This topic contains a solution. Click here to go to the answer

Author Question: According to the figure, which of the following is an accurate statement? Per 100,000 people per ... (Read 85 times)

Kikoku

  • Hero Member
  • *****
  • Posts: 540
According to the figure, which of the following is an accurate statement? Per 100,000 people per year,
  a. fewer people died from diarrhea in 1902 than from accidents in 2007.
  b. fewer people died from cancer in 1950 than in 2007.
  c. more people died from heart disease in 2007 than in 1950.
  d. more people died from strokes in 1950 than in 1902.
   
 
Question 2

v1en+3s8enDeXaddl/3cwju+2kG9sVf9vZiOIUx072twPWEN/2zg/tiklvyePTEUz08W5v7tYQvzg7fdOD8HphB2fXPzqtnL8ZS2RxXm2nrbf918I/dOEe2Knn2mf04bzrT5s4HbCH3ShPtmmOXslnpxinmn61uB1wfv8AtlCfbNT/AG9tePTG090/3sZfyrg/0gLDtbyjCvTXuYAvm2/xrgvaw9vFV/29ngtfImArbdjlg/g27P3RhftmmOXs8PwvIOCTjCyU6zCR55xgCiSSlsOMNNNMHYBZRZYFNxmGGDFawQ2te9732WrXW+zx6boJJFg7PxFhl9v8Hm76hUxfkxABHFx9N+I0Lt0RVzfydbr87YIAeb/8G2zv99Me6Yha5cYta9/MSFbvzeb/AKhU8s5/ThF5tWtt8w4Tv/N5B9RqeTPpwiMjQdn4hQnh/g8g+o08mfTiuojdr7PMGEfB5B9RrUmZumf0Fh0dSqVKfzDgxng55pHP83EIef0Rgi+dzeYLm87m7dm2+yrj3TPqExOMetbb5gQbf+byH6lTHumfThE6x+19n6P4Lu/N5F9Tpj3TP6cV3hg23/k+gnweRfU6mPda8NxjoGk86HO6CPMLErPlrk2KBsjYmQCPRghkkV9AcYSWE00kSkosdwCvcHPLCLZtDa9Si6ayqiFn5PRj6W7/AHyHWrti7fMgx6/OsfxPp20p5Bn+G2eZSPJmk/RwokL2c7LJQgaZfkHH2TZTPMy5uYZDF9LbJjWXSKRw9nj69hJlBzYyOUiJMApU3IAkWxcReuH+so1iZ7zW+YWhWn2JQdUryNDYkzy/KESnBMcgyYMX1MPGUEcgMi05d7ZCIbHHT+ltHX0s2JEviKRoFYG2yFY3LlpMRVmate2tQnq79KUtRgjkYzjqE0cyfJ2SMkteLsp2UNWbGQrEDWRgrHsYjg13mFnFYfkJ5VnjkFvJxR8SXlJEJpF1RrSPGTky6zzVxh1zlUEDiFyyb5OIJOZJ64wlHK3KMp3jUghx28ynNCmOyzT7CYiki8cl7dZgYFiSMoXxpuFy87DDELwnTjDX33riNWTctyAgtpvY29TDsWYrnTmQXCJLLVbLJ1CPGh+ZINAy2zLjK36jHDnzhaKHBSK4WvfQNB1kaNyEah8PLh6WaDNXGbdUkk1Gpcr4dSYjZcXzgMbhjepEmRTAJhE5y1EniPS5kvM5O7HHtbTAmd0IeVbfF7Ofl4wlO1WTISnFxJXo1RGyt3uEo992PPjmy0WPPgmcwlD5SRrZhFkaxNIZQSpSKpA0p1Kc4uSOYTCjyDVYDSjQCtsuEVrXtffXWbS7LGZCgNw32TiH/CVl9C/7dq2XsiIOyBA73F+O0R3X/fIzfP8A27V5TwIZRPYLfbsmkTvv3SNn/tv25V/B+USfO4PfZsmUUv8AxhaPn/tyhdog2cwn0344RbsfvgafnftuqIY+bwu9+CXRi/8A0+1ehb9t0S6RCiaw2+6Wxm/afmr+1/bVWbEObM4fe19krjf3da/Qv+2qVn8og+YRG977JTHL8F/9Ntnz/wBtVfwtQ50ojKi/QJ5ExHnni6Ekkl3bzTTjTdoCyiiwKBDMMMGK1ghta973vstT8HF7zGdjj5K87sCfsvxUXqhNBH33X7V+5WGCo93