When monitoring the reaction between benzene and 2-chloro-2-methylpropane using FeBr3 as the catalyst, researchers observed the formation of a new alkyl halide. Draw the structure of this compound and show how it was formed using an arrow-pushing mechanism.
Question 2In the introduction to this experiment, the text states that small amounts of HCl are present in samples of tert-butyl chloride. Write an arrow-pushing mechanism that explains the source of the HCl.
Question 3The reaction of the ketone with Pd/C at elevated temperatures shown below led to no reaction. Explain this result.
Question 4Pulegone, a cyclic monoterpene, can be isolated from the essential oil of pennyroyal, a member of the mint family. Reaction of pulegone with Pd/C at 180C, followed by the same work-up used in the reaction of carvone with Pd/C, generated two products in equal quantities. One product was isolated from the aqueous layer. The 1 H NMR of this material is shown below. The other product was isolated from the hexane layer by evaporating the hexane. The EIMS of this compound showed a molecular ion at m/z = 154. The IR spectrum had a sharp band at 1736 cm-1. In the 13C1 H NMR spectrum there was a peak at 198 ppm. Identify the compound isolated from each phase and explain how you reached your conclusions (Chapter 8). Write a balanced equation for the reaction of pulegone and Pd/C.
See the scheme below.
Question 51t0hACCCCAAAJ+EZg6dar07NnTL8NhHDEIqCCkvvwtUKCA+Wy2CMWApsFTCEIaFMmPQ7SC0JkzZ2TM2DFGEBpg2zC3bdsmQ958Q4a8QRCyDZWGEEAAAQR8IzBt2jTp0aOHb8bDQHIXYItQ7kY6PoMgpGPVfDBmKwidPn1axr0/ztaLn27dulWGvjVU3nj9DR8sKUNAAAEEEEDAXoGPPpomN99MELJX1dnWrCCkTp0dMv5ji5Cz3m61ThBySzqf9WMFoVOnTsn4CeOlf7/+ti3hli1bzCA05I0htrVJQwgggAACCPhBQO1e9fEnH8vNN93sh+EwhhgFrCDEyRJiBNPkaQQhTQrlt2FaQejkyZPywcQPpF/ffrYNcfPmzfL2O2+zRcg2URpCAAEEvBNQJ8CpXr26dwPwWc/q2NrPP/9cunfv7rORMZycBAhCOeno+xhBSN/aeTpyKwgdP35cJhkXhut7d1/bxrNx40Z597135fXXXretTRpCAAEEEPBGwHq/8KZ3//Wqjq2dPv1LueEGgpD/qpP9iAhC2dvo/AhBSOfqeTh2643t2LFjMmXqFLn7rrttG82GDRtEtf/aq6/Z1iYNIYAAAgh4I2C9X3jTu/96VcfWzpg5Q67vdr3/BseIshUgCGVLo/UDBCGty+fd4EcY1w4aMGCgpKenyzTjoM+7+txl22DWr18vI0aOkFdfeTXuNv/xj2fliSf+LCdOnJASJUrE3Q4zIoAAAggkJkAQyuinjq2dOWsmQSgji+9/U0HIOj5IDZaTJfi+ZDENkCAUExNPyixgvbH9+uuv8sUXn8udd/bK/JS4f1+3bp2MHDUyoSDUt19fGTlipKSlpUmrVq3iHgszIoAAAggkJmC9XyTWSv6ZWx1bO2vWLLn+erYI6VRVgpBO1Yp9rASh2K14ZoSA9cZ26NAhSZ0zW2695baIRxO7u3btWlmzdo307tU77ob69e8r7707TBYvXizt27ePux1mRAABBBBITMB6v1i9+mtp1KhxYo3lg7nVsbUqCHGyBL2KuTRtaYYBs0UoA4e2vxCEtC2dtwMfMXK4caa4/nLw4EFZvmK5dLfxoM81a9bIgYMHpFPHTnEv5IAB98jQoW/J/Pnz5dprr427HWZEAAEEEEhMwApC7w17T+4ddG9ijeWDudUu5bNnz5Ybb7wxHyxNcBaBIJQ/a00Qyp91dXypxowZLXfccaccOHBA1m9YL9deY1/YWPX1Kjl69Ki0TWkb93IMGDBAhgwZIqmpqbJv/z7efOOWZEYEEEAgMQGCUEY/tUv53Hlz5cbuBKGMMv7+jSDk7/rEOzqCULxyAZ9v/Pjx5rdZKgjt3LlTOnToYJuIerFRF5xr2aJl3G0OGjRQXjXOOjdj5leidt+7d9B9cbfFjAgggAACeReYOXOmdOnSxTwL6KCBg4QtQr8ZqvekRYsWsWtc3lcpT+ewglCBpAJyLnSOkyV4Wg37OicI2WcZqJYmGhdRvcbYCqSC0I8//mjrCQmsF5tE9r+9975B8uILL8lnn39mnjlOvQlzQwABBBBwT0Cd/XPAPQPCAcjaMuTeCPzZk3rfXLFiubHbdldJTk725yAZVRYB67OJ9UAin1GsNvjpvQBByPsaaDmCyVMmS7u27WT//v2iDvxs2rSpbcuhXmzUNy7NmjWLu81777tXnv/X8/K5cUY7darSgcapvrkFW2CKsc7ecsutwUZg6RFwUcAKPtaWoPeGvcvWecN/7969snbdWmnTuo0UK1bMxYrQVSICBKFE9Pw7L0HIv7Xx9cg+Mq4d1KxZczMIqW+0GjRoYNt4rRebRL5tuX/wffLsM/+Qr76aLieMU5WyRci28mjb0MiRI6Vv3758A6ttBRm4bgJWALICkfqpthAVKFBAt0Wxdbzff/+9bN++3TiDXiO54IILbG2bxpwTsD6bWD0k8hnFaoOf3gsQhLyvgZYj+PSzT6Vhg4ay/8B+Ob/k+VK7dm3blsN6sUnkRWbw4Pvl739/WmbMmCEnTxGEbCuOxg198eUXUqd2Hbn00ks1XgqGjoA+AlYQsn6OHj3auObcnVKkSBF9FsKBkX733Xeyb98+qVGjhpQrV86BHmjSCYFly5bJ2XNnJblAsnkcc/PmzZ3ohjZdFiAIuQyeX7r7cvqXcnnNy+XgjwelfLnytn64tCMIjR07Vjp37iwzZ6ogdIqzxuWXFS/O5VAn31i61LgGRJIkdBKOOLtnNgQCKWAFoH+/+47cf99gUa/Lt9xyixQvXjyQHtZCb9261TwzatmyZaVy5crWZH76XMD6bGINM5Eva602+Om9AEHI+xpoOQJ1NqCqVavKz4d/looXV5RLLrnEtuWwXmwSeZH56OOPpHHjxrJj+w45fea0dOncxbbx0ZB+Anv27DFPmqGue5XIsWf6LTkjRsA7ASsIWT/VSXa6dr0u8LuDqYuGX3jhhXLS2G37sssu865A9JwnAfXZJEl9m2bcQsZ/iXxGyVPHPNlRAYKQo7z5t/E5c+bIRRddZJ4ooUKFCrYGobS0NPNFprlxDFJS0m8vOnmRPHv2rLklqFat2uaue+fOnZNWLVvlpQmem88E1Dp19dVXy8qVK82f+WzxWBwEfClgBSDrJAmTJk2Sjh07SpkyZXw5XrcGtX79enNL0A8//CBXXHGFW93STwICKrSuW7fO3NW+RPES5hdr6j0lns8oCQyDWR0QIAg5gBqEJhcuXChFixWVM2fOyEVlLpKaNWvatthLli6RYkWLmccdxXNGHXXV7q+Ni7JedFFZOfzLYfXVjbRo0cK28dGQfgJpy9JEBeuNGzdKnTp19FsARoyAJgLqPUGdrfOmG28KnzbbCkJTp041L7WwfPly80yjF198sSZLZe8wd+zYIZUqVTI/WDdp0sTexmnNEQF1yvMjR46Ye8KoDjZs2GB+7gn6bp6OYLvcKEHIZfD80p0KK+qbEHXsRcnzSkr9+vVtWzTVdpnSZcwtTvF8c6guVrd7925zPMdPHBe2CNlWGm0bWv3Naml0ZSPj2h0rbD3Vu7YgDBwBhwTUF1FTp02VPr37yKhRo2TAgAEyYuRwuaf/APn000/NXZY3b94sak+CevXqOTQKfze7ZcsWufzyy0W91yVy4XB/L2X+Gp1aZ9VeMNZnErW7tdr7pEqVKvlrQQO4NAShABbdjkU2g9B/95VVp89Wm4jtuqndmNTxR6dPn45rlzt1jYb0Y+ny048/mVd/VmGNNxu7qqNnO2pXFLULijphgjrTD7sz6FlHRu1/gZ9++klmp86WG66/QaZMnSJ333W3fPjhh3LzzTfLrFmzzC2y6oxpBZILmFtp/b9E9o9w1apVorYELVq0UFob1xLi5n+BlatWSpPGTcLvHepzxeYtm6W2sQs+N70FCEJ618+z0VsnNFAvBupDpZ0HDS5estg8Nbe6zkLDhg3zvIzqjDzqQNRt27eZu8UlG2+4V18d/8VZ8zwAZvCVgLrg77fffmsGIPVttfpmT51IgxsCCNgvoI57WbFyhbRu1Vrmzpsrt916m3HM5kzzg7/aNbV06dLy66+/Bvpgc/Vln/pCJs04+L55c3bbtn8ttL/FaLtVW3W0vzdadFOAIOSmdj7pS4Uf9e1IweSCUqhwIfNNzc4tLosWLzLfRFepb2CaXJVnNbX7k/qgq8KaunCf2s2uVq1aeW6HGfKHwPz586RNm5TwRRznL5gvKcbvbBXKH/VlKfwloLa+7t+/39yqv8X4xlz97W3YuEFKlyot6qyN5cuXl33795nvH0E8g6N6/5w/f760a9dOFi9ebB4z5a8KMprMAqpmKvRkPtZ4sfFZRQVZtVcMN30FCEL61s6TkavjbdQWm8aNGsuFpS6QbVu3S4kSJWTT5o3G7metwh824xmc2t9WfXNfqlQpqV69urnbQJ06dcP75MbSpjqziwpA7dq2k/Ub1kulipXk8OHD5tntOEg+FkH9n6MO1lbfOJevUE4WLlwk1S6pZh6PYC2Z2uVy3rx5ct5550lK2zZy/NgJKViwoPUwPxFAIA4B9eVY4UKF5Wj6UfNni5bNjcsXfCeX1qguR349KiXPPy/8+4yvZhrvFUnGsaUN5OvVX0vnTp3j6FG/WdTxq+rU2eqYWrVlTB2Av33HdklJaSOnT53Rb4Hy8YhV+Dl27Jj5OWfRwsXSqFEjKVy4cIYlPnHihKjjT1X9Dv30s/mewhdsGYi0+CVQQUiLimgwyP37Dpgv4pFDVS/olSpXjJwU9/3INwS1gubltvrrb8ytP4UKFcowmzpuqOolHNSYASWf/3L0SHqOV7BXwbtosWBf4T6frwIsngcCKvyoi4Sqv69oXzCoL9PUYyoUVK5SKRyOPBiqJ11m/uJFeRQpmvEDticDo9OoArm9j6iZThkXbS9xXrAvEhwVT6OJkZ87nRh2kpGsjRMYe3tzI/F5u4T0jgACCCCAAAIIIIAAArEKuJEPCEKxVoPnIYAAAggggAACCCCAgCsCBCFXmOkEAQQQQAABBBBAAAEE/CRAEPJTNRgLAggggAACCCCAAAIIuCJAEHKFmU4QQAABBBBAAAEEEEDATwIEIT9Vg7EggAACCCCAAAIIIICAKwIEIVeY6QQBBBBAAAEEEEAAAQT8JEAQ8lM1GAsCCCCAAAIIIIAAAgi4IkAQcoWZThBAAAEEEEAAAQQQQMBPAgQhP1WDsSCAAAIIIIAAAggggIArAgQhV5jpBAEEEEAAAQQQQAABBPwkQBDyUzUYCwIIIIAAAggggAACCLgiEKgg5IoonSCAAAIIIIAAAggggIAWAqdPnXF0nEkh4+ZoDzE07kbii2EYCT1F92XQffyqeLovg+7jpwYJvYTYNrPu65Hu4+fvwLZVOaGGdF+PGH9C5bdlZmpgC2NCjbhRA4JQQiX638xuFOt/vdl/T/fxKxHdl0H38VMD+/8u42lR9/VI9/HzdxDPWmv/PLqvR4zf/nUiry1Sg7yK2f98N2pAELKpbm4Uy6ahRm1G9/GrhdJ9GXQfPzWI+qfl+kTd1yPdx8/fgeurfNQOdV+PGH/Usro6kRq4yh21MzdqQBCKSp/3iW4UK++jin0O3cevllT3ZdB9/NQg9r83J5+p+3qk+/j5O3By7Y69bd3XI8Yfe62deiY1cEo29nbdqAFBKPZ65PhMN4qV4wASfFD38avF130ZdB8/NUjwj9Cm2XVfj3QfP38HNq3ICTaj+3rE+BNcAWyYnRrYgJhgE27UgCCUYJGs2d0oltWXEz91H78y0X0ZdB8/NXDiLzPvbeq+Huk+fv4O8r7OOjGH7usR43dirchbm9Qgb15OPNuNGhCEnKichm26sbJpyOLqkKmBq9xRO6MGUVlcnUgNXOWO2hk1iMri6kRq4Cp31M6oQVQWVye6UQOCkKsl9W9nbqxs/l16f4yMGnhfB2pADbwX8H4E/B1QA+8FvB8BfwfBqAFByPs6+2IE/MF7XwZqQA28F/B+BPwdUAPvBbwfAX8H1MB7Ae9H4Mrfgbqgqhe3gwcPhh5++HehatUvCRUslBw6/4KSoWuuvSY0d+4cL4YTuD6VeW7/5i+YHzgXLxZ4woQJoRYtmpv1KFK0sHl/0qRJXgwlkH1eXLFCtn8LHTt1DKSJlwutXpcaN2lk1sTLcQSt7w0bNoT63NU7VLbcRaa9+rvo2+/u0K5du4JG4dnynjx5MvTPf/0zvP6r94OGVzYwp505c8azcQW1Y+szEp+F3F0D1Lqu/g5q1b7cfC0qXaaU+dq0fft2RwbiyRaho0ePytXNmsqOHTvk3kH3SuvWbWTvvr0yZMgbsmfPHpk6Zapcd10376NoPh6BEUKzXbrJUybLoUOHZNvW7VKlSpVsn8cDiQv87W9/FeMPXq644gq5//7BUqRwERk1aqQsTVtq/D28KYONadycFVDfONWsWVO6dO6SpaPLjOkPPfhQlulMcE7gvvvvlZEjR5odnD51xrmOaDks8O2330rbdilStGhRefjhR+SyGpfJ5i2b5aWXXpSSJUvKiuUrpWLFiuHnc8d+gXPnzknnLp1lwYL50q3b9XLzTTeL8YFQPv7kY/nqq+lyww3dZdrUafZ3TItRBb755hu58abu5mfS1NQ5ktImJerzmGi/wB133iFTp06R22+/Xa7r2k127topr732qhQuXFgWLVws1atXt7dTR+JVLo3++91/mynvySf/kuGZW7ZsMae3bNkiw3R+cU9AJe6ixYqEbrn1Fvc6DWhPmzZtMq1rXn5Z6MiRI2EF44uCUPkK5cx/Z8+eDU/njv0C6ttu9a3fgIH32N84LeZZYPTo0WY9ihUvav7McwPMEJfAnb3uML0z75ExbNgwc/rf//63uNplptgF3n//fdP6/sH3ZZmp63VdzcfmzZ+X5TEm2CugtoKqPTSML8hMc/X+wBYhe41zam3GjK9M98zvyaoGqha9et+Z0+xxPSZxzZXgTM+/8Ly5QCoQRd6OHTtmTq97RZ3Iydx3UeCBBwabNeAF13n0xx9/zLRWHzYy34xvo0KqBidOnMj8EL/bKLBq1SqzBk8//XcbW6WpeATWrVsXKnn+eaFHHnk4dFnNGmZd4mmHefIu8MknH4fUB/HMNxWM1IePQfcOzPwQv9ss8Pobr4euv+H60Ndff52l5Weefcasw9ixY7M8xgR7BVQN+t/TL/TesPdCd9x5u+lOELLXOKfWlL16zVm2fFmWp9Wrf0WoxHnFQyor2HnzJAipfZHVN35qofbt22cuj/rm+w9/eNQE+Otfn7JzGWkrRoH9+/ebH0SaXn1VjHPwtEQEmjdvZq7v//nPf0Lp6emhefPmhtS3IXv37k2kWebNg8Ds2bPMGrzw4gshFUgHD74/9LvfPRQaP3586Pjx43loiacmIvDrr7+a+4OrvQHUcRIEoUQ07Zv3oYceNP8+Jk6caF+jtJRnAfWapD4cTps2Nc/zMkP8AmqrhHInCMVvmNc5VS5Q5qdPn84y69197zIfixaSsjw5DxM8CUJqfMb+f6FSpS80d/9R33a0bZtiLqBKg+qNkJv7Ak899aRZg2jfDLo/mvzfo9r97cJSF4TUltHIA/YLFykUMo6TYGuQC6uA+oZVveiq3UHV1og6dWubNVHT1IGaGzdudGEUwe7CODbC3N1BHaRvHZhPEPJunVi9enVI7bauThSi/ibUF5OqRty8Edi9e3eoXPmy5nuE2m2am3sCBCH3rK2ezitZInRpjerWrxl+qj031Huz3SeT8iwIqW9brW+b1IKpf1fUqxvavHlzhgXnF3cE1Dey6oNI5SqVCKLukJvrvNoPWX34njJlcujHH38MqWO07rq7j/lY7z69XBpJcLt59713Q5fXqhka+tbQcPBUW+esXVEaNKwf9Zup4IrZv+RD3hxiru/GAeHhxglCYQrX76jd5NR6r76oVF8QqNehH374wfVx0GEopI4jrXHZpSH14ZCtEu6vEQQh981VFlDrfLTb0888bb5XjBkzJtrDcU/zJAipXYHqN6hnHoymvvlWf+zqW/FKlSua+/+xGT7uesY94xtD3jBXsH89/6+422DGvAmoP3i1Vejnn3/OMKP69lWdMlU9rk4gws0bAeMMTmYN1C6L3JwRULs4FC9RLPSXv/w5QwcEoQwcnvyiTmE7fPhwczd29XoUbVcVTwYWkE5nzpxhvj9UrHRxKDV1dkCW2l+LSRByvx6BCULWGVAmT56cQVkdo6LeANXxQ9YuEhmewC+OCJw6dSp0SbWq5m4QaqsEN3cE1Buc2jUu2u2JJ/6f+SGc3RSj6bgzzdoqxAHKznmr1x11jYiXXn4p9Oprr4b/WdeyUdNGjBjh3ABoOVcBdRYt9eFk1qyZuT6XJyQuoALon/70eEhdQ0gdr+vUtVMSH2n+b4Eg5H6Nq15SxfwsGq1nay8ydWyvnTdPtgipYyCqVK0cdTnUvsnqRZcPgFF5HJmoNjMqc3XGOG7uCVhbHKJt9fnzn58wa2L3vrDuLZ0ePandsrL7oK0u+Kz+Lj777FM9FkbDUSrf3P6pL8e4OSugtnoa1y6L2olTu6NE7SzgE9UXkZ06dzL/JtTeMmo3XW7eCRCE3LdXZ+1T7wlqz7HMt2u7Xms+pjaa2HnzJAipb8LV7hCHDx/OsizW9Qwi9xfP8iQm2CagdsNS+4OrY1XU2fy4uSegTs+p/uAfe+yPWTptclVjc//8aC8GWZ7MhLgF1FnKVA3Wr1+foQ31Qqt2W7yobJkQByhnoLH1F/Xtd7R/ah9xVRfrMVs7pbEsAtUvrWZ+CxvtPbl9+3ZmLYyLrmaZjwn2CahryaktQOqL4syXFrGvF1rKiwBBKC9a9jz37XfeNl9v1OnkI2/qPVnlBnW2XbtvngSh115/zVxQdVaaFStXhNSps9Upg5/753Pm9KuaNjGn2b2wtJdV4PPPPzPNVQrn5q6AOjvilY0amm98L7/yckidsOLgwYPmxT3Vh8A//vH/3B1QAHtTm9itLdTjxo0LqQ97aiucOoWnmq5Oo83NfQGOEXLX/M2hb4bfk9esWWO+/6oTJFinbb79jtvdHVAAe3vwwQfMGqgvwVQQivaPk0m5u2IQhNz1Vr2pLwTUWePUyVrU3hjqc5Ja760vZD799BPbB+VJEFJLofb9VvuGqw98kf969Oxhfhi0fUlpMKqAddpy9v+OyuP4RBV8rF0hrL8DtW+4uqaW+jacm/MCat2/ulnTDFcSVweHs0uc8/bZ9UAQyk7GuenqhDmZ35PVxQvVa5HdFzB0bin0bVkdL2q9B2T3k+MV3a0vQchdb6s3tXeSdcIo629BvTY5taU0SXUsHt2Mg/TF2CIk+/buleLFi0ujRo2lQoUKHo2GbhHwTsA4Tkg2bFgvBQsWlKuuasrfgQelOHDggBj76Evp0qXx98A/ssutW7eKcZYyqVu3buRk7jssEPmefP7555uvRaVKlXK4V5pXAsaHv1whKlWqJBdccEGuz+MJ9gjs2bNHjN1FpVq1auZnVHtapZVYBVauWim7du4U9VrUqlVrx2rgaRCKFYPnIYAAAggggAACCCCAAAJ2ChCE7NSkLQQQQAABBBBAAAEEENBCgCCkRZkYJAIIIOBvAePMk1EHWLZsWalfv4Hcf999cvPNPcLPGfzA/WJcsDP8u3VH7SZdo0YNua7rdfL4438yd4tQj6ndJFq0aG4+7bbbbpPx70+wZsnw0ziwX6ZNm2pOW7F8pVx55ZUZHucXBBBAAAEELAGCkCXBTwQQQACBuAVUEKpYsaJce+21GdrYs2evGNepkRMnTsiE8R/Irbfeaj5uBSH1e8mSJcPzGAfmS1pamuw09g3v2LGTfDX9K/OxyCCk9hn/4fv/SLFixcLzqTvGdVekcpVKYpzy3JxOEMrAwy8IIIAAApkECEKZQPgVAQQQQCDvAioItW/fQWbOmJll5kWLFxmPtZNatWrJurXrzcetILR50xa59NJLM8xjnDJVWrVuKcbpzGXOnLkYcwqPAAAE90lEQVTSpnWb8BYhdQIFdWD59C+nS6dOnTPMZ5zpT4wzj5onWVDPIQhl4OEXBBBAAIFMAgShTCD8igACCCCQd4GcgpBqzbg+nBjXqJH9+w6IOhNZTkFIPd84VaoY17GRf/3refnj//0xHIQeefgRGTV6lPTs2VPee3eYemr4ds+A/vLFF19I7169xbg2DkEoLMMdBBBAAIFoAgShaCpMQwABBBDIk0BuQah+g3qiThN/8MCP5nE/uQUh47o2YlxUWF5++RVR4cfaNe7xxx6XPXv3GFuK5siO7d9JcnKyOU7julvmbnHdu3eXUheWEuNadQShPFWQJyOAAALBEyAIBa/mLDECCCBgu0BOQWjKlClyZ687pHmz5rJw4SKz75yC0P79+6Vjpw5iXFFcvl612jjZQv0MQahVq1Zy4003SmrqHElpk2K2N3fuHOlyTRf54vMvjOmpBCHbK0yDCCCAQP4TIAjlv5qyRAgggIDrAioIqTPEtTaO54m8bdy4QTZt2mReDG+6ceKDli1amg9bQahLl2ukRIkS4Vl+/vln42QJS82TKwy+f7AMGfKm+VjkFqGnnvqrVLi4vHEmuvvl+edfMB///e8fkXHvj5O9e/bJU089SRAKi3IHAQQQQCA7AYJQdjJMRwABBBCIWUAFoYIFC2Y4A5yauWrVqtKqZSt52Ni9TZ0W27pZQeiCCy6QAgUKWJPN3eYaNGgofXr3lh49eoanRwah5577p/TqfacsW7ZMtm/bIaFQSKpfWk3atm0rY0aPlT/96XGCUFiOOwgggAAC2QkQhLKTYToCCCCAQMwCOe0aF60RKwhFO2tctOdnDkLqWkHqmkGrv/5GjqYflTZtWsu0qdPkhhu6E4SiATINAQQQQCCLAEEoCwkTEEAAAQTyKuB2EFLXG6pUuaI8+ugf5JRxuu13/v2O/OeHPVK0aFGCUF6Lx/MRQACBgAoQhAJaeBYbAQQQsFPA7SCkxt67Ty/zTHTqAqrNmjWT0aPGmIvErnF2Vpa2EEAAgfwrQBDKv7VlyRBAAAHXBLwIQhMnTpS77u5jLuPEDyYa1xa6xbxPEHKt7HSEAAIIaC1AENK6fAweAQQQ8IeAF0HoyJEjUrHSxea1hNRucdbZ5whC/lgnGAUCCCDgdwGCkN8rxPgQQAABDQSWLV8m55c8X+rUqRPTaL/77js5cPCAXNnwSilSpEiu86Snp8u69euk4sUVpUqVKuHnr127VpKSkqRevXrhabt375a9+/ZK/Xr1zdN2hx/gDgIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBP4/kBO/UVXSnaAAAAAASUVORK5CYII= />"
Question 6What feature(s) in the 1 H NMR spectra of molecules A and B could be used to distinguish between the two? Be specific in your explanation.
Question 7In addition to TLC, how do you know a reaction occurred in the experiment?