This topic contains a solution. Click here to go to the answer

Author Question: BMtvel79AIZk6NZz4ejzgRSjZiHgRiu0pWbKUlCl3mwwePsZEBDvEcNAECdielasolHNbzlkaYyxZmvLcwUa4de5kbI8KUauuZ3dGVBNhfWeUOwfjbU8kQC2KTM72qL1jGZXIFv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnj (Read 34 times)

cabate

  • Hero Member
  • *****
  • Posts: 537
BMtvel79AIZk6NZz4ej zgRSjZiHgRiu0pWbKUl Cl3mwwePsZEBDvEcNAE CdielasolHNbzlkaYyx ZmvLcwUa4de5kbI8KUa uuZ3dGVBNhfWeUOwfjb U8kQC2KTM72qL1jGZXI Fv5w2it2B/6whNey1bv2OZYtc6ntgNQFp6GWr1Beli5dKkULFY6JCLZ93po3rxQrXsoK6hERFFg6/qw2Ier545fl4Q/1LfH8cdxJzB+Ckhh/oi2e8IalV7Lmnjvx/GEXWLK+S/ljWSy1gdZYyvjjfBfZE1ob5M2bz4rY0wMOKyIAxWvnnntuooiAn4iK3LnzyP1Vq8uIMZP0gy2R2ToYsdS0DgjpRZSdX9qgSRRiwgSFOgUUGF8il6WJrHjugO3ndVs8E/pE+Ekef3F/UpSxSnodBL58oldUZGwSWyHlGn1vGgmoA8BpffBRW3MCkydPNocXkPogzUbDMrIRvq7GO4MSJUuqmCgjvfoOsIlMRoIlJrgTm8xqfFHitrShDh1R6LlDZMDYx7hDRKh8YNImFRGu9iExf5wD2GdRhcteJdRAwB34ihFhEi/VCIX3BbeJIocMG6NOrIK0bv1e9EkDUhvMyQEDBlgfhngRCofY+pk9Rw5LS4+fPNO4Y7ZHDazZHquvWZ/I9sAdbEPM9nzvarTgjdVpcant4fC1BBHhtniyPAZncBL+clvIE6ro4Q/Ohp08m7c5/ti2UH0PbicYtseJZc7aIIrs1at39GkDUhsUdw8cONBOZS2UL39MRFSvXl2KFS0ql11+uTRu+oJMnDpHOIod/viMhOePE6IJ/HG+C0G6K2Fp7HD8QUR07mJ2hmA8njtmfyL+eN/l+bMV+xPxx4op1Qb6Qlx8F/zp0qOvFCxcVEaOHBV92rTH74oIvnjWJa+//vpEjoCf1ErkyJFTVdGLMmUmyxrqDPTCWTOZbeteNBj0aOCLwUgjJlhq8OljUo1ElnapsPhRCeBERCGZNnWaHLS0Dw4D0ZFwcX8ea+qNCUwnS3U4vJYvhoMMvjEQ4oF9/b36DbIeAWyrCji+YG2btDSFcvHZCKLLAgUKyt33VJHvRo23TnKuPoIGTk5IxNfXeCEBfyhYQzDSEwL+WJoxuugTguH3WzzZbkUk6QRHYu7s0cfGJq8aCN8MBu7wukxg3gOFnyY+9aK7INv7HnjwQX3d3dGnDDgeQIRSU0OBpbc5/meZSEi0fKu1ZSOwO0T4GFscAYbX257Yjh+4o84AJ0APAJeiVj4QzHCpoIQrSUUEhn8fRZlxF/dnaY0dPNgfHAz2jegR8Yn4ZRmDYkrOaXAOYLkVFBcvUUrqN2hoji7g+AARSoE1foSxjM9EkOEqXaaMbetnWczzB/+An7ClMRV+zP+16xK6WZrt2eZEBNxJlj8xEeH6RGB3CGAS84fld8cfC34T8WdLAn/09ZetjJZRI/szZMRYKX/7nVaMm57wuyICjBkzRq655horVGECx0/msiowChctJq++0cpS0wzGXB0MnIEVWkaDgSPAwVNtSsEcDt+nGLnYScGEpKjkwMEfzfh7EWFV82rwvehwl95XH8NzbNX7MsiWeVDjzxoSr2nbYVRA4ASIIhmIgUNHyu133CVNmjYNxXAnAFRK4whoHhTvCLiIKLNmyy4PPVJTnfNUE6GOOxpRqpBYusI1gmFCMbEYX+OOXpZijLhj/FEx4Fod708iIrbrJP7B/h/PH7hDF0Jf+0Da2xcxIT5xQH4nz7yFGkHOd6flPf1sQylYqJDMmzs3+oQBxxPUK3EgF6cIx3OHi90aRYuXlHZfdbJshAtglpsj8CKUsYxxh26WZCT0QoQaJ+J4gVNgfdtHkr7ZFI7Aiw5/GYd2afCi/OH5sGvWzE5Fi6WgzQE4/pCGphB3zMRp8tCjNaVQ4UKybl3Y0nkiwIFcyYkI+EPzxHLlK0i3Xv0sgEGEev7gN3wmPVn+RDbnEP786Pjjt3hagKP8iedObOlU+YP9ifFHg5d4/hCEI0DxXXMWLLdi0Aeq1rAGeVu3pn0xZTz+UESQzqtbt65ceOGFdh5CfER5xx1RNzmNKtu276CO2lWvzyEqiJvMPjWEUsdgUzRCwaVLETEwTuEhCqxNqBp/tuaw5swXb/+jq2Xscu2ynXjw6t8tXSBc3AC4DIQrhlthnTaLFC1ubVF5/oATA9LSV111VbIilCxXtuzZ5dHHa2uUNi3GH6I2FDiGePXaSEhEa9ybNvs+JBF/dBLCBRoFYezjRQTjzCQ2fsXxh/vzHKh/uBPLXK1CPKwx3vL6Tnwut0ruFi+/JvnyFbDdQwEnBhh+iuEIYuLrsrjIjBYoWNDO9Gn/VZdYka6PKL0jcNksWvITxMAf0tNOiDoOObvDWvQ+FZzs4okXERj82H2iK54/2DSe3wKXlesi8eD4g+2Byxz0Rvo8b/4CMiXU0ZwwJCci/I6fChXKy80332LHxH8z8DsTeggJ448GnvH8wfa4ZnbuitmcQ/hD9iNBRNBsjM678dzBl/EYW3KP5w8dUeP4E9tJqNc4FRA1Hn7cAi+KjtMb/lBEgOXLl1srUYosk65vk5qm4r5sufK2Y2NqlJEgssQIo6ZsjTtKLzIoOAUmNV+iv2yAtmxTR7DPjL8XEQwCqWY/gP4y8WDqf5M5ACYx61lspfIdBSEEe7JdBqKSqs8ismTJkuhTBZwIsAe+QYMGtr59qAh12SwyEo88Vts6oTKZSTGyTul7SLio0hVb+m1YjH88d/jJJE0qIshQxDuQGHcQD3Hc4TVIZcId1kctBa0CgnXT5198TfJgGLp0jT5VwInCnDlzrAMqPWvgi7c9/MQW5cp1sxQsVMSCmFnKHaJKOul620NQQWSH7cHuIBgZ/3g+EIxw0WbdUuCRiKD7KQbfOIYNii7+JvWM7YGTLF2QuXL8cQdrmaBRDtFhs2GT5yR//kIyaPDg6FMFnAgkFRHURCAiPH/4Hb92V+X7pM+3g2O2B0FKjQ3jadl0HV/vt4w/cdxJjj9eRHC8uInNOO54/sR8V8Qf812R/Yn3XeMmTZfqDz0mRdTHTpgwIfpk6QtHJCJA7969rW8EneRwBH4yczGZ86vKzq+RwQsvvy5jJ84wEcGE9pEB6goxgbGmVgFnQHYCFbZ+I73L3d/bd6hyixMRpHu4j7tvwsWAkn7GASBQUHAuenQOACOCmuNwrdsqVLQ9whikgBMP23tfuLBkzpz5EBFqk/m2cnLjjVmlQhQVMImtGVVcwZMXEwkFuy7ChAvwh8nNhI1vew2PyFDY5E/KHXUqLH3hYHhe+GncUd5Q8Q93fAqarnD0Kwk48aBQ9tNPP7WD9thuzgnDnj/89FuJCWLafNrOdl6Z7Zm7SMeSZlSuPosxxk64JTLHA4Rk/LVj595IROSL2l7/ZktoSe9rHMIB6HPFC1DbgWH2xzkAamg4tPC6626QDh06Rp8o4EQhXkTQOOz++++PLWfE8yebBjHlyleUdl+6pTGr74sTogjEeP54O+L54GsZPH+8iDCxiWCI/m9XZLOS2h98l+MPwQu7HVfI4GGjpVqNRyR/gYK2bTW94ohFBBHeSy+9JP/4xz9st0b8ZPYX+7gLqbN4+NFa8u2g4TJbnXn8ehNfFOuErrmHm4B041odZShwDhS5bd+mIkJfY+qUqab0+F/8hXrjvrZ8oQPg1x8ZAETL/EUr7XXf++ATKVW6nL3XSZMmRZ8kIC1AQxaK5HLkyBGbwJ43iFKyFPS8J2PEZLZmMCoi2PmDKGRSGXf0WsY2UM8d5YFNSP25cfN2M/w9vIhQHnGuhruPiySMO/o4Hs/yBdwhCkDouh1GFAavkt79Bsl9D1SVK67MIF980T76FAFpAZZUa9WqZfURdNJlPnvueB6xtFG8ZCl56ZU3LHs0e77aHnUGcAe7g5PH7iAoYnwwTiAqnbC0szMSiYhfjVOOO+5+a7i8A1D7g6ilfoctwCYesHNLV8u3A4cpf6pJxoxXSfv2gT9pAS8i6FhJrQKdLOFP0mxoeRUSOVSIsjTG1nPO2CGLZHU2+tMVeyfwx/shzwsCmHj+FNRAm7MzEA0EOgkcgzs8LiH4xX/BH5f9dOKBpfhuPfpZ/V6um2+2c53SM45YRIC9e/faZOaUxqST2Q8IuzbY31353vulzSft3ICoY/cVsHxJGGyb2GqsEyb3WstUsPbEmQeIiClTplgHQ+cwEi7UG/dlK2l8CmguDkAHYMDg4VL7yacle45cUuX+B6xxVkDao1OnTna4EilEuBIvJGwyly8vOVVolCpT1lLAQ0eM1Ynl9ta7wjkmtONOzDEoB8hS0COA0/gw/F5EwCNaD/sIwnOHXhQ8xtYebfkC/uhPfU742urt9zSyvV2yZMlinVsD0h4YZ6JGhIQ/nCve9pDhogAzj457hdvvlM7d+1hBmueON9AWyES84SRPnAJCAGOOYNgeHaDkRQRNz+ANwoPL7bpwdVfwx+yPctJnr7Bx7334qb6HSsqf66SbcjEgbZB0OQP7kilTJuNRUiHBRXCcN18BebTmE9HyBkJiSRQEOzFh/LFgRvmjNsRnuYw/Wxx/2FbaWW0dvEE0eO4Yf7A/8CeyP5xIDX8Quzz/lOnzbNdR4cLFzI9yuFZ6x1GJCEBHrscff1z+/e9/26RNmpHgdwaJUxxLlipt+7m76IRmQJjEDAgXqUYGxiI/U3qr7Vqryo1mIcUKcQDXFDX6ruNbwhUZf/3iffqQ512yYp1V+XOewe0V75Q//enPdl7C8a6BoGPhk08+aa1Wn3/+edtaFA9uYy2Oi9+Twj/+mWeekfr168tzzz0ntG7l4vZ69erZzyNtipXe3k88eI7333/fOqEyQeBKcpOZpY9bcueROytVVof+voweN9XGmOgAI83loz43sRGjK22CxkREXkTENoscE5yG45hrPBbVPigHUf4891cdu8lDDz8mV1+TSXLnyWNLeAHpBwQDZKx8RiKpkODvYsWLy5VXXmFLmE2bvyhDho8xGxMfyDjuuO6jPsrk4rRglsAQEd1VRHA6MNkueIPR58Jx4EiwP5b5NPGwSuYtWinde38rd99zn2TLnlNFREUrKg5IO3gRgSBUH2ft+DkYkHN9kgoJzx8EKrV/LK2+/For66wLT+ANfiueP9iPRPxR3wV/vIggsCHY9dyJ5w/2B+GA3SHwpR7jyw5dpPpDj8pVV19jfvW7776LPkn6xlGLCEBqqHbt2nbaHmKBLz+pkOAqXqK4rVfSD6Bm7bry+RcdZerM+TJfv3j7Auc7QTHHBAYd3ZZZpBgTEZOn2CBxYmjCtVA4xW/qjHl2nvqYCdPtfP+69RpYKvyiiy9WAfEne3+8z6MFa7BkXI4UNBPBGfOaXERMAOf91FNP2W2NGzeWJk2a2O/sdIl37Dz+hRdeiD2eC+AMmzZtan/z2CM9Lz49vZ/NmzfbMlg8+LtNmzYWEVxxxRVWY8N2q/iLvhL5CxTQyXS15Mx1s5S97XZp9vzL0qPPAGswNGnaXDuECS7BCRrGsHzF5KS5lDvFk45u2zRSWKccQ3jAt2XR7xqVktHQyTtu4gz5rN3Xcnfle9UBlbTPV0Gj2qFDh0bvOCA9YdGiRValThADT5IGMd4WUT+RO8+tcu/9VdUZtJSBQ0bKAhWP7JYwu6MXP01IqEFHFJBlSCQilEuLNWjB0PM42z0U2S