HyXoFjOxx8lAqLvr8Xcrc0M3f3ScvH1fskyrNIiB7uPkvQKj38XLegXvvv271HSaWhEfrKFe/x1+IknrN+hd1ZVRCz8nox9Ld/vkOtXbF2hKiCgKAoCgKAoNlbvcJR77sefHNlosXQPfxct6jZYffX4u5agUvuv2r9ygVHu4/1a1x2MDNxf6y/qhlKxdlL779u/dqIUFuv83Zos24B7uPkvUbYB71T4uH2UnoI0f0XHy1ZsLD72/F3bVtCpnY4+SgCfsvxUXqhNBH33X7V+5WGCo93HyXoFjOxx8lAqLvr8Xcrc0M3f3ScvH1fskyrNIiB7uPkvQKj38XLegXvvv271HSaWhEfrKFe/x1+IknrN+hd1ZV17flxbXDWhzOKUnktzdIVxpCJOYrWHFpFZ6gwpIlKtc1SpMCXexZYbXEMd7Wtw3rV2xdvHZv6zZxxrpww7q41KwyNJ8UammmBzLEUPwC+Mk8yDAIDMo07T1wkmUVM0m8FJnqCEQY1qPezYO2Op6JWapCWlUJyyVJsMfhssP62TGs9emWIRTTPqudJ/N3ZpRYlggmfT6gd8vMrmbqSAomMSfnLUSjgMcjzMTpSlx6kqVvMbdhkEpBJ0Sjwwq1xhyYe62rDmd8qQTFONcA6snVbkicL4vEJo642hEXxw7xVqSTBxdcuopbJsotJC/HjY2QdYoUJ0xZ8pJAciCJmsY4oQKBj8vVKiCgKAoNlbvcJR77sefHNlosddb58zUrGuPSrcXJkoHZ6SJE58ClitQUkQO69ClCoVF5URlqVHQJg9IMJJQRD23sANtgbbnHj7O1Im55ziG97+UcUX/3dy/sbLfzuVenHOPJ2qMM1AZyDa9vD8UX/wB3kv7Oz+lv59Lw4z5O1RZ2ojOYdtvDMT32bL/6vpf/AN7VWcJPk7VHn6k86A2f41ia/Nte1v5P5h/ZCFw/ys+jer0ntLcow3UznUHD4Ria/Z/ICYfP/pY+dTpx9plFmaoc6ht/8XEt/wCIMx9G39K9OnH2S+UabqrzsHg52Jb/AMQ5j87+lf59P5ccZ8rediOM1bZ4KsZa36I72MBYF9sEmXBawwmbbfyrb+cXbip/Lj7O9xlAuGsLOyJKrVXJxIbZMnPUCLtCJiXcyxJYzLgsZ+lIywLjsDZt5otm3den8+PtJzteoY+9vxd21YdCpnY4+SgCfsvxUXqhNBH33X7V+5WGCo93HyXoFjOxx8lAqLvr8Xcrc0M3f3ScvH1fskyrNIiB7uPkvQKj38XLegXvvv271HSaWhEfrKFe/wAdfiJJ6zfoXdWVUQs/J6MfS3f75DrV2xdujrp1eehd6A5lOmknT+rJeZHaXOKceMIqBMoklj5GsE7hTFNwCE6k5fL3RUZ0YQBNVrzjx2EcO46iZreJBo+0sSyOlRKTafcSP0bTBjwUjO7QhiXI0Pmm6T55jg24ChGMTeczuOVJMMkZFyxhBIHEvbctYoAYEtCdLmnLG0sMnWP8I4zhcvNeJDILv8YiLOyuBb1LTHQ+UOKcxAmIClUyFS+rjllyrA8JULVBo+cYcaIQzV80BQFAUGyt3uEo992PPjmy0WK7O0vhAcr8DyQ/Jkqle5LykwmKPn3T2cl6peIix40wRmhJGpuEIhW23Da23hrXdesImaXTRXva+T374PR3s8P94q/0uc4OsR49K9xWve+TpBu7EfjnY/yap3tOpA3SgAXDfJ0h4eDgYY57WrU52/g6wmdpHTisHbk6R+mDe9/3Cjn9mMPrT0LVbzrNmEeZpCSj22vk6S+h7hxzb2betKn9L8JggPR2gFa+3Jsn+4sb9HxKn9L6WTyRM0Ztl+G+TZTv+00b9pfOp/W6xF6SkxaKWgyx1xZNlf8AcyrDtsZ43w3ucWXsv/iO7mjvx0/rfg6TGEOq0QMCoo4hRkqWiJOLMJOCBrjZYhFGBEAwIR+TxcwQgCvsvsvsp/W+jpI7tD72/F3bVGipnY4+SgCfsvxUXqhNBH33X7V+5WGCo93HyXoFjOxx8lAqLvr8Xcrc0M3f3ScvH1fskyrNIiB7uPkvQKj38XLegXvvv271HSaWhEfrKFe/x1+IknrN+hd1ZVRCz8nox9Ld/vkOtXbF21dE5NzlZVduXonCyFapbVt0SohVZG4oxWArQKrkGGWTrUo77DCh7DAX4BWtURi4OrY0lpznVxQNhStehakhrgsToi1Tm6Ki0TY3JxqTCwnL3FacAkgkN7mHGjsAFriva1A/QFAUBQFBsrd7hKPfdjz45stFj9VZvjxRp4QMEqUFEKVSWykkiP2JOEkUmpjDCgnyIhRYoRhV+bzywCvbfa1XrV7RCH6hImTe9zGGXB/yWP33Wt/YyO9XpfR2jY4PlWO5AWujazpXhIrakidYoA6JkZIRkKjTyCxEjRr1wRXsYRewrC5t7cGzbWbxs2suVgj3cf6tXjtWBm4v9Zf1QylYuyl99+3fu1EKC3X+bs0WbcA93HyXqNsA96p8XD7KT0EaP6Lj5as2Fh97fi7tq2hUzscfJQBP2X4qL1Qmgj77r9q/crDBUe7j5L0CxnY4+SgVF31+LuVuaGbv7pOXj6v2SZVmkRA93HyXoFR7+LlvQL3337d6jpNLQiP1lCvf46/EST1m/Qu6sqoRxEMEZjoyi+mNCnehFlc+xfSjC4GXAX0gtoQc8Vtm2/BbbWrti7fMVjPq4taOLW2Mx/C5T1gSFQqPaj4TitNGcn4xj+Ro0TkDEen9FAJvnRZiyORjHeeZgxTqESVrRyNyQOMpVtwGdW+HrFQVKgMXM/LZM96HOtIn3nvFMbZodW4toyQ4SuA5CypmsWRmBYpiGrLE2RtI0rh0Cfo49H49eMB6cou+MUzUKQqFMykqslzOKdTdphZMwy56ceuFdQZUkVslTBqdXSSxh1xri1Nm5Qog50Xa1ra9xWE5Byi3ZXjM5avNNrTCj8idYezR1c+Kr3dXAUrB0yFYPD6MaIKAoCg2Vu9wlHvux58c2WixSyqDZHLErILx89qA2cXYwpQS9QUJJ5J7mrPIPKsol5B4QGkmBFawwAHbbsEG19tq3mfJZWluGNcqH7bF43e+zvfsf237P4Z1rtx+UxVmYFg02jEjlLjKIwrj6RaytiNEYrc46uuqUELVx54AAY3p2GVYos0N73MsC1+dwbdl9mOdl18tcZZt2bHu4/1anHbTAzcX+sv6oZSsXZS++/bv3aiFBbr/ADdmizbgHu4+S9RtgHvVPi4fZSegjR/RcfLVmwsPvb8XdtW0Kmdjj5KAJ+y/FReqE0EffdftX7lYYKj3cfJegWM7HHyUCou+vxdytzQzd/dJy8fV+yTKs0iIHu4+S9AqPfxct6Be++/bvUdJpaER+soV7/HX4iSes36F3VlVELPyejH0t3++Q61dsXbpzgTW3pg1MR5RKMRZPLXtSeJx3IFwTeIT7Dzyox3LYqhm8YyO3xrMUVgUkdMcv8VcS1iSQJkhrOcCxgQqbjJOCCI2eHarNO83j5slbMuwVsQJ3SaNCpPKpG0xJ2RqIBP3XGElPWM0iWNzmlbk00aDEhSkwoJCjpCRliEE4q4gsZ1yri9iMkxL3kiBM50KC2CmRTrMI83mRIL0WYazCkxatxJEwhdiihiTXVWK6cIb3BzrWvQcR+XcUJfK3hWT8eJvIDSzv77081jZPkVikXgnm+9O3SOQfJrS++HkeBqTuYSq6YvoxC54dobCxS6JygJQ4zJ49IgHsrPJCRMT02u4To7ITXMhgfihN6lRYxlfDmRaBGqttIUiSHWLEK5RnNDYqAoNlbvcJR77sefHNlosXQPfxct6jZYffX4u5agUvuv2r9ygVHu4/wBWtcdjAzcX+sv6oZSsXZS++/bv3aiFBbr/ADdmizbgHu4+S9RtgHvVPi4fZSegjR/RcfLVmwsPvb8XdtW0Kmdjj5KAJ+y/FReqE0EffdftX7lYYKj3cfJegWM7HHyUCou+vxdytzQzd/dJy8fV+yTKs0iIHu4+S9AqPfxct6Be++/bvUdJpaER+soV7/HX4iSes36F3VlVELPyejH0t3++Q61dsXbwDM6snTzFIDhnSJh3U3DcV58x9pictOOUXh0jTJNclZzxllHCcZxrJnY6GSPIKN+jzo6R7Api1kCiWr2yOoSXMtMksEVlBMM1Ybp1MGHJAoTLpNK2OTOZOQcqzU9zfsQRZ2XrG7JsB1zxAuIqFbg7KVA2eMvWtTy4ntcQixuESSCsUWYo6VKwZQsP6lqFMUhhK6T5jJnMfx5Olk2ZGl3w9GgvcxMmeqHDGrDJ7ZmuVKJG5G5YJUTzCqJqhxihKjFD40uUoR2db9EcWMtJhvUaMjBIosdKdRZ+RYJEotp9gjdA5VicaltHAMHZu0PZuUwAxpHlJRjcmJSx00TpUFwkxgpxCjlK0DkseC0TYUmGXd/q8dHa/SjFMzOEnRNrXK8xZonUwZ4q0yU6YtWIcJFyqRLcK4FjkkNj8VsqieOWuQuKtIlAhAS1qHxUhJOVJ05KgwW5eh9EFBsrd7hKPfdjz45stFjp6uXSBR5RVjm2RwHGPD9e9k+TMgJSQBA9LyyyiEqWSEpkxBRYbBAWWAIABtawbWta1q6yT4n4TNVq8PUsIuLosg5QBv73KeRfR2dmT1qSfETNdodIrw+OrHkEL3IZJIbo5QhKRmyWRPckUJCTWFCaYQmVPq9wUkJxG3uPowDsDnXvfZtve9+X/TGfDfF21Hu4/wBWpx20wM3F/rL+qGUrF2Uvvv2792ohQW6/zdmizbgHu4+S9RtgHvVPi4fZSegjR/RcfLVmwsPvb8XdtW0Kmdjj5KAJ+y/FReqE0EffdftX7lYYKj3cfJegWM7HHyUCou+vxdytzQzd/dJy8fV+yTKs0iIHu4+S9AqPfxct6Be++/bvUdJpaER+soV7/HX4iSes36F3VlXX17IUqoeypka0xtWKG+QEJHEolOpNb1Jqw8shaWnVlmpVBiU0VjLANCIsdw7BWva97Vq7Yu3zJRzqctVraslro45RgCRxkGKsf4+f3GG58zqiluVZhCYNI4o95mmM2yPjHKwY9KcjvkiUPDi0ntMpZwXVKUasDoBSsPWRcpR46prXuvbciDcNVcflcpyBHI1H3tdefOkNx6taimzEZylojOM1+nfKTlj51xbJcaGFQ98VSWWAIjrm4oyWpqcnVQ9EEzEnKeqe1rzM198raljWhpkcjhL4/IotqBmRWQ3R/RYnn+PpHPm3NUy02ThUwGxJ5fGdzh7AtjcgPZladwORP7bY9sTs5cx9G1GRQFAUGyt3uEo992PPjmy0WJhXhXFSo89QfBmMw1UeerPF0BobGKFRxh6g24AHBBYRpxghX2Wtw3vTtWsREm4Ew4MV+fjyOD/XJRi+f2Tb1e3L5MRtEVg8RgyVajiEebI8mcFFli0lsThThVKgkAThPP2XvcwwJBQQWve/AG2ypbbsxI2Ae7j/AFavHasDNxf6y/qhlKxdlL779u/dqIUFuv8AN2aLNuAe7j5L1G2Ae9U+Lh9lJ6CNH9Fx8tWbCw+9vxd21bQqZ2OPkoAn7L8VF6oTQR991+1fuVhgqPdx8l6BYzscfJQKi76/F3K3NDN390nLx9X7JMqzSIge7j5L0Co9/Fy3oF7779u9R0mloRH6yhXv8dfiJJ6zfoXdWVUQs/J6MfS3f75DrV2xdvNbH3Wb6ZZwTlAxasmsXU491FyvThHmEyCymazTMj7F2x6dgTbDmP8AGLTNpzO8fP6KHSI9E4I24dho424qxhAlIudeJhsi3rGNLqZ1bQJZY/O0QcUE1OT5CbYNNz4y9usRyhinDKFixqUKOlvWdVczydl1uYmg2BpZKnVuwRJbD6UZYRDDQo/1s2iBZH252mGXU2P3VwYH2VXjL5Gp0sdUbK0u8nSoUy3yXElBSSbPkciyh9IixvMk1mawlYkHg5Rhti4bUl6zbSCscnVvIluSjC2tBGTPDy9PGoNQS4yKUZdyRgpNjdqb02MT5Asyy25TxK/tKyL+BBeyT2pdsTis2ud0QxXf2iCgKDZW73CUe+7HnxzZaLFRrNTE2BZUoSYtix6Ipe6JExinKLslVHEN7irQlqD0xWKlhSY1QFNz7lhONsC4ubYYtnOvvp7Xsr511mTRtuO5mHIuZzf7DLjtbdwdnEPzqv8AP2l54diMFZaV5lhq+Tro0niipBIV7Aa2JH42SJx+CIGxeBWW5HMUdMv0xbnYNy7prcwQL+mFa9Y5cetw1LmZW+Pdx/q047VgZuL/AFl/VDKVi7KX337d+7UQoLdf5uzRZtwD3cfJeo2wD3qnxcPspPQRo/ouPlqzYWH3t+Lu2raFTOxx8lAE/ZfiovVCaCPvuv2r9ysMFR7uPkvQLGdjj5KBUXfX4u5W5oZu/uk5ePq/ZJlWaRED3cfJegVHv4uW9Avffft3qOk0tCI/WUK9/jr8RJPWb9C7qyqgnMq58Xj5Fjjk9zkr2VY9OIITyLmLzQWOIEMBgAnF3vzg3uEVrCtbba+6tXbF28v2bqnNH0MVQZ5xUwTbCcux9GMeRxmnWHJqugMudFmN2HJEUa5vM3FpT2Tz3Isgi2YJMgfXp5IXLHop2EarEYpTIj0sMp63Vlaci2FnjCd3zMmY4SJ3viBGTleQdJgsDjlfEua25PiRwNsa5x5FFsh4UYVLaQpOXElIyTEBoTkBt01hmtKZuqH0fMZypSlRZIVrHdnQNkncnqdGyB6li5qdFy9slD7IXttXv95UmRLvJ5qtKqS+HoSSQrQKTSgm2YM1YGTurU04ZYb8gMkmPyYnjeWWeWx/KMWaJ0pSxuetEvzzkbUYpIfWhShWpi1rHkXL0mu0L0dkrk1o3g0CdQA0tOcSMu/xRYSSiyQXMuAosBYbmmmnm3CANghuYeeMw44y9rcIxiEIV+G9734aI5KAoNlbvcJR77sefHNlosUwt065D5qpIjlUM8DG4OqpMNS1PnhNk69yVrSgHhKXdF0xYFNgiuG/Nve223oVvvF6q7dtIWRXO47CnMKJ539ixPo9m3h7LoH0av8AST8JeDsfgPFLnh+FOEbd3pA+rnCRr34xW2olCBKUBU3tSAtMAlUpVHCEADZzhCuK1r3Hstbg4cc+Xa5akxMLmHu4/wBWnHasDNxf6y/qhlKxdlL779u/dqIUFuv83Zos24B7uPkvUbYB71T4uH2UnoI0f0XHy1ZsLD72/F3bVtCpnY4+SgCfsvxUXqhNBH33X7V+5WGCo93HyXoFjOxx8lAqLvr8Xcrc0M3f3ScvH1fskyrNIiB7uPkvQKj38XLegXvvv271HSaWhEfrKFe/x1+IknrN+hd1ZVSgSkhzU2N68ElQLGsTkQeWVBpa5FCEavNMsIpWjaxJTi7gta4RFjGAVr7bXrVZsy4PJrT68lP9W02/BlRMDya0+vJT/VtNvwZQwPJrT68lP9W02/BlDA8mtPryU/1bTb8GUMDya0+vJT/VtNvwZQwPJrT68lP9W02/BlDA8mtPryU/1bTb8GUMGDDESFrulSFSlwNNkMPXjt5hTJJ0aVok7U4LTNprOMI+iRpzB7LXsIXN2BsIV7WqrpuyadMDgQWrRlSY9ObzujNLg03uAfRmDLHs2x61/SjBe3btUxVy5Lyppvfb4NKfgJNvwBTBlw3krTe17dBKeH+Ac2/ANMGXFeQtN7bOhlPwCm34CpPBkqVK2BWYqIIvJjDW08KJaAMCm97p1JiZO4gKM2sNtgxI15RnBt9KO1W5S+Wd3ppve9+jlPD/AABm34DqJhxXdWm9tnNlPwAm34EosmHGJyaRW2bJTb/d/NvwLTC5KnPjAlMTkHnSYs10NugRAFj+b7T1JZB7mMovYyX2jsjbjR7L7PSgvw9i7FMi6lpvt9PKeHb/ANXs27P/AEPTBlxXMab22dJKf6vJt+B61kcQvJItn92lNtn9HU2/BFMhc1WwIeb4SskxXh5hben5+O5vbnqTxWEUWHY0X5wx9FfZbg7dM0FyGm9r28IlPD/RzNvwVWWcOISNpFbZ4VKbf7uJt+C6GHGJvaRbP8blNtn9G82/BdDDiu1tN77fDZT/AFbTb8GVqXBhwWIYHsFndE5SY1G7Ws5JDS8bTcZZiZdsVEGAFdrBcQBlG2va+y22191qZs8GGAmFpFbZ5QlNuH+bSbfg6nYw4hR1pFfb5SlNv92U2/B9Oxhx+bLT9s5T/VlNvaFMtNijV0AljCzNBj04mMEvWrXk9bFJFHyG8KiEOpZZRpzwhTphmi8spLhCAwQxWPtewdgRXtKLmrKigKAoCgKAoCgKDQcq5IjWG8XZIy9MxLgQ/FUBmGSJWNsSeHuQI1Bo84yd9E3oekJ8MXBa2s25RXPD0hmwO223bQULo91HJdQ8OyAUoxo+4gmeGsiN2NMh4+fZCxy+7G/ynD+JtREZG2yyOnntL+jdcV53jqw4ZdgeCLz1CO/Pum6UwO3FAUFFZ8zWfgtlx0/3x/Ipy0zfOOFsLva5hdYu2kY/KzZkVgxcxTuQlSB4bnB2YUEwlTajMStCdwcRGrix3JAlLUqk4eUr911GP4e8TBtR6XMxOMhcIbN9RkTbSZRjxIbkXTLitqz2gnGbU57pIiG6LuKFFpcUkIIusNKcF5shYxCGQWodDmoPb1ndkL80NT42GCObXltQuzecMswkRqFxSlLEhgiTQgNKEYQcG9witYQb32XttoJKgj3ZUrQtTmub2tQ9r0besVIWZIoRJFTurTpjDkzWmVOalG2plC84ASgGKDiiACHa5gwhtcVg8V3brjIQ0u7ymnWmzJaE/AeT0MT1CvMVmcEmcZxQfMMxx7S9BZRE3ZvcW8eYmd5yPPV7a6FIE6U9gNjb4WpLEqbyyFAd8tG2rxLq2jE5clOMJRh+WY9fIK3SCFSl5jkkPs05QwtjPPUBfUMgiaxexrC3CD5TRJ1pATOkQvCJantc5OBMsVB3GoCg8SHrrj4CQ+TqLvWnmdLZBgmdZgX5dJYJ5CHRog2K9ObRpfcsuZQRPF1jZaYPsIVav4ohMjKIoRy1aW4WSqlBKUJp4d09GOt5m1jpH1wasXTLGzf+jnDGdMdrpS5Rx0T5KwDqKSzddhnJLddgXqzGNVJkePHIxU0qw+EN4bE2EYZcwViw7yUBQeX+oPrTcP4M1CyDTM2Q6TZRyTHYDEHRYCLvEXbWe2ZMrZ302YEw3p5NcnxySFpchTN41Qxx8cBDt0EdjStKvV2uBclCMNf009Z/BM25AxhiliwXkqExyQ5Ck+l0+ZyB7iC5piWqrF2HZ3muZ4LGkb3pa6yJuY8XYudlZEnTc9EuOIAVYoPSdJYPWCgKDp3rc1bptGOJmXKi3HrlkBC7TpFD3EYJC3wyJwZsMikwmDpP8lzx3RL2aCwFkboaaQoc1gLJSlitKWYMsJtzAh0Wcut7j7RLLRWJaV8oyyUZenuVmDAQ0M7x0jYM5L9OyXUC05xdgPjg9dDAkUYZdI0hUstlRJoJElOajAXTjXGhTBX/AP8A6Qera+2Wb/6q7/KGg97aAoCgKAoCgKAoIGUxePTeMSOFy5nQyGKS9hd4vJ2BzJCpbXyPP7eoanpncE4vSnoXNtVmkmgvwCLHe3ZoKuwHpzxDpkh7jBsNx54Y2N6kApU+qZNPMg5OlchkHm/HoindJFPcpSmaTqQKG6IxJqaEXhrieFC0tiREnsUmTElAC76AoNPnECieSGVFHpo1eWWdumGPZ6jR+HOTd0MsxVPozlCBOvhDUsQqjPIM6h7cu6AYxJlXg/QqCzk5hpQw6OvnVRaDJGXLC3fDD4deauDypfDk2cdQbarAxyIWXrv+NWBa2ZVRrIhg96/T5MrKoA0DQwg8MhVhG1XCINgh6GJ06dInISJCCUqVKSUnTJk5QCU6dOSAJZJBBJYQllElFhsEIQ2sEIbWta2yg5qCHkLGhk7A+Rp0MdCmyQs7mxuJrG+vkXeikLsiPQKzGeTRlxaJJHXQCdQK6dc3q0q5IbYJpBxZoADCHQNk6qHQcws2MI2nw9JnSNYdE2AgUalufNRs5jaJrYpNDJxG4tIGCaZbf2edwWJTzH7VIGaPvxLmyM8gIMdESUhepVKDg7L6eNMOFNKsSdIRg+Lu0bYnx2bHt5MkU+yJk6ROq9ihcTxxH/KEyynLJrMViGOQCCs7K2pDF4kjc2NpCdMWUUXYNBftAUHn+p6r3RQ4uHlt9xtOpZJjn4p9eZlONRmpedTuYFFtsDajIdkKdzDMD3MMkYpXJMYsF1cMf1zlElpzWSce2mHWEYILv096RtPuli80vgqCqodefqmY6ReHTbIM2sW3xoDoCLRSMhn8qlNoNj2JWfV3kiNMfk6PtN1yi6RETc824w7I0BQdUswaHdJ2eJIfNMoYQiT3OFDC5R687aBvEKnZCZyk+NpmF3QzWCukblLbMmOU4hji1mkCdWU+sRzba7crS2OUWODWMT9XhpAwfkiOZbxjipdHp5FW1SiaHNTk/L0kbLurgxuEYdp+7xWVT57iUkzE/Rp2VNzlOHFCrmLkgUGJ1TmcUMQLh3UoCgpTPWnvGOpiCKsZ5eTzhygrl4eU+x6GZdy5iNNKmt2ZHWOPEZmajEM5gq6awt5ZXpQStY3Y1Yzq+cEZyYYyyhADq8+dVVoRkDrKnxXhl6b3eWSZ2l5jlF825/hayHv8jeMov8wVYjPiGUmMeDks/d81yw6SpIZ5BRyW8gWBdClYTbhoN+/8uvQt/wDijg/4Bs31Cg7nUBQFAUBQFAUBQFAUBQFAUBQfJ5kIvrOdE0Ky3nPJcikGO4HqwzOxaj8yn4qyRp0V5iwlMpTHdRTGm06wQWpCXyjCjxKGk0rBrKeqabGtC2JwZ/JQGrXlah8PDvZoTK64yaZDBN9Ss9DDIDIsHYzdG1pyJhLDsgx8vkTjC9Ojw43TR/HmZcP6gMd5eSuA5+lekTyxlMJLuvMGAJiJuZ0Iw888n4z69/NmnjMEAz7Ec1oIVN4/lVe3QyLz3q5kUkaXqTQfTGa2QDNk6dJyrYpTpkiDwZldOU6xq7FNV5/gywxvbUompE1h2UhEm61ea46YkWmZlyRHcHZOcMq5Gx9maNwvSCO8SxpK8E63Soi1osYZ0yDiTIr1PHzU4/4nlrZdaSjaFTWXbwh6JQHOaUwNQcIH19g0bm7xt6z7BXmfPWGnx8bVE20HZwJxrds0mNsdc0UOaZXJcUMatC2akGI9fNWwlWiRu3hDeJsPciT35ScHYqBY761FCZ1ieV3ZkyQDUe8aOMnwnSo6y590drsaLNRjHPtTz3hlvwG0xZ7VL2nFFmZ3gZhH6WiEqgSkRt3O1hicBCCDWYu65OCSFc2p8v6j8yYmd5/ldtlKhvcur4bc7M+HolqFbGvCSrB7i9Q7GOPyMiZLwg6KXORKZSIQCUKU4sjyW8gQJjQ01djfrwbkRbM0ommdZTkKESpG3tOnjFWRNDGO8eyphL6sSOGEyedOkihClpcTn3rDJJImSR3VGPKdsKTEujAwCbkbUtsFIy3S710WR8VyN+dSZoy6kV2P8gwNkyqlmGmOB5MKb4lp+68lhwCss6w7I03ZYHKEuQdSOFG0b1H3Oz2mIerqROBY0j4sSB3LxbP+s4yJE+syRwHIUwlztgzCeSsa6KFOQ4dpoYchTrWBMMQEZIQR/KLlG4RHMALJZpRyarb4ANawuK3HLysUOAnFSrPQmiSBqLjjnrf7Zxm7HaW6n1mBIHkvAJ+PJKgm2hK8qyvGcd5KZY9M5E4PdjocqGx5Px69q5LKo2viMXukMZbIG9Q6iO8HWh3b6r5m6wNoxZNx9YZIpU9ZPcpFHFjYgkzJgBEjY1vma0EZBLx+94BnMrQPuLXWclKlbGF+RMj6iINEUYkLJ6AkkPTigKAoCgKAoCgKAoCgKAoCgKAoCgKAoPmS1B6k+sDcJdkzGmILZhcwptZqAMmKgOB895KkJpcX1uYuizPghpyvi2SooVpEgKLQu0RnIrq4yhGpbZmgmzkYEsARq7qQ5ccdYj1wj+fpkaJdpPLapBlXN+O49lEwnRNrSRxnGcDmsx02wnJbRKnV/IZG2OOGECssSySIH89xtEZOwRc63lspY0qEz8EHpvz11ybdEm/L82Id5TI5hgfFcfyPCc06LNV0ZRRnUCzaF9Qk9kcyZoZBHVydo9H43qexdHIjKk0Phh7fOF7+Nex2RAcmFEAOz+XdeGu+MQXQ8dA8VLA5YznpvyvlqeYcmOjTPMlyZJMoYjyHpghiTGLkhx5k8SDSvG5+25ydFSqUzJMqbI6Y3JRLLJ7njRgCV0eatutEzXl2Bx3OWCovh/HkgyXOrTk9Zpo1LMEhgMYh0dkK4vH58syCuimOVvlh+QIErZNms+QtL2A9RdMmK5yUVwqTVg/9YLCLawG+Hy/Wi8RBDrNzYtwlKMX4jVTnIImZ26r7CmUdOWPIe1QHES0DlpeY9aD/ACFhUPIW8xIF4ZyGySPR3PeTVAVaVqW18wdn1KxeaOmq0GbcrRLKMXiTGrwTJTUsSzdDczarpwoJ0Ypg45WM+Qoy06HMZp1iRa0DlbWteyIsTzj5I/HJF4VLI8sdbU1hm5sEN13OR7M+ZvQaeCF+nl/chSfR2gZtfqpkyhlUmZYtZ20Oq9K5R7GAYxHpCsbJi5ATR0ImY0x4kJKsO3M61j6y9P2nPDCSJfpNdHzMGq3WRAcVSLPmj7UNnvUg8YKxdC8/ZUwYF706Y1UYly+F+l6/G6FjTuL4hKWBiKpM6uYClZpqgAao0a+ut5dZA+p8gaXkuDokZmJyhcndWXRvq/1EyzAsAZkmVj4vP2SP4/Jbo/quZcuLIrFEhxsOdhKocOVjPXIzSUCuyQK/cNdHWj5+REQ4vBsyhUhRyrTYXlvHOHdPGo6LP2E3ZC86DMn5Ba1GrEUwd8YT1UrecqziJyCLNaMK5LF2s5auCBGkcTVIXXEOsD6xhv0TPeZM842huHM0P+p3S1iFibF+kLVw6L8dRzPMtxrDcptQMCOiiFTnPcmxK8yV1DH3KFvjs1yPo0xQQqTCTBLQ0yJ66euhmMvMj19NEJgCW8VirdHnic6O9YC5BMipCYzlJM93IZX5BHIAcpUqVXlPF0jlbXJ4ukTjMWKTx9AFUHYzWJra6wPDGb8lYC094fxhnZ0gWmyBakzJQ1QDIMmkQIs8ucgwzMYqoxjBchuctcsmI8oASTthQoURoZFC2t4YkRJ7wQBxAHWdZ1g3XBjnETgkd0uJVx71BYswPc4dNEWswvH7LOJLk7GSBJldKa7Kcf2XRVpxdNHE1/jTk6sLwgfmtTYsFmtuG4OQeyehWUSuV4UkauUzR0yOWzag9T0Pi88dwLAqZNEoVn/IcVazkZji4Oq9XG2c9pPbGVQcqVjUMqFIZ4UssKyw8O5VAUBQFAUBQFAUBQFAUBQFAUBQFAUBQFBUD1/r8xp/sgzh8c9PdBb9AUBQFBQOU/8AW5pj/wBoE/8A+xTItBf1BUOKfdHMH+156+KsNoNf1Efk5jr/AG/YE/7VIzQX9QdMcLf/AMxNbf8Azfpi/wCz+VUHc6gKAoCgKAoP/9k= width=332 height=599 />"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

