pk9Rw5LS4+fPNO4Y7ZHDazZHquvWZ/I9sAdbEPM9nzvarTgjdVpcant4fC1BBHhtniyPAZncBL+clvIE6ro4Q/Ohp08m7c5/ti2UH0PbicYtseJZc7aIIrs1at39GkDUhsUdw8cONBOZS2UL39MRFSvXl2KFS0ql11+uTRu+oJMnDpHOIod/viMhOePE6IJ/HG+C0G6K2Fp7HD8QUR07mJ2hmA8njtmfyL+eN/l+bMV+xPxx4op1Qb6Qlx8F/zp0qOvFCxcVEaOHBV92rTH74oIvnjWJa+//vpEjoCf1ErkyJFTVdGLMmUmyxrqDPTCWTOZbeteNBj0aOCLwUgjJlhq8OljUo1ElnapsPhRCeBERCGZNnWaHLS0Dw4D0ZFwcX8ea+qNCUwnS3U4vJYvhoMMvjEQ4oF9/b36DbIeAWyrCji+YG2btDSFcvHZCKLLAgUKyt33VJHvRo23TnKuPoIGTk5IxNfXeCEBfyhYQzDSEwL+WJoxuugTguH3WzzZbkUk6QRHYu7s0cfGJq8aCN8MBu7wukxg3gOFnyY+9aK7INv7HnjwQX3d3dGnDDgeQIRSU0OBpbc5/meZSEi0fKu1ZSOwO0T4GFscAYbX257Yjh+4o84AJ0APAJeiVj4QzHCpoIQrSUUEhn8fRZlxF/dnaY0dPNgfHAz2jegR8Yn4ZRmDYkrOaXAOYLkVFBcvUUrqN2hoji7g+AARSoE1foSxjM9EkOEqXaaMbetnWczzB/+An7ClMRV+zP+16xK6WZrt2eZEBNxJlj8xEeH6RGB3CGAS84fld8cfC34T8WdLAn/09ZetjJZRI/szZMRYKX/7nVaMm57wuyICjBkzRq655horVGECx0/msiowChctJq++0cpS0wzGXB0MnIEVWkaDgSPAwVNtSsEcDt+nGLnYScGEpKjkwMEfzfh7EWFV82rwvehwl95XH8NzbNX7MsiWeVDjzxoSr2nbYVRA4ASIIhmIgUNHyu133CVNmjYNxXAnAFRK4whoHhTvCLiIKLNmyy4PPVJTnfNUE6GOOxpRqpBYusI1gmFCMbEYX+OOXpZijLhj/FEx4Fod708iIrbrJP7B/h/PH7hDF0Jf+0Da2xcxIT5xQH4nz7yFGkHOd6flPf1sQylYqJDMmzs3+oQBxxPUK3EgF6cIx3OHi90aRYuXlHZfdbJshAtglpsj8CKUsYxxh26WZCT0QoQaJ+J4gVNgfdtHkr7ZFI7Aiw5/GYd2afCi/OH5sGvWzE5Fi6WgzQE4/pCGphB3zMRp8tCjNaVQ4UKybl3Y0nkiwIFcyYkI+EPzxHLlK0i3Xv0sgEGEev7gN3wmPVn+RDbnEP786Pjjt3hagKP8iedObOlU+YP9ifFHg5d4/hCEI0DxXXMWLLdi0Aeq1rAGeVu3pn0xZTz+UESQzqtbt65ceOGFdh5CfER5xx1RNzmNKtu276CO2lWvzyEqiJvMPjWEUsdgUzRCwaVLETEwTuEhCqxNqBp/tuaw5swXb/+jq2Xscu2ynXjw6t8tXSBc3AC4DIQrhlthnTaLFC1ubVF5/oATA9LSV111VbIilCxXtuzZ5dHHa2uUNi3GH6I2FDiGePXaSEhEa9ybNvs+JBF/dBLCBRoFYezjRQTjzCQ2fsXxh/vzHKh/uBPLXK1CPKwx3vL6Tnwut0ruFi+/JvnyFbDdQwEnBhh+iuEIYuLrsrjIjBYoWNDO9Gn/VZdYka6PKL0jcNksWvITxMAf0tNOiDoOObvDWvQ+FZzs4okXERj82H2iK54/2DSe3wKXlesi8eD4g+2Byxz0Rvo8b/4CMiXU0ZwwJCci/I6fChXKy80332LHxH8z8DsTeggJ448GnvH8wfa4ZnbuitmcQ/hD9iNBRNBsjM678dzBl/EYW3KP5w8dUeP4E9tJqNc4FRA1Hn7cAi+KjtMb/lBEgOXLl1srUYosk65vk5qm4r5sufK2Y2NqlJEgssQIo6ZsjTtKLzIoOAUmNV+iv2yAtmxTR7DPjL8XEQwCqWY/gP4y8WDqf5M5ACYx61lspfIdBSEEe7JdBqKSqs8ismTJkuhTBZwIsAe+QYMGtr59qAh12SwyEo88Vts6oTKZSTGyTul7SLio0hVb+m1YjH88d/jJJE0qIshQxDuQGHcQD3Hc4TVIZcId1kctBa0CgnXT5198TfJgGLp0jT5VwInCnDlzrAMqPWvgi7c9/MQW5cp1sxQsVMSCmFnKHaJKOul620NQQWSH7cHuIBgZ/3g+EIxw0WbdUuCRiKD7KQbfOIYNii7+JvWM7YGTLF2QuXL8cQdrmaBRDtFhs2GT5yR//kIyaPDg6FMFnAgkFRHURCAiPH/4Hb92V+X7pM+3g2O2B0FKjQ3jadl0HV/vt4w/cdxJjj9eRHC8uInNOO54/sR8V8Qf812R/Yn3XeMmTZfqDz0mRdTHTpgwIfpk6QtHJCJA7969rW8EneRwBH4yczGZ86vKzq+RwQsvvy5jJ84wEcGE9pEB6goxgbGmVgFnQHYCFbZ+I73L3d/bd6hyixMRpHu4j7tvwsWAkn7GASBQUHAuenQOACOCmuNwrdsqVLQ9whikgBMP23tfuLBkzpz5EBFqk/m2cnLjjVmlQhQVMImtGVVcwZMXEwkFuy7ChAvwh8nNhI1vew2PyFDY5E/KHXUqLH3hYHhe+GncUd5Q8Q93fAqarnD0Kwk48aBQ9tNPP7WD9thuzgnDnj/89FuJCWLafNrOdl6Z7Zm7SMeSZlSuPosxxk64JTLHA4Rk/LVj595IROSL2l7/ZktoSe9rHMIB6HPFC1DbgWH2xzkAamg4tPC6626QDh06Rp8o4EQhXkTQOOz++++PLWfE8yebBjHlyleUdl+6pTGr74sTogjEeP54O+L54GsZPH+8iDCxiWCI/m9XZLOS2h98l+MPwQu7HVfI4GGjpVqNRyR/gYK2bTW94ohFBBHeSy+9JP/4xz9st0b8ZPYX+7gLqbN4+NFa8u2g4TJbnXn8ehNfFOuErrmHm4B041odZShwDhS5bd+mIkJfY+qUqab0+F/8hXrjvrZ8oQPg1x8ZAETL/EUr7XXf++ATKVW6nL3XSZMmRZ8kIC1AQxaK5HLkyBGbwJ43iFKyFPS8J2PEZLZmMCoi2PmDKGRSGXf0WsY2UM8d5YFNSP25cfN2M/w9vIhQHnGuhruPiySMO/o4Hs/yBdwhCkDouh1GFAavkt79Bsl9D1SVK67MIF980T76FAFpAZZUa9WqZfURdNJlPnvueB6xtFG8ZCl56ZU3LHs0e77aHnUGcAe7g5PH7iAoYnwwTiAqnbC0szMSiYhfjVOOO+5+a7i8A1D7g6ilfoctwCYesHNLV8u3A4cpf6pJxoxXSfv2gT9pAS8i6FhJrQKdLOFP0mxoeRUSOVSIsjTG1nPO2CGLZHU2+tMVeyfwx/shzwsCmHj+FNRAm7MzEA0EOgkcgzs8LiH4xX/BH5f9dOKBpfhuPfpZ/V6um2+2c53SM45YRIC9e/faZOaUxqST2Q8IuzbY31353vulzSft3ICoY/cVsHxJGGyb2GqsEyb3WstUsPbEmQeIiClTplgHQ+cwEi7UG/dlK2l8CmguDkAHYMDg4VL7yacle45cUuX+B6xxVkDao1OnTna4EilEuBIvJGwyly8vOVVolCpT1lLAQ0eM1Ynl9ta7wjkmtONOzDEoB8hS0COA0/gw/F5EwCNaD/sIwnOHXhQ8xtYebfkC/uhPfU742urt9zSyvV2yZMlinVsD0h4YZ6JGhIQ/nCve9pDhogAzj457hdvvlM7d+1hBmueON9AWyES84SRPnAJCAGOOYNgeHaDkRQRNz+ANwoPL7bpwdVfwx+yPctJnr7Bx7334qb6HSsqf66SbcjEgbZB0OQP7kilTJuNRUiHBRXCcN18BebTmE9HyBkJiSRQEOzFh/LFgRvmjNsRnuYw/Wxx/2FbaWW0dvEE0eO4Yf7A/8CeyP5xIDX8Quzz/lOnzbNdR4cLFzI9yuFZ6x1GJCEBHrscff1z+/e9/26RNmpHgdwaJUxxLlipt+7m76IRmQJjEDAgXqUYGxiI/U3qr7Vqryo1mIcUKcQDXFDX6ruNbwhUZf/3iffqQ512yYp1V+XOewe0V75Q//enPdl7C8a6BoGPhk08+aa1Wn3/+edtaFA9uYy2Oi9+Twj/+mWeekfr168tzzz0ntG7l4vZ69erZzyNtipXe3k88eI7333/fOqEyQeBKcpOZpY9bcueROytVVof+voweN9XGmOgAI83loz43sRGjK22CxkREXkTENoscE5yG45hrPBbVPigHUf4891cdu8lDDz8mV1+TSXLnyWNLeAHpBwQDZKx8RiKpkODvYsWLy5VXXmFLmE2bvyhDho8xGxMfyDjuuO6jPsrk4rRglsAQEd1VRHA6MNkueIPR58Jx4EiwP5b5NPGwSuYtWinde38rd99zn2TLnlNFREUrKg5IO3gRgSBUH2ft+DkYkHN9kgoJzx8EKrV/LK2+/For66wLT+ANfiueP9iPRPxR3wV/vIggsCHY9dyJ5w/2B+GA3SHwpR7jyw5dpPpDj8pVV19jfvW7776LPkn6xlGLCEBqqHbt2nbaHmKBLz+pkOAqXqK4rVfSD6Bm7bry+RcdZerM+TJfv3j7Auc7QTHHBAYd3ZZZpBgTEZOn2CBxYmjCtVA4xW/qjHl2nvqYCdPtfP+69RpYKvyiiy9WAfEne3+8z6MFa7BkXI4UNBPBGfOaXERMAOf91FNP2W2NGzeWJk2a2O/sdIl37Dz+hRdeiD2eC+AMmzZtan/z2CM9Lz49vZ/NmzfbMlg8+LtNmzYWEVxxxRVWY8N2q/iLvhL5CxTQyXS15Mx1s5S97XZp9vzL0qPPAGswNGnaXDuECS7BCRrGsHzF5KS5lDvFk45u2zRSWKccQ3jAt2XR7xqVktHQyTtu4gz5rN3Xcnfle9UBlbTPV0Gj2qFDh0bvOCA9YdGiRValThADT5IGMd4WUT+RO8+tcu/9VdUZtJSBQ0bKAhWP7JYwu6MXP01IqEFHFJBlSCQilEuLNWjB0PM42z0U2S2LTPX54FO3Xt9YB1zsD/y5u3JlmT17dvSOA9IKXkTQPRIRAZjXCAjqs8iaJ82m33mnC4LzahDCbhqO7X7z7ffsrCiWyRPxZ4HjD4KA5SwEpxcRnTp2MntEbYxxJ44/iBD+JnjBdrF8e/e9VaR02duMP3dWuvOkyp6nSEQAHC1V96xj+z4Ahyi7aHIXL17CGlOVu62CNet58dU3pKc6hAmTZ5mCdwPDwUZLVKmtNRFBYSV9Iux0zu8P6LXfXRzXbHtv99mWPpoPLVi4WHr07Gnp8u7qQEhBHzxCp5scxoweLW0+/FCmT5tu5y4cCf75z39a8RfEBfyEENzmQT0JtyUVNzjWq9VhNm/e3P7PUdoerOOl5JTItHo/ZBuoZXn5xZdk0MCB0a2HgnU+xmvQoEH2e9KLbqkcyNZfoznGk0Nsli5b4RpN6bjb3n2atkR82Ksc2bf/B33vrmOlFxGL1AnY9j+dvBj9xSoq2DL1dafu0qjp81b5TObq7//4u31WjMr8+e6kxoD0CdoZ33fffcZfH8TE2x5EBH9TfY8zKFi4sNxz3wPyRN168mXHbjJxymxZsFQFhQYuJgr0IpghUmQJLEFE/GJic2bEH+zUQuUTTmPwd6Ok9QefWLbsXn3uKzNkkDP+eoZUvvvusHyaThAvIggOPchI3K3jxLJ8AQ1Wksumc5trqJjDOozeW+VBW2LFbhzCH8tSLFX+4LtURORHRHQ0TmF72DXE0hq+Dv4gQjjA75XX3rTMZ1kVD2efc7aceeaZdtTEyXYoW4pFBMCZtG3bVnLlymWdCUlDs687qZjwA0TkgJhgJ8f9D9awva+P1aojb7RqbWuY3Xp9a4cbYfzJREydMkU2btwg69au0Wtt4mudu9avWyebN20yR7hbScNyCwJn/fr1smrlyqO+Vq9eLQP697dmV+VKl5GG9etbagpBs2rVqmTT+LwmBo3MjHfa8bexREC0n/Q+HnTn48AY7sdx1TgzliPY1cC6PBH90eBEvh8eu2LFChk3dqxNnGfr1ZOypUpLruw55NtvvrHvM+l3vHbNGtm5Y4fs2UPTsJ2WLTncxf/36HuncdSmjRt1vBPG3q6IDzznxg3ro+WM7uYI4BGZC3jFyaFvvNXasmIPVK1uByARqbJXPONVV5kT4DMyxgHpHxzzzngRxMBJ1ruTRpXmDBATt5Wzpmf0JCFbUL3Go1LziadMBNBGeOiIcdZNcsWaTbamHS8i5ixcJqPHTZGBQ0dJxy695IUXXzXhwK4LliwyKm8yXJnBsmos8wX+pB9gm5ITEYBl7ieeeMLGjeUL+JIcf/BliAmWQW65Jbfccedd6rcek1pPOv507dlPRo6ZpPyZLitWbzb++OUMApjpcxYZt/oOGCrtvuoszyt/4GDVag9Z47qsGoDD4SuvvNIyvOnlPIyjwTGJCA+6WlapUsUGhEiVdcvDiQkGinQk2QnOVmAACxcpaoND449aT9S1c+DLliwlo0eNkvsq3yMlihaTMhy8cwKuckqYOypUkFwqdi48/z9yzl/PlMsvuVTuUIPx3nvv2Wdlu1A8jtVpQxzS+zhVgNPm4ihrvh9+Hg2O9/vxIoLvYdy4cVbncN8998gVOhn+pt8X39stOW+SO/U74/tM7ntO7au4cugejS54T3169bYD3NauXSc1az+pRv9uNfh3SJGiRW09lOi1tApECjzPO+9c4ystulOS8QlIOzBeHVW4YuQ54wdDj805nDOg+JJAhuP/s2bLZkcpIybvf6CaZSqqPfSI2R4CCH8U+GM1a8uDVWtIlQeqWsYqnzqIzJkzSVG1STflusn6n7B0QjDF/QPSD35PRADGi+MPGD/qbPBHv8cfdnHAH3iGHTT+3HufVK3+kPLnQduOCX9KKjc+Vz7cd39VO1/qoUce098fVDFb3pZvr818rS3b8hzwFn9IVpYA6GREqogIQPTarl07az5Fyhwn5JsLMSgMRPygOEHhRAZGgCJNUo98oaj50jpAEydMkH59+hoJWOfupROb7Tq9evSUTh06SvvP28nnn7VN1audDv5LL74ol198iTnCZ556Wj5u08ZelwPBVmrUHV9DAFLLabOMA5FwyjhthBm7GVhnOxoc7/dDhgBQF0F2YsaMGTJk8GD59JNPpHGjRpI7Vy659MILpVGDhvZ9Jvc9H+5q1/Zz6fDVV5ZN6Nu7j/Tu2VN6du9hxZLdux7+4ujmvsoVHAv3ZzmMLAjrmwUK5LfOqhU0WoWPudWJYDRoYkSdx9zQxvqkBulpllYZT8bVL3Ec3u44J0ERndXf5M9vW/xy577FMmWc/Mh8R0QX1mgR0UHlPsWc8ImMKz1zyNax1EcBeED6gfozu7BPbLfEdwBsGbcnBf2IGEfGkyCDJY4/4g+CFP4UK17MhEGOnDli/CmtATK2MHv2bJItW1Z7PkQDLRDImCFazj///FPG/qSaiPBgvfLtt982MXHOOeeY00HhsT5JdsJnKLj8oPgB4zGPPPKIrFmzRkrpQEycONHWxHuoeECpvdu6tTRr1kxeeeUVmXgc+z5AqnffeUdGjRx5RA48tZx2fMbhEyUhjpvH8FxHg+P9fpLePx4Y3tGjR8sHKjyGDRsW3Xp04IjkDz74QOrUrSOvvf667bOHA5yl0FNFBb9351Lj4K+uXbtKv379YiLCZSLW2pZkJi6GnywZtSJMYopMKbJKzqgEnHxg6YHxxBlwYCDr3dRqYbjj7Y63OfEXt2N7Hn/sMVkfZSLYFsjS5WN6G/dBPNDnhIJOnE3Dhg1t+x1zKSB9gawDjQW//vpryZPrZmmvwS3Nn7gtuYwEYBy/+eYbefrpp825M87UQxDUwh3805Hyh0wEr/nwww/HuEeg7J+Xn/D0VLE/qS4iPHAEH330ke0EQMGfffbZNrEx5GQcMOoYd758f5G5YOshIoJ6BIrr+MJxXlwYf9YdeV6yAkkzAqkBigpxPhQIHg1wTjhYTwocLe85vpARh81tSQsZOdGPdd34HQ88D/fleztaEQHS+v0wWckoHW2KDmeAEO3SpYvtsMEJkPLjtS+44AIr+GR7KOoeDvkLThEdUA/Tp3dv6zPC69MumfeMQ6F3PgKXI+DD0sWpCTiLcWaHUeXKlS1jgOHG7hAxYmOwNRTW8X9/EWkiGKivQUSQiYBL8Ip5dNZZZ5m9Yt0a8ZCSLc4BJwbYKtvOqQIiU4arpHTJklKyeDHzSX8EgiDGl3FmvL3fwg9hc3zb7HjuJOVPqWLFbTmDTAX2ClsMDxEi8BJ+xtvWkx36fR8fEeHBl0VkT2SJoKCYhYnMuhIOjcnpr7/+9a9WV7Fi+XITEWPHjLV0D6r/ww8/lFmzZqW7Lx9jQpofJ8dF1Ti34YgRO9zm02H8zvbG+GOAue8999xj/4OM3jhxH5YRyOawVHSkSG/v51iAoENQkH149dVXrW/FAw88YClo3kdS7lxyySUmiPr26SOF8xew4to333zTLgwDfwecPsBpkLXCITz66KO2pOX5gmNAXPgLQ0/2beXKlVKscJFYTQSRKUsltN4m7QwnA9I/CBJqP15TrrriSluabqZ+5GjGjvsiRPA7jRo1Mv4QDGN3uOK5k5Q/LGe0/ewzEw01a9Y04QAPsWWnIo67iIgHCpF19unTp9v2PYpaPtMvO/6iwI00OhOZ3RlE0Ol54kJWHDEpdy5IFx/lElG/9dZbdnXu3Dm6NQH+8XwX/EwaIfdRh3g0GZf09n5SE0SGHAZHC3Pqb5Jyh/QlIhMHkP/WW2XH9h2W2Qg4vUFWDJtCBgreENC0aNHC+qlg4P1FlmrDxo1SuEBBa1AEdygiPlkL3k53jB0zRrJck8muWTNnRrcePeDPhg0bjD/YRXjye/yhHquj2iJqxVgaPtVxQkXEkQLhUEgjyenTpkW3BAQcGRCq3bt0MxGxc8fRNxsLOL2B7UnaoCjg5MR2DVgL5stvRfpJd9QdL3j+IEJPF6RLEUFKmmggiIiAowVRA7s1gogISAniRcThivACTg6QRX36qafltVdeTbRkezxxOvIniIiAUwpBRAQcC4KIOHXwswoHdmX0/7b/CVvWDCIinYCBCCIiIKXwImL3rqPf1RJweoOdR94JBJzcoJZl7pw5smTx4hNWV3c68iddiQgGne2du3butMJKDrFhJ0DoBBfwR0D1U/zkO1ayFkpRE9XSoTAu4I+Ak6EnDMW7tC2mOJcU+PYdO0JG4iSF+jUrtGYc+f14Av7sUL/FFlHPn/0H9lsR+vF+7bRGuhIR9GYg/dTy9dfllptukpYtW8qrL7+coj4JAacXmKgcXFPr8ZrSsEEDyZk1m3XPZBdQet7dE5A+gFDg4L3nmze3c19efeUVebpuXVm+bNkp7wQCjh0sl3D0e6uWb8rNOXNK08ZN5ImatY763KOTEelKRDCRh333neS4MatkuOxyaxbSSoVE2KYXcCQgC1GjWjXJmS277Q/Pd+utdjhYQMCRYNHChbYdENuTL08euefuynb4W0DAHwGhSUsCfFfGy6/QIDiX1Hrs8VifnVMZ6UpEAIoqOQXysgsvlkwZM8r8efOi/wQE/DGGDh0imTJkNBHRvGmzE1aVHXDyA67Ur/eMOYGrr7xSevXqGf0nIL0B50zX0XvvvdeOSkjqrGkORatpLv6fFP7xNNbzz0EmHA74LpT8/2iW0lm6qFG1qlx56WWSOeNVdrLx6YB0JyL+p4qOlqE3XJtFaj3+eJo1Ngo4OcG6drkyZeTG666TSROP3/kqAacmRo4YKddnvlby35o30dkxAekLOHvfgZfLt+7nDAy69HIbTcW4+B2hEC80ePzHH38cezwX2QSWPunMe+aZZ0rr1q2POgih5T78IRD27+lUR7oTEYA22bfefLMdrMTABgQcKSiipMVtjqzZZPu2ozv9NCBg48aNlpJ+tl69UJCbzoFvoN00xyewow/wE0EQf0YQZ59wW1KnzjI5rarfe+89OeOMMywrAXhezlpJSQDLKZ43Z88hb7ZsedrUYqVLEUGV/a235Jbx48ZFtwQEHBmYuJy18eQTT5wW65EBqQscR90nn5TOHTsGEZHOQcE9AuFYTivmRFbuQzt/hMb9999vOwS5PSVFkezuue+ee2XwoEGnTQCcLkUE61DPaCSw5TSobA1IXVCcy5G/nMKY9NyPgIA/Apzp3KmTne8Ttnamb6SGiCATwbZM4Jc11q1bJ1mzZk2RiOD12nz4oZ3xc7ogXYoI0kw0mgqRQEBKQAZi4cKFYVdPwFEDm8NpnaE3TfpHaokIfpLB5KRNTgPmlOBLL71UduzYEd3zyEFx5vjx4+11TxekSxEBmMz6vqK/AgKODhREBf4EHC3gDI4gIP2DDIIXCIgHwE/+5sKR02yK+8TXTXhwojQiIj7j0Lt3b8tGJCc6jgTw53RbRtXPnD5FREBAQEBAwOFAptGLCC/8cPyIgPjCSv7PbUkLK8lUZM6cOdEJn2QkuO/ZZ5+dIhFxOiKIiICAgICAkwosN9EDAofPVapUKRMDCAuyCey2yJ8/v11/+ctfpFevXomWN3l8yZIl7bElSpSICQnu061bNzn33HPtyIWAP0YQEQEBAQEBJxXIPPTt21eGDBliF7/HL0PR7h4xwMXvSeEfP2jQoEMeC6hrCIXZR4Y0FxEownLlykmZMmXsKlCggF3+79tvv932bt9xxx2mNsuWLZso/RRw+iJwJ+BYETgUkFIE7jikuYhAAXbq1CmWlurQoUOivzt37mwFMuz95+927dodohoDTk8E7gQcKwKHAlKKwB2HNBcRgGIW33nMI/5vfX9SrVo1OyUtICAegTsBx4rAoYCUInAnnYgItupQQXvWWWfZtpvy5cvLn//8ZxsM+tdzGErXrl2jewcEJCBwJ+BYETgUkFIE7qQTEcG+WvbrUgTDyWlt2rSx3uWkgSpUqGBNQAICkkPgTsCxInAoIKUI3EkHIoLiFApOUG5stRk2bJjdfskll9gWnpBCDDgcAncCjhWBQwEpReCOQ5qLCN8chHaj3377rd1WsWLFWHHK0R7FGnD6IHAn4FgROBSQUgTuOKS5iKBN6TnnnGMNQQDVrH4Qhg4dGs7PCDgsAncCjhWBQwEpReCOQ5qLCIpRLrzwQunfv79Vum7fvt3+DmnEgD9C4E7AsSJwKCClCNxxSHMRwb7Z2bNnR38d+ndAwOEQuBNwrAgcCkgpAncc0lxEBAQEBAQEBJycCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIuCUwK+//gqZ7frll19iF7cHBBwp/ve//8V4A5eA/xkQkBySsz3w6HSBfu70JyLWrVsnzZo1k++//z66JSDg8IAnefPmlWuvvdau6667Tq6//nq7cuTIIX379pV9+/ZF9w4ISB4LFy6Ut99+W3LmzCm1atWSadOmyeLFi6VEiRKyY8eO6F4BAQlIzvZkz57deDRr1qzTQoCmSxHRqVMnufTSS2XMmDHRLQEBh8dvv/0mkyZNkj/96U92jRs3TubNm2cXXMqQIYM8/PDD8sMPP0SPCAhIjJ49e5rg7Ny5s8yfP19Wr14tc+bMkWrVqsk555wj27Zti+4ZEJCApLZnwoQJxp+uXbvKDTfcIK1atbLMxKmMdCcifvzxR2nUqJEULVpUGjdubH8HBPwR4Mk//vEPu+KXMIgUzjjjDDn33HNl9+7d0a0BAQlYsmSJZa3atGmTyN5g/L/77ju5+uqrZevWrdGtAQGJ4W3P3//+9xh/+PnRRx9JxowZZfz48XbbqYp0JSIw/lOmTJGRI0dKu3btLIKcPHly9N+AgMMDgeAn8qZNm+TgwYOyatUqadu2rVx22WXSo0cPixoCAuIBJz755BP5z3/+Y2IiKdQ2yoYNGwJ3Ag6LeNuza1eCK12+fLnxqmXLlqd0bVa6EhGsW5P++emnn2Tjxo1y4YUXylNPPWV/x4OJzW38DAgATOTzzz9f/vznP8s111xj65NEASyLffXVV9G9AgISY8+ePXLxxRebE9i5c2d0a0DAkeNwIoLf//nPf5ofO5WzoOlGRCAI5s6dK19++aWloLmeeeYZcwIUPMWD+5IuCiIiwINJyoRl/Xrq1KlWEDdx4kRp0aKFrXWf6inFgJQB3px99tnmAE5lQx9w/HA4EYFA5Xb4FX/7qYZ0IyJIF37wwQeSKVMmiyKzZMkil19+uZx11lnSunXrQ9KJQUAExCN+IscXUG7ZssXEReXKlUNhZcAh+Pnnn6Vu3bpy3nnnWfo5OZxO2/UCjh6HExErV6605Yw6deockk0/lZBuRATrju+//74sWrRIli1bFruoqr/yyisPO8EDAgBLYX4ik8Xy2L9/v/ztb38zIREizYDkwC4wMp6ff/75IWvXCE8q7hEbAQHJId72xG8l7927ty2VffPNN9EtpybSXESQUaAAjuKToUOHHpJhoMDyzDPPlCZNmtiaZdL/BwTACXqLkLX661//astfe/futWvUqFFWK1G+fHk5cOBA9IiAgASwC4OdGezxHzRokIlQuEOBLn+zhe9ULowLSDm87cFHca1du9b4w1IqfKpfv74FMqcy9DtIWxHBZL3pppvkggsusGUMRINfuiBCYCBQeaSFcuXKZetMAQHxgENww0cDV111lS2LcWXOnNmq79evXx8EaMBhQaaBXWHvvvuubfeENzS8wxmELETA4RBve7go6oY/r776qgwcOPCUFxAgzUUE642oN9TcmjVrEokEtulxOxGB/39YnwxICs8heMJFoyCyW1zcfqo3ewlIPRBFev7QpTJwJ+D3kNT2wBv4czoFu2kuIgICAgICAgJOTgQRERAQEBAQEJAiBBEREBAQEBAQkCIEEREQEBAQEBCQIngRceqXkAYEBAQEBASkKlQ/HEBErEZNhCtc4QpXuMIVrnAd+fV/q/8fYFOuTF4n2qYAAAAASUVORK5CYII= width=529 height=159 />