2LTPX54FO3Xt9YB1zsD/y5u3JlmT17dvSOA9IKXkTQPRIRAZjXCAjqs8iaJ82m33mnC4LzahDCbhqO7X7z7ffsrCiWyRPxZ4HjD4KA5SwEpxcRnTp2MntEbYxxJ44/iBD+JnjBdrF8e/e9VaR02duMP3dWuvOkyp6nSEQAHC1V96xj+z4Ahyi7aHIXL17CGlOVu62CNet58dU3pKc6hAmTZ5mCdwPDwUZLVKmtNRFBYSV9Iux0zu8P6LXfXRzXbHtv99mWPpoPLVi4WHr07Gnp8u7qQEhBHzxCp5scxoweLW0+/FCmT5tu5y4cCf75z39a8RfEBfyEENzmQT0JtyUVNzjWq9VhNm/e3P7PUdoerOOl5JTItHo/ZBuoZXn5xZdk0MCB0a2HgnU+xmvQoEH2e9KLbqkcyNZfoznGk0Nsli5b4RpN6bjb3n2atkR82Ksc2bf/B33vrmOlFxGL1AnY9j+dvBj9xSoq2DL1dafu0qjp81b5TObq7//4u31WjMr8+e6kxoD0CdoZ33fffcZfH8TE2x5EBH9TfY8zKFi4sNxz3wPyRN168mXHbjJxymxZsFQFhQYuJgr0IpghUmQJLEFE/GJic2bEH+zUQuUTTmPwd6Ok9QefWLbsXn3uKzNkkDP+eoZUvvvusHyaThAvIggOPchI3K3jxLJ8AQ1Wksumc5trqJjDOozeW+VBW2LFbhzCH8tSLFX+4LtURORHRHQ0TmF72DXE0hq+Dv4gQjjA75XX3rTMZ1kVD2efc7aceeaZdtTEyXYoW4pFBMCZtG3bVnLlymWdCUlDs687qZjwA0TkgJhgJ8f9D9awva+P1aojb7RqbWuY3Xp9a4cbYfzJREydMkU2btwg69au0Wtt4mudu9avWyebN20yR7hbScNyCwJn/fr1smrlyqO+Vq9eLQP697dmV+VKl5GG9etbagpBs2rVqmTT+LwmBo3MjHfa8bexREC0n/Q+HnTn48AY7sdx1TgzliPY1cC6PBH90eBEvh8eu2LFChk3dqxNnGfr1ZOypUpLruw55NtvvrHvM+l3vHbNGtm5Y4fs2UPTsJ2WLTncxf/36HuncdSmjRt1vBPG3q6IDzznxg3ro+WM7uYI4BGZC3jFyaFvvNXasmIPVK1uByARqbJXPONVV5kT4DMyxgHpHxzzzngRxMBJ1ruTRpXmDBATt5Wzpmf0JCFbUL3Go1LziadMBNBGeOiIcdZNcsWaTbamHS8i5ixcJqPHTZGBQ0dJxy695IUXXzXhwK4LliwyKm8yXJnBsmos8wX+pB9gm5ITEYBl7ieeeMLGjeUL+JIcf/BliAmWQW65Jbfccedd6rcek1pPOv507dlPRo6ZpPyZLitWbzb++OUMApjpcxYZt/oOGCrtvuoszyt/4GDVag9Z47qsGoDD4SuvvNIyvOnlPIyjwTGJCA+6WlapUsUGhEiVdcvDiQkGinQk2QnOVmAACxcpaoND449aT9S1c+DLliwlo0eNkvsq3yMlihaTMhy8cwKuckqYOypUkFwqdi48/z9yzl/PlMsvuVTuUIPx3nvv2Wdlu1A8jtVpQxzS+zhVgNPm4ihrvh9+Hg2O9/vxIoLvYdy4cVbncN8998gVOhn+pt8X39stOW+SO/U74/tM7ntO7au4cugejS54T3169bYD3NauXSc1az+pRv9uNfh3SJGiRW09lOi1tApECjzPO+9c4ystulOS8QlIOzBeHVW4YuQ54wdDj805nDOg+JJAhuP/s2bLZkcpIybvf6CaZSqqPfSI2R4CCH8U+GM1a8uDVWtIlQeqWsYqnzqIzJkzSVG1STflusn6n7B0QjDF/QPSD35PRADGi+MPGD/qbPBHv8cfdnHAH3iGHTT+3HufVK3+kPLnQduOCX9KKjc+Vz7cd39VO1/qoUce098fVDFb3pZvr818rS3b8hzwFn9IVpYA6GREqogIQPTarl07az5Fyhwn5JsLMSgMRPygOEHhRAZGgCJNUo98oaj50jpAEydMkH59+hoJWOfupROb7Tq9evSUTh06SvvP28nnn7VN1audDv5LL74ol198iTnCZ556Wj5u08ZelwPBVmrUHV9DAFLLabOMA5FwyjhthBm7GVhnOxoc7/dDhgBQF0F2YsaMGTJk8GD59JNPpHGjRpI7Vy659MILpVGDhvZ9Jvc9H+5q1/Zz6fDVV5ZN6Nu7j/Tu2VN6du9hxZLdux7+4ujmvsoVHAv3ZzmMLAjrmwUK5LfOqhU0WoWPudWJYDRoYkSdx9zQxvqkBulpllYZT8bVL3Ec3u44J0ERndXf5M9vW/xy577FMmWc/Mh8R0QX1mgR0UHlPsWc8ImMKz1zyNax1EcBeED6gfozu7BPbLfEdwBsGbcnBf2IGEfGkyCDJY4/4g+CFP4UK17MhEGOnDli/CmtATK2MHv2bJItW1Z7PkQDLRDImCFazj///FPG/qSaiPBgvfLtt982MXHOOeeY00HhsT5JdsJnKLj8oPgB4zGPPPKIrFmzRkrpQEycONHWxHuoeECpvdu6tTRr1kxeeeUVmXgc+z5AqnffeUdGjRx5RA48tZx2fMbhEyUhjpvH8FxHg+P9fpLePx4Y3tGjR8sHKjyGDRsW3Xp04IjkDz74QOrUrSOvvf667bOHA5yl0FNFBb9351Lj4K+uXbtKv379YiLCZSLW2pZkJi6GnywZtSJMYopMKbJKzqgEnHxg6YHxxBlwYCDr3dRqYbjj7Y63OfEXt2N7Hn/sMVkfZSLYFsjS5WN6G/dBPNDnhIJOnE3Dhg1t+x1zKSB9gawDjQW//vpryZPrZmmvwS3Nn7gtuYwEYBy/+eYbefrpp825M87UQxDUwh3805Hyh0wEr/nwww/HuEeg7J+Xn/D0VLE/qS4iPHAEH330ke0EQMGfffbZNrEx5GQcMOoYd758f5G5YOshIoJ6BIrr+MJxXlwYf9YdeV6yAkkzAqkBigpxPhQIHg1wTjhYTwocLe85vpARh81tSQsZOdGPdd34HQ88D/fleztaEQHS+v0wWckoHW2KDmeAEO3SpYvtsMEJkPLjtS+44AIr+GR7KOoeDvkLThEdUA/Tp3dv6zPC69MumfeMQ6F3PgKXI+DD0sWpCTiLcWaHUeXKlS1jgOHG7hAxYmOwNRTW8X9/EWkiGKivQUSQiYBL8Ip5dNZZZ5m9Yt0a8ZCSLc4BJwbYKtvOqQIiU4arpHTJklKyeDHzSX8EgiDGl3FmvL3fwg9hc3zb7HjuJOVPqWLFbTmDTAX2ClsMDxEi8BJ+xtvWkx36fR8fEeHBl0VkT2SJoKCYhYnMuhIOjcnpr7/+9a9WV7Fi+XITEWPHjLV0D6r/ww8/lFmzZqW7Lx9jQpofJ8dF1Ti34YgRO9zm02H8zvbG+GOAue8999xj/4OM3jhxH5YRyOawVHSkSG/v51iAoENQkH149dVXrW/FAw88YClo3kdS7lxyySUmiPr26SOF8xew4to333zTLgwDfwecPsBpkLXCITz66KO2pOX5gmNAXPgLQ0/2beXKlVKscJFYTQSRKUsltN4m7QwnA9I/CBJqP15TrrriSluabqZ+5GjGjvsiRPA7jRo1Mv4QDGN3uOK5k5Q/LGe0/ewzEw01a9Y04QAPsWWnIo67iIgHCpF19unTp9v2PYpaPtMvO/6iwI00OhOZ3RlE0Ol54kJWHDEpdy5IFx/lElG/9dZbdnXu3Dm6NQH+8XwX/EwaIfdRh3g0GZf09n5SE0SGHAZHC3Pqb5Jyh/QlIhMHkP/WW2XH9h2W2Qg4vUFWDJtCBgreENC0aNHC+qlg4P1FlmrDxo1SuEBBa1AEdygiPlkL3k53jB0zRrJck8muWTNnRrcePeDPhg0bjD/YRXjye/yhHquj2iJqxVgaPtVxQkXEkQLhUEgjyenTpkW3BAQcGRCq3bt0MxGxc8fRNxsLOL2B7UnaoCjg5MR2DVgL5stvRfpJd9QdL3j+IEJPF6RLEUFKmmggiIiAowVRA7s1gogISAniRcThivACTg6QRX36qafltVdeTbRkezxxOvIniIiAUwpBRAQcC4KIOHXwswoHdmX0/7b/CVvWDCIinYCBCCIiIKXwImL3rqPf1RJweoOdR94JBJzcoJZl7pw5smTx4hNWV3c68iddiQgGne2du3butMJKDrFhJ0DoBBfwR0D1U/zkO1ayFkpRE9XSoTAu4I+Ak6EnDMW7tC2mOJcU+PYdO0JG4iSF+jUrtGYc+f14Av7sUL/FFlHPn/0H9lsR+vF+7bRGuhIR9GYg/dTy9dfllptukpYtW8qrL7+coj4JAacXmKgcXFPr8ZrSsEEDyZk1m3XPZBdQet7dE5A+gFDg4L3nmze3c19efeUVebpuXVm+bNkp7wQCjh0sl3D0e6uWb8rNOXNK08ZN5ImatY763KOTEelKRDCRh333neS4MatkuOxyaxbSSoVE2KYXcCQgC1GjWjXJmS277Q/Pd+utdjhYQMCRYNHChbYdENuTL08euefuynb4W0DAHwGhSUsCfFfGy6/QIDiX1Hrs8VifnVMZ6UpEAIoqOQXysgsvlkwZM8r8efOi/wQE/DGGDh0imTJkNBHRvGmzE1aVHXDyA67Ur/eMOYGrr7xSevXqGf0nIL0B50zX0XvvvdeOSkjqrGkORatpLv6fFP7xNNbzz0EmHA74LpT8/2iW0lm6qFG1qlx56WWSOeNVdrLx6YB0JyL+p4qOlqE3XJtFaj3+eJo1Ngo4OcG6drkyZeTG666TSROP3/kqAacmRo4YKddnvlby35o30dkxAekLOHvfgZfLt+7nDAy69HIbTcW4+B2hEC80ePzHH38cezwX2QSWPunMe+aZZ0rr1q2POgih5T78IRD27+lUR7oTEYA22bfefLMdrMTABgQcKSiipMVtjqzZZPu2ozv9NCBg48aNlpJ+tl69UJCbzoFvoN00xyewow/wE0EQf0YQZ59wW1KnzjI5rarfe+89OeOMMywrAXhezlpJSQDLKZ43Z88hb7ZsedrUYqVLEUGV/a235Jbx48ZFtwQEHBmYuJy18eQTT5wW65EBqQscR90nn5TOHTsGEZHOQcE9AuFYTivmRFbuQzt/hMb9999vOwS5PSVFkezuue+ee2XwoEGnTQCcLkUE61DPaCSw5TSobA1IXVCcy5G/nMKY9NyPgIA/Apzp3KmTne8Ttnamb6SGiCATwbZM4Jc11q1bJ1mzZk2RiOD12nz4oZ3xc7ogXYoI0kw0mgqRQEBKQAZi4cKFYVdPwFEDm8NpnaE3TfpHaokIfpLB5KRNTgPmlOBLL71UduzYEd3zyEFx5vjx4+11TxekSxEBmMz6vqK/AgKODhREBf4EHC3gDI4gIP2DDIIXCIgHwE/+5sKR02yK+8TXTXhwojQiIj7j0Lt3b8tGJCc6jgTw53RbRtXPnD5FREBAQEBAwOFAptGLCC/8cPyIgPjCSv7PbUkLK8lUZM6cOdEJn2QkuO/ZZ5+dIhFxOiKIiICAgICAkwosN9EDAofPVapUKRMDCAuyCey2yJ8/v11/+ctfpFevXomWN3l8yZIl7bElSpSICQnu061bNzn33HPtyIWAP0YQEQEBAQEBJxXIPPTt21eGDBliF7/HL0PR7h4xwMXvSeEfP2jQoEMeC6hrCIXZR4Y0FxEownLlykmZMmXsKlCggF3+79tvv932bt9xxx2mNsuWLZso/RRw+iJwJ+BYETgUkFIE7jikuYhAAXbq1CmWlurQoUOivzt37mwFMuz95+927dodohoDTk8E7gQcKwKHAlKKwB2HNBcRgGIW33nMI/5vfX9SrVo1OyUtICAegTsBx4rAoYCUInAnnYgItupQQXvWWWfZtpvy5cvLn//8ZxsM+tdzGErXrl2jewcEJCBwJ+BYETgUkFIE7qQTEcG+WvbrUgTDyWlt2rSx3uWkgSpUqGBNQAICkkPgTsCxInAoIKUI3EkHIoLiFApOUG5stRk2bJjdfskll9gWnpBCDDgcAncCjhWBQwEpReCOQ5qLCN8chHaj3377rd1WsWLFWHHK0R7FGnD6IHAn4FgROBSQUgTuOKS5iKBN6TnnnGMNQQDVrH4Qhg4dGs7PCDgsAncCjhWBQwEpReCOQ5qLCIpRLrzwQunfv79Vum7fvt3+DmnEgD9C4E7AsSJwKCClCNxxSHMRwb7Z2bNnR38d+ndAwOEQuBNwrAgcCkgpAncc0lxEBAQEBAQEBJycCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIiAgICAgICBFCCIiICAgICAgIEUIIiIgICAgICAgRQgiIuCUwK+//gqZ7frll19iF7cHBBwp/ve//8V4A5eA/xkQkBySsz3w6HSBfu70JyLWrVsnzZo1k++//z66JSDg8IAnefPmlWuvvdau6667Tq6//nq7cuTIIX379pV9+/ZF9w4ISB4LFy6Ut99+W3LmzCm1atWSadOmyeLFi6VEiRKyY8eO6F4BAQlIzvZkz57deDRr1qzTQoCmSxHRqVMnufTSS2XMmDHRLQEBh8dvv/0mkyZNkj/96U92jRs3TubNm2cXXMqQIYM8/PDD8sMPP0SPCAhIjJ49e5rg7Ny5s8yfP19Wr14tc+bMkWrVqsk555wj27Zti+4ZEJCApLZnwoQJxp+uXbvKDTfcIK1atbLMxKmMdCcifvzxR2nUqJEULVpUGjdubH8HBPwR4Mk//vEPu+KXMIgUzjjjDDn33HNl9+7d0a0BAQlYsmSJZa3atGmTyN5g/L/77ju5+uqrZevWrdGtAQGJ4W3P3//+9xh/+PnRRx9JxowZZfz48XbbqYp0JSIw/lOmTJGRI0dKu3btLIKcPHly9N+AgMMDgeAn8qZNm+TgwYOyatUqadu2rVx22WXSo0cPixoCAuIBJz755BP5z3/+Y2IiKdQ2yoYNGwJ3Ag6LeNuza1eCK12+fLnxqmXLlqd0bVa6EhGsW5P++emnn2Tjxo1y4YUXylNPPWV/x4OJzW38DAgATOTzzz9f/vznP8s111xj65NEASyLffXVV9G9AgISY8+ePXLxxRebE9i5c2d0a0DAkeNwIoLf//nPf5ofO5WzoOlGRCAI5s6dK19++aWloLmeeeYZcwIUPMWD+5IuCiIiwINJyoRl/Xrq1KlWEDdx4kRp0aKFrXWf6inFgJQB3px99tnmAE5lQx9w/HA4EYFA5Xb4FX/7qYZ0IyJIF37wwQeSKVMmiyKzZMkil19+uZx11lnSunXrQ9KJQUAExCN+IscXUG7ZssXEReXKlUNhZcAh+Pnnn6Vu3bpy3nnnWfo5OZxO2/UCjh6HExErV6605Yw6deockk0/lZBuRATrju+//74sWrRIli1bFruoqr/yyisPO8EDAgBLYX4ik8Xy2L9/v/ztb38zIREizYDkwC4wMp6ff/75IWvXCE8q7hEbAQHJId72xG8l7927ty2VffPNN9EtpybSXESQUaAAjuKToUOHHpJhoMDyzDPPlCZNmtiaZdL/BwTACXqLkLX661//astfe/futWvUqFFWK1G+fHk5cOBA9IiAgASwC4OdGezxHzRokIlQuEOBLn+zhe9ULowLSDm87cFHca1du9b4w1IqfKpfv74FMqcy9DtIWxHBZL3pppvkggsusGUMRINfuiBCYCBQeaSFcuXKZetMAQHxgENww0cDV111lS2LcWXOnNmq79evXx8EaMBhQaaBXWHvvvuubfeENzS8wxmELETA4RBve7go6oY/r776qgwcOPCUFxAgzUUE642oN9TcmjVrEokEtulxOxGB/39YnwxICs8heMJFoyCyW1zcfqo3ewlIPRBFev7QpTJwJ+D3kNT2wBv4czoFu2kuIgICAgICAgJOTgQRERAQEBAQEJAiBBEREBAQEBAQkCIEEREQEBAQEBCQIngRceqXkAYEBAQEBASkKlQ/HEBErEZNhCtc4QpXuMIVrnAd+fV/q/8fYFOuTF4n2qYAAAAASUVORK5CYII= width=529 height=159 />