millet

  • Sr. Member
  • ****
  • Posts: 354
Answer to Question 1



Answer to Question 2

b




millet

  • Sr. Member
  • ****
  • Posts: 354

 

Did you know?

Dogs have been used in studies to detect various cancers in human subjects. They have been trained to sniff breath samples from humans that were collected by having them breathe into special tubes. These people included 55 lung cancer patients, 31 breast cancer patients, and 83 cancer-free patients. The dogs detected 54 of the 55 lung cancer patients as having cancer, detected 28 of the 31 breast cancer patients, and gave only three false-positive results (detecting cancer in people who didn't have it).

Did you know?

Each year in the United States, there are approximately six million pregnancies. This means that at any one time, about 4% of women in the United States are pregnant.

Did you know?

To prove that stomach ulcers were caused by bacteria and not by stress, a researcher consumed an entire laboratory beaker full of bacterial culture. After this, he did indeed develop stomach ulcers, and won the Nobel Prize for his discovery.

Did you know?

More than one-third of adult Americans are obese. Diseases that kill the largest number of people annually, such as heart disease, cancer, diabetes, stroke, and hypertension, can be attributed to diet.

Did you know?

Since 1988, the CDC has reported a 99% reduction in bacterial meningitis caused by Haemophilus influenzae, due to the introduction of the vaccine against it.

For a complete list of videos, visit our video library