   
  a.
  A
   
  b.
  B
   
  c.
  C
   
  d.
  D
   
  e.
  A and C"

Question 2

How large a pressure increase (in atm) must be applied to water if it is to be compressed in volume by 1.0? The bulk modulus of water is 2.0  109 N/m2 and 1 atm = 1.0  105 N/m2.
   
  a.
  50 atm
   
  b.
  100 atm
   
  c.
  1 100 atm
   
  d.
  400 atm
   
  e.
  200 atm



Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340


cabate

  • Member
  • Posts: 537
Reply 2 on: Jul 28, 2018
Wow, this really help


raili21

  • Member
  • Posts: 324
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Between 1999 and 2012, American adults with high total cholesterol decreased from 18.3% to 12.9%

Did you know?

During the twentieth century, a variant of the metric system was used in Russia and France in which the base unit of mass was the tonne. Instead of kilograms, this system used millitonnes (mt).

Did you know?

Human stomach acid is strong enough to dissolve small pieces of metal such as razor blades or staples.

Did you know?

As the western states of America were settled, pioneers often had to drink rancid water from ponds and other sources. This often resulted in chronic diarrhea, causing many cases of dehydration and death that could have been avoided if clean water had been available.

Did you know?

It is believed that the Incas used anesthesia. Evidence supports the theory that shamans chewed cocoa leaves and drilled holes into the heads of patients (letting evil spirits escape), spitting into the wounds they made. The mixture of cocaine, saliva, and resin numbed the site enough to allow hours of drilling.

For a complete list of videos, visit our video library