   
  a.
  A
   
  b.
  B
   
  c.
  C
   
  d.
  D
   
  e.
  A and C"

Question 2

How large a pressure increase (in atm) must be applied to water if it is to be compressed in volume by 1.0? The bulk modulus of water is 2.0  109 N/m2 and 1 atm = 1.0  105 N/m2.
   
  a.
  50 atm
   
  b.
  100 atm
   
  c.
  1 100 atm
   
  d.
  400 atm
   
  e.
  200 atm



Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340


cabate

  • Member
  • Posts: 537
Reply 2 on: Jul 28, 2018
Great answer, keep it coming :)


ashely1112

  • Member
  • Posts: 347
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Colchicine is a highly poisonous alkaloid originally extracted from a type of saffron plant that is used mainly to treat gout.

Did you know?

The term pharmacology is derived from the Greek words pharmakon("claim, medicine, poison, or remedy") and logos ("study").

Did you know?

The highest suicide rate in the United States is among people ages 65 years and older. Almost 15% of people in this age group commit suicide every year.

Did you know?

A seasonal flu vaccine is the best way to reduce the chances you will get seasonal influenza and spread it to others.

Did you know?

In Eastern Europe and Russia, interferon is administered intranasally in varied doses for the common cold and influenza. It is claimed that this treatment can lower the risk of infection by as much as 60–70%.

For a complete list of videos, visit our video library