This topic contains a solution. Click here to go to the answer

Author Question: You and one of your peers might have observed the following situation in Part I of this experiment. ... (Read 83 times)

jman1234

  • Hero Member
  • *****
  • Posts: 560
You and one of your peers might have observed the following situation in Part I of this experiment. Student As sample melted at 89-92 C. Student Bs sample melted at 96- 98 C. Because Student As and Student Bs samples were within  4 C of each other, they prepared a mixed melting point sample. Each student recorded the following results: each sample began to melt at 89 C and melting seemed to stop around 92 C. The temperature increased with continued heating. The solid began to melt again at a temperature of 96 C. By 98 C, all solid in the melting point capillary was gone. Explain what happened.

Question 2

The melting point/composition diagram for compounds A and B is shown below. If a mixture of A and B had a final melting range temperature of C, what are the approximate mole fractions of A and B in the mixture?

Question 3

/pSefPLJIBTJ02Xw67MSAtnTzQrGeZmAXy96LzOFbd4g8O2332phsPjv7Nmz6dJLL3XdsNWrV2t+0K2trdpwOGLUuo48YwaxWIzOP/984l7XqVOn0l//+ldXQ/5lNMSFH7hMHJaOI3Lsueee1NLS4kIuSFIl4NdnJQSyWov4DAJ5EPDrRZ9HEXFoBRHghRS4Z42jFfBqeiyOeeNhaV52uhQb+7f++Mc/1rL6/PPPaYMNNihFtshDIXDFFVfQNddco+1h9wN+URk2bJhyhD8/8kjIAw88QDzhkN2GePvjH/9I55xzjj8L5COr/fqshED2USODqd4i4NeL3lsUYY0XCLA4Tl0UhNs3h13jWMWl3GbNmkXsG3rxxRdTXV1dKbOu6Lx4+WUWi3/+8581DtyDzH7o+n3Oz3DYv5393NXtiCOO0NxGeMVIbO4S0NtQKSb8OlkSCGQnaSKtiiLg14u+oioJhc2JwPXXX081NTXasby0NH9mf9Pvf//7OZ3v5EEclmvMmDFaktyTvdtuuzmZPNKyIfDdd99Zeom5B5kX2AjC1t7ebkTd2GabbTRRvP7662MiaAkr16/PSgjkEjYSZBUsAn696INVCyiNEwR22GEHbclgXmKaw3qVezvyyCPpb3/7G02aNElz99CvtXLbFcT8WRyffPLJRog/jg/8f//3f4EpKi+dzj3hLIqxkl55qlW/ftGDXB7+yBUESk7Arxd9yUEhQ88T2H777emf//ynZueqVavKvlgHD/ezWH/55ZfhJ+pi61HF8Zprrqn5G7OLS5C2Sy65hG644QatSH6M4RyEuvDrsxI9yEFofShDWQj49aIvCyxk6mkCTz/9NHHIK97YvaGqqorY1UKfMFcO41mwc6g59hFta2ujrbbaqhxmBDZPnoTJky//85//EIvju+66i2bOnBm48n766ae0ySabGOXiiYe8MA2HE8RWGgJ+fVZCIJemfSCXABLw60UfwKpAkRwgUF1dTRzeS91YQHEUi3JtPDTOQ+Qch3fx4sWBmDBWLpZqvl9//bW2+AsvDMNbIpEIpDjWy8wxnO2WTeeRCv0+rh+Lv84T0BnDxcJ5tkgRBDxJwK8XvSdhwihPEODetldeeUWLIvH//t//02zi73vssUdZ7FNdLc466ywjwkJZjAlIpsuXLyf28X7ttde0EvFoAS8KEvSNe8ybmpq0lfRuueUWrbgXXXSR4X4R9PKXs3x+fVaiB7mcrQZ5+5qAXy96X0OH8SUj8MMf/pA++ugj4ri4HB+5XBu7WrCPNG/cE/jzn/+8XKb4Pt+Ojg46/PDD6f3339cmrTU0NGjffV+wPAughxLkSaC8MA02dwn49VkJgexuu0DqASbg14s+wFWCojlIYNy4ccS9jV4I+XXUUUdRY2MjjR07lpYsWUIbb7yxgyWtjKQee+wx4+WCfXIff/xxLUpIZZTeWkp+yWIee++9N7300kvWH/HNcQJ+fVZCIDveFJBgpRDw60VfKfWDcuZP4OGHH6YXX3yRnnzySