Author Question: When monitoring the reaction between benzene and 2-chloro-2-methylpropane using FeBr3 as the ... (Read 26 times)

lunatika

  • Hero Member
  • *****
  • Posts: 548
When monitoring the reaction between benzene and 2-chloro-2-methylpropane using FeBr3 as the catalyst, researchers observed the formation of a new alkyl halide. Draw the structure of this compound and show how it was formed using an arrow-pushing mechanism.

Question 2

In the introduction to this experiment, the text states that small amounts of HCl are present in samples of tert-butyl chloride. Write an arrow-pushing mechanism that explains the source of the HCl.

Question 3

The reaction of the ketone with Pd/C at elevated temperatures shown below led to no reaction. Explain this result.
 

Question 4

Pulegone, a cyclic monoterpene, can be isolated from the essential oil of pennyroyal, a member of the mint family. Reaction of pulegone with Pd/C at 180C, followed by the same work-up used in the reaction of carvone with Pd/C, generated two products in equal quantities. One product was isolated from the aqueous layer. The 1 H NMR of this material is shown below. The other product was isolated from the hexane layer by evaporating the hexane. The EIMS of this compound showed a molecular ion at m/z = 154. The IR spectrum had a sharp band at 1736 cm-1. In the 13C1 H NMR spectrum there was a peak at 198 ppm. Identify the compound isolated from each phase and explain how you reached your conclusions (Chapter 8). Write a balanced equation for the reaction of pulegone and Pd/C.
  See the scheme below.
Question 5

1t0hACCCCAAAJ+EZg6dar07NnTL8NhHDEIqCCkvvwtUKCA+Wy2CMWApsFTCEIaFMmPQ7SC0JkzZ2TM2DFGEBpg2zC3bdsmQ958Q4a8QRCyDZWGEEAAAQR8IzBt2jTp0aOHb8bDQHIXYItQ7kY6PoMgpGPVfDBmKwidPn1axr0/ztaLn27dulWGvjVU3nj9DR8sKUNAAAEEEEDAXoGPPpomN99MELJX1dnWrCCkTp0dMv5ji5Cz3m61ThBySzqf9WMFoVOnTsn4CeOlf7/+ti3hli1bzCA05I0htrVJQwgggAACCPhBQO1e9fEnH8vNN93sh+EwhhgFrCDEyRJiBNPkaQQhTQrlt2FaQejkyZPywcQPpF/ffrYNcfPmzfL2O2+zRcg2URpCAAEEvBNQJ8CpXr26dwPwWc/q2NrPP/9cunfv7rORMZycBAhCOeno+xhBSN/aeTpyKwgdP35cJhkXhut7d1/bxrNx40Z597135fXXXretTRpCAAEEEPBGwHq/8KZ3//Wqjq2dPv1LueEGgpD/qpP9iAhC2dvo/AhBSOfqeTh2643t2LFjMmXqFLn7rrttG82GDRtEtf/aq6/Z1iYNIYAAAgh4I2C9X3jTu/96VcfWzpg5Q67vdr3/BseIshUgCGVLo/UDBCGty+fd4EcY1w4aMGCgpKenyzTjoM+7+txl22DWr18vI0aOkFdfeTXuNv/xj2fliSf+LCdOnJASJUrE3Q4zIoAAAggkJkAQyuinjq2dOWsmQSgji+9/U0HIOj5IDZaTJfi+ZDENkCAUExNPyixgvbH9+uuv8sUXn8udd/bK/JS4f1+3bp2MHDUyoSDUt19fGTlipKSlpUmrVq3iHgszIoAAAggkJmC9XyTWSv6ZWx1bO2vWLLn+erYI6VRVgpBO1Yp9rASh2K14ZoSA9cZ26NAhSZ0zW2695baIRxO7u3btWlmzdo307tU77ob69e8r7707TBYvXizt27ePux1mRAABBBBITMB6v1i9+mtp1KhxYo3lg7nVsbUqCHGyBL2KuTRtaYYBs0UoA4e2vxCEtC2dtwMfMXK4caa4/nLw4EFZvmK5dLfxoM81a9bIgYMHpFPHTnEv5IAB98jQoW/J/Pnz5dprr427HWZEAAEEEEhMwApC7w17T+4ddG9ijeWDudUu5bNnz5Ybb7wxHyxNcBaBIJQ/a00Qyp91dXypxowZLXfccaccOHBA1m9YL9deY1/YWPX1Kjl69Ki0TWkb93IMGDBAhgwZIqmpqbJv/z7efOOWZEYEEEAgMQGCUEY/tUv53Hlz5cbuBKGMMv7+jSDk7/rEOzqCULxyAZ9v/Pjx5rdZKgjt3LlTOnToYJuIerFRF5xr2aJl3G0OGjRQXjXOOjdj5leidt+7d9B9cbfFjAgggAACeReYOXOmdOnSxTwL6KCBg4QtQr8ZqvekRYsWsWtc3lcpT+ewglCBpAJyLnSOkyV4Wg37OicI2WcZqJYmGhdRvcbYCqSC0I8//mjrCQmsF5tE9r+9975B8uILL8lnn39mnjlOvQlzQwABBBBwT0Cd/XPAPQPCAcjaMuTeCPzZk3rfXLFiubHbdldJTk725yAZVRYB67OJ9UAin1GsNvjpvQBByPsaaDmCyVMmS7u27WT//v2iDvxs2rSpbcuhXmzUNy7NmjWLu81777tXnv/X8/K5cUY7darSgcapvrkFW2CKsc7ecsutwUZg6RFwUcAKPtaWoPeGvcvWecN/7969snbdWmnTuo0UK1bMxYrQVSICBKFE9Pw7L0HIv7Xx9cg+Mq4d1KxZczMIqW+0GjRoYNt4rRebRL5tuX/wffLsM/+Qr76aLieMU5WyRci28mjb0MiRI6Vv3758A6ttBRm4bgJWALICkfqpthAVKFBAt0Wxdbzff/+9bN++3TiDXiO54IILbG2bxpwTsD6bWD0k8hnFaoOf3gsQhLyvgZYj+PSzT6Vhg4ay/8B+Ob/k+VK7dm3blsN6sUnkRWbw4Pvl739/WmbMmCEnTxGEbCuOxg198eUXUqd2Hbn00ks1XgqGjoA+AlYQsn6OHj3auObcnVKkSBF9FsKBkX733Xeyb98+qVGjhpQrV86BHmjSCYFly5bJ2XNnJblAsnkcc/PmzZ3ohjZdFiAIuQyeX7r7cvqXcnnNy+XgjwelfLnytn64tCMIjR07Vjp37iwzZ6ogdIqzxuWXFS/O5VAn31i61LgGRJIkdBKOOLtnNgQCKWAFoH+/+47cf99gUa/Lt9xyixQvXjyQHtZCb9261TwzatmyZaVy5crWZH76XMD6bGINM5Eva602+Om9AEHI+xpoOQJ1NqCqVavKz4d/looXV5RLLrnEtuWwXmwSeZH56OOPpHHjxrJj+w45fea0dOncxbbx0ZB+Anv27DFPmqGue5XIsWf6LTkjRsA7ASsIWT/VSXa6dr0u8LuDqYuGX3jhhXLS2G37sssu865A9JwnAfXZJEl9m2bcQsZ/iXxGyVPHPNlRAYKQo7z5t/E5c+bIRRddZJ4ooUKFCrYGobS0NPNFprlxDFJS0m8vOnmRPHv2rLklqFat2uaue+fOnZNWLVvlpQmem88E1Dp19dVXy8qVK82f+WzxWBwEfClgBSDrJAmTJk2Sjh07SpkyZXw5XrcGtX79enNL0A8//CBXXHGFW93STwICKrSuW7fO3NW+RPES5hdr6j0lns8oCQyDWR0QIAg5gBqEJhcuXChFixWVM2fOyEVlLpKaNWvatthLli6RYkWLmccdxXNGHXXV7q+Ni7JedFFZOfzLYfXVjbRo0cK28dGQfgJpy9JEBeuNGzdKnTp19FsARoyAJgLqPUGdrfOmG28KnzbbCkJTp041L7WwfPly80yjF198sSZLZe8wd+zYIZUqVTI/WDdp0sTexmnNEQF1yvMjR46Ye8KoDjZs2GB+7gn6bp6OYLvcKEHIZfD80p0KK+qbEHXsRcnzSkr9+vVtWzTVdpnSZcwtTvF8c6guVrd7925zPMdPHBe2CNlWGm0bWv3Naml0ZSPj2h0rbD3Vu7YgDBwBhwTUF1FTp02VPr37yKhRo2TAgAEyYuRwuaf/APn000/NXZY3b94sak+CevXqOTQKfze7ZcsWufzyy0W91yVy4XB/L2X+Gp1aZ9VeMNZnErW7tdr7pEqVKvlrQQO4NAShABbdjkU2g9B/95VVp89Wm4jtuqndmNTxR6dPn45rlzt1jYb0Y+ny048/mVd/VmGNNxu7qqNnO2pXFLULijphgjrTD7sz6FlHRu1/gZ9++klmp86WG66/QaZMnSJ333W3fPjhh3LzzTfLrFmzzC2y6oxpBZILmFtp/b9E9o9w1apVorYELVq0UFob1xLi5n+BlatWSpPGTcLvHepzxeYtm6W2sQs+N70FCEJ618+z0VsnNFAvBupDpZ0HDS5estg8Nbe6zkLDhg3zvIzqjDzqQNRt27eZu8UlG2+4V18d/8VZ8zwAZvCVgLrg77fffmsGIPVttfpmT51IgxsCCNgvoI57WbFyhbRu1Vrmzpsrt916m3HM5kzzg7/aNbV06dLy66+/Bvpgc/Vln/pCJs04+L55c3bbtn8ttL/FaLtVW3W0vzdadFOAIOSmdj7pS4Uf9e1IweSCUqhwIfNNzc4tLosWLzLfRFepb2CaXJVnNbX7k/qgq8KaunCf2s2uVq1aeW6HGfKHwPz586RNm5TwRRznL5gvKcbvbBXKH/VlKfwloLa+7t+/39yqv8X4xlz97W3YuEFKlyot6qyN5cuXl33795nvH0E8g6N6/5w/f760a9dOFi9ebB4z5a8KMprMAqpmKvRkPtZ4sfFZRQVZtVcMN30FCEL61s6TkavjbdQWm8aNGsuFpS6QbVu3S4kSJWTT5o3G7metwh824xmc2t9WfXNfqlQpqV69urnbQJ06dcP75MbSpjqziwpA7dq2k/Ub1kulipXk8OHD5tntOEg+FkH9n6MO1lbfOJevUE4WLlwk1S6pZh6PYC2Z2uVy3rx5ct5550lK2zZy/NgJKViwoPUwPxFAIA4B9eVY4UKF5Wj6UfNni5bNjcsXfCeX1qguR349KiXPPy/8+4yvZhrvFUnGsaUN5OvVX0vnTp3j6FG/WdTxq+rU2eqYWrVlTB2Av33HdklJaSOnT53Rb4Hy8YhV+Dl27Jj5OWfRwsXSqFEjKVy4cIYlPnHihKjjT1X9Dv30s/mewhdsGYi0+CVQQUiLimgwyP37Dpgv4pFDVS/olSpXjJwU9/3INwS1gubltvrrb8ytP4UKFcowmzpuqOolHNSYASWf/3L0SHqOV7BXwbtosWBf4T6frwIsngcCKvyoi4Sqv69oXzCoL9PUYyoUVK5SKRyOPBiqJ11m/uJFeRQpmvEDticDo9OoArm9j6iZThkXbS9xXrAvEhwVT6OJkZ87nRh2kpGsjRMYe3tzI/F5u4T0jgACCCCAAAIIIIAAArEKuJEPCEKxVoPnIYAAAggggAACCCCAgCsCBCFXmOkEAQQQQAABBBBAAAEE/CRAEPJTNRgLAggggAACCCCAAAIIuCJAEHKFmU4QQAABBBBAAAEEEEDATwIEIT9Vg7EggAACCCCAAAIIIICAKwIEIVeY6QQBBBBAAAEEEEAAAQT8JEAQ8lM1GAsCCCCAAAIIIIAAAgi4IkAQcoWZThBAAAEEEEAAAQQQQMBPAgQhP1WDsSCAAAIIIIAAAggggIArAgQhV5jpBAEEEEAAAQQQQAABBPwkQBDyUzUYCwIIIIAAAggggAACCLgiEKgg5IoonSCAAAIIIIAAAggggIAWAqdPnXF0nEkh4+ZoDzE07kbii2EYCT1F92XQffyqeLovg+7jpwYJvYTYNrPu65Hu4+fvwLZVOaGGdF+PGH9C5bdlZmpgC2NCjbhRA4JQQiX638xuFOt/vdl/T/fxKxHdl0H38VMD+/8u42lR9/VI9/HzdxDPWmv/PLqvR4zf/nUiry1Sg7yK2f98N2pAELKpbm4Uy6ahRm1G9/GrhdJ9GXQfPzWI+qfl+kTd1yPdx8/fgeurfNQOdV+PGH/Usro6kRq4yh21MzdqQBCKSp/3iW4UK++jin0O3cevllT3ZdB9/NQg9r83J5+p+3qk+/j5O3By7Y69bd3XI8Yfe62deiY1cEo29nbdqAFBKPZ65PhMN4qV4wASfFD38avF130ZdB8/NUjwj9Cm2XVfj3QfP38HNq3ICTaj+3rE+BNcAWyYnRrYgJhgE27UgCCUYJGs2d0oltWXEz91H78y0X0ZdB8/NXDiLzPvbeq+Huk+fv4O8r7OOjGH7usR43dirchbm9Qgb15OPNuNGhCEnKichm26sbJpyOLqkKmBq9xRO6MGUVlcnUgNXOWO2hk1iMri6kRq4Cp31M6oQVQWVye6UQOCkKsl9W9nbqxs/l16f4yMGnhfB2pADbwX8H4E/B1QA+8FvB8BfwfBqAFByPs6+2IE/MF7XwZqQA28F/B+BPwdUAPvBbwfAX8H1MB7Ae9H4Mrfgbqgqhe3gwcPhh5++HehatUvCRUslBw6/4KSoWuuvSY0d+4cL4YTuD6VeW7/5i+YHzgXLxZ4woQJoRYtmpv1KFK0sHl/0qRJXgwlkH1eXLFCtn8LHTt1DKSJlwutXpcaN2lk1sTLcQSt7w0bNoT63NU7VLbcRaa9+rvo2+/u0K5du4JG4dnynjx5MvTPf/0zvP6r94OGVzYwp505c8azcQW1Y+szEp+F3F0D1Lqu/g5q1b7cfC0qXaaU+dq0fft2RwbiyRaho0ePytXNmsqOHTvk3kH3SuvWbWTvvr0yZMgbsmfPHpk6Zapcd10376NoPh6BEUKzXbrJUybLoUOHZNvW7VKlSpVsn8cDiQv87W9/FeMPXq644gq5//7BUqRwERk1aqQsTVtq/D28KYONadycFVDfONWsWVO6dO6SpaPLjOkPPfhQlulMcE7gvvvvlZEjR5odnD51xrmOaDks8O2330rbdilStGhRefjhR+SyGpfJ5i2b5aWXXpSSJUvKiuUrpWLFiuHnc8d+gXPnzknnLp1lwYL50q3b9XLzTTeL8YFQPv7kY/nqq+lyww3dZdrUafZ3TItRBb755hu58abu5mfS1NQ5ktImJerzmGi/wB133iFTp06R22+/Xa7r2k127topr732qhQuXFgWLVws1atXt7dTR+JVLo3++91/mynvySf/kuGZW7ZsMae3bNkiw3R+cU9AJe6ixYqEbrn1Fvc6DWhPmzZtMq1rXn5Z6MiRI2EF44uCUPkK5cx/Z8+eDU/njv0C6ttu9a3fgIH32N84LeZZYPTo0WY9ihUvav7McwPMEJfAnb3uML0z75ExbNgwc/rf//63uNplptgF3n//fdP6/sH3ZZmp63VdzcfmzZ+X5TEm2CugtoKqPTSML8hMc/X+wBYhe41zam3GjK9M98zvyaoGqha9et+Z0+xxPSZxzZXgTM+/8Ly5QCoQRd6OHTtmTq97RZ3Iydx3UeCBBwabNeAF13n0xx9/zLRWHzYy34xvo0KqBidOnMj8EL/bKLBq1SqzBk8//XcbW6WpeATWrVsXKnn+eaFHHnk4dFnNGmZd4mmHefIu8MknH4fUB/HMNxWM1IePQfcOzPwQv9ss8Pobr4euv+H60Ndff52l5Weefcasw9ixY7M8xgR7BVQN+t/TL/TesPdCd9x5u+lOELLXOKfWlL16zVm2fFmWp9Wrf0WoxHnFQyor2HnzJAipfZHVN35qofbt22cuj/rm+w9/eNQE+Otfn7JzGWkrRoH9+/ebH0SaXn1VjHPwtEQEmjdvZq7v//nPf0Lp6emhefPmhtS3IXv37k2kWebNg8Ds2bPMGrzw4gshFUgHD74/9LvfPRQaP3586Pjx43loiacmIvDrr7+a+4OrvQHUcRIEoUQ07Zv3oYceNP8+Jk6caF+jtJRnAfWapD4cTps2Nc/zMkP8AmqrhHInCMVvmNc5VS5Q5qdPn84y69197zIfixaSsjw5DxM8CUJqfMb+f6FSpS80d/9R33a0bZtiLqBKg+qNkJv7Ak899aRZg2jfDLo/mvzfo9r97cJSF4TUltHIA/YLFykUMo6TYGuQC6uA+oZVveiq3UHV1og6dWubNVHT1IGaGzdudGEUwe7CODbC3N1BHaRvHZhPEPJunVi9enVI7bauThSi/ibUF5OqRty8Edi9e3eoXPmy5nuE2m2am3sCBCH3rK2ezitZInRpjerWrxl+qj031Huz3SeT8iwIqW9brW+b1IKpf1fUqxvavHlzhgXnF3cE1Dey6oNI5SqVCKLukJvrvNoPWX34njJlcujHH38MqWO07rq7j/lY7z69XBpJcLt59713Q5fXqhka+tbQcPBUW+esXVEaNKwf9Zup4IrZv+RD3hxiru/GAeHhxglCYQrX76jd5NR6r76oVF8QqNehH374wfVx0GEopI4jrXHZpSH14ZCtEu6vEQQh981VFlDrfLTb0888bb5XjBkzJtrDcU/zJAipXYHqN6hnHoymvvlWf+zqW/FKlSua+/+xGT7uesY94xtD3jBXsH89/6+422DGvAmoP3i1Vejnn3/OMKP69lWdMlU9rk4gws0bAeMMTmYN1C6L3JwRULs4FC9RLPSXv/w5QwcEoQwcnvyiTmE7fPhwczd29XoUbVcVTwYWkE5nzpxhvj9UrHRxKDV1dkCW2l+LSRByvx6BCULWGVAmT56cQVkdo6LeANXxQ9YuEhmewC+OCJw6dSp0SbWq5m4QaqsEN3cE1Buc2jUu2u2JJ/6f+SGc3RSj6bgzzdoqxAHKznmr1x11jYiXXn4p9Oprr4b/WdeyUdNGjBjh3ABoOVcBdRYt9eFk1qyZuT6XJyQuoALon/70eEhdQ0gdr+vUtVMSH2n+b4Eg5H6Nq15SxfwsGq1nay8ydWyvnTdPtgipYyCqVK0cdTnUvsnqRZcPgFF5HJmoNjMqc3XGOG7uCVhbHKJt9fnzn58wa2L3vrDuLZ0ePandsrL7oK0u+Kz+Lj777FM9FkbDUSrf3P6pL8e4OSugtnoa1y6L2olTu6NE7SzgE9UXkZ06dzL/JtTeMmo3XW7eCRCE3LdXZ+1T7wlqz7HMt2u7Xms+pjaa2HnzJAipb8LV7hCHDx/OsizW9Qwi9xfP8iQm2CagdsNS+4OrY1XU2fy4uSegTs+p/uAfe+yPWTptclVjc//8aC8GWZ7MhLgF1FnKVA3Wr1+foQ31Qqt2W7yobJkQByhnoLH1F/Xtd7R/ah9xVRfrMVs7pbEsAtUvrWZ+CxvtPbl9+3ZmLYyLrmaZjwn2CahryaktQOqL4syXFrGvF1rKiwBBKC9a9jz37XfeNl9v1OnkI2/qPVnlBnW2XbtvngSh115/zVxQdVaaFStXhNSps9Upg5/753Pm9KuaNjGn2b2wtJdV4PPPPzPNVQrn5q6AOjvilY0amm98L7/yckidsOLgwYPmxT3Vh8A//vH/3B1QAHtTm9itLdTjxo0LqQ97aiucOoWnmq5Oo83NfQGOEXLX/M2hb4bfk9esWWO+/6oTJFinbb79jtvdHVAAe3vwwQfMGqgvwVQQivaPk0m5u2IQhNz1Vr2pLwTUWePUyVrU3hjqc5Ja760vZD799BPbB+VJEFJLofb9VvuGqw98kf969Oxhfhi0fUlpMKqAddpy9v+OyuP4RBV8rF0hrL8DtW+4uqaW+jacm/MCat2/ulnTDFcSVweHs0uc8/bZ9UAQyk7GuenqhDmZ35PVxQvVa5HdFzB0bin0bVkdL2q9B2T3k+MV3a0vQchdb6s3tXeSdcIo629BvTY5taU0SXUsHt2Mg/TF2CIk+/buleLFi0ujRo2lQoUKHo2GbhHwTsA4Tkg2bFgvBQsWlKuuasrfgQelOHDggBj76Evp0qXx98A/ssutW7eKcZYyqVu3buRk7jssEPmefP7555uvRaVKlXK4V5pXAsaHv1whKlWqJBdccEGuz+MJ9gjs2bNHjN1FpVq1auZnVHtapZVYBVauWim7du4U9VrUqlVrx2rgaRCKFYPnIYAAAggggAACCCCAAAJ2ChCE7NSkLQQQQAABBBBAAAEEENBCgCCkRZkYJAIIIOBvAePMk1EHWLZsWalfv4Hcf999cvPNPcLPGfzA/WJcsDP8u3VH7SZdo0YNua7rdfL4438yd4tQj6ndJFq0aG4+7bbbbpPx70+wZsnw0ziwX6ZNm2pOW7F8pVx55ZUZHucXBBBAAAEELAGCkCXBTwQQQACBuAVUEKpYsaJce+21GdrYs2evGNepkRMnTsiE8R/Irbfeaj5uBSH1e8mSJcPzGAfmS1pamuw09g3v2LGTfDX9K/OxyCCk9hn/4fv/SLFixcLzqTvGdVekcpVKYpzy3JxOEMrAwy8IIIAAApkECEKZQPgVAQQQQCDvAioItW/fQWbOmJll5kWLFxmPtZNatWrJurXrzcetILR50xa59NJLM8xjnDJVWrVuKcbpzGXOnLkYcwqPAAAE90lEQVTSpnWb8BYhdQIFdWD59C+nS6dOnTPMZ5zpT4wzj5onWVDPIQhl4OEXBBBAAIFMAgShTCD8igACCCCQd4GcgpBqzbg+nBjXqJH9+w6IOhNZTkFIPd84VaoY17GRf/3refnj//0xHIQeefgRGTV6lPTs2VPee3eYemr4ds+A/vLFF19I7169xbg2DkEoLMMdBBBAAIFoAgShaCpMQwABBBDIk0BuQah+g3qiThN/8MCP5nE/uQUh47o2YlxUWF5++RVR4cfaNe7xxx6XPXv3GFuK5siO7d9JcnKyOU7julvmbnHdu3eXUheWEuNadQShPFWQJyOAAALBEyAIBa/mLDECCCBgu0BOQWjKlClyZ687pHmz5rJw4SKz75yC0P79+6Vjpw5iXFFcvl612jjZQv0MQahVq1Zy4003SmrqHElpk2K2N3fuHOlyTRf54vMvjOmpBCHbK0yDCCCAQP4TIAjlv5qyRAgggIDrAioIqTPEtTaO54m8bdy4QTZt2mReDG+6ceKDli1amg9bQahLl2ukRIkS4Vl+/vln42QJS82TKwy+f7AMGfKm+VjkFqGnnvqrVLi4vHEmuvvl+edfMB///e8fkXHvj5O9e/bJU089SRAKi3IHAQQQQCA7AYJQdjJMRwABBBCIWUAFoYIFC2Y4A5yauWrVqtKqZSt52Ni9TZ0W27pZQeiCCy6QAgUKWJPN3eYaNGgofXr3lh49eoanRwah5577p/TqfacsW7ZMtm/bIaFQSKpfWk3atm0rY0aPlT/96XGCUFiOOwgggAAC2QkQhLKTYToCCCCAQMwCOe0aF60RKwhFO2tctOdnDkLqWkHqmkGrv/5GjqYflTZtWsu0qdPkhhu6E4SiATINAQQQQCCLAEEoCwkTEEAAAQTyKuB2EFLXG6pUuaI8+ugf5JRxuu13/v2O/OeHPVK0aFGCUF6Lx/MRQACBgAoQhAJaeBYbAQQQsFPA7SCkxt67Ty/zTHTqAqrNmjWT0aPGmIvErnF2Vpa2EEAAgfwrQBDKv7VlyRBAAAHXBLwIQhMnTpS77u5jLuPEDyYa1xa6xbxPEHKt7HSEAAIIaC1AENK6fAweAQQQ8IeAF0HoyJEjUrHSxea1hNRucdbZ5whC/lgnGAUCCCDgdwGCkN8rxPgQQAABDQSWLV8m55c8X+rUqRPTaL/77js5cPCAXNnwSilSpEiu86Snp8u69euk4sUVpUqVKuHnr127VpKSkqRevXrhabt375a9+/ZK/Xr1zdN2hx/gDgIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBP4/kBO/UVXSnaAAAAAASUVORK5CYII= />"

Question 6

What feature(s) in the 1 H NMR spectra of molecules A and B could be used to distinguish between the two? Be specific in your explanation.

Question 7

In addition to TLC, how do you know a reaction occurred in the experiment?



joechoochoy

  • Sr. Member
  • ****
  • Posts: 306
Answer to Question 1



Answer to Question 2



Answer to Question 3

The driving force for the dehydrogenation reaction observed in this experiment and in question 4 is the formation of an aromatic ring. This is not possible with this starting cyclohexanone derivative. The pair of geminal methyl groups will not allow this to happen.

Answer to Question 4



Answer to Question 5


Answer to Question 6

The predicted multiplicities for the aromatic hydrogen atoms are indicated. The primary distinguishing feature between the two would be the fact that HA in compound A would be a singlet and HB in compound B would be a doublet of doublets.




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Street names for barbiturates include reds, red devils, yellow jackets, blue heavens, Christmas trees, and rainbows. They are commonly referred to as downers.

Did you know?

The first successful kidney transplant was performed in 1954 and occurred in Boston. A kidney from an identical twin was transplanted into his dying brother's body and was not rejected because it did not appear foreign to his body.

Did you know?

The U.S. Preventive Services Task Force recommends that all women age 65 years of age or older should be screened with bone densitometry.

Did you know?

Symptoms of kidney problems include a loss of appetite, back pain (which may be sudden and intense), chills, abdominal pain, fluid retention, nausea, the urge to urinate, vomiting, and fever.

Did you know?

Though newer “smart” infusion pumps are increasingly becoming more sophisticated, they cannot prevent all programming and administration errors. Health care professionals that use smart infusion pumps must still practice the rights of medication administration and have other professionals double-check all high-risk infusions.

For a complete list of videos, visit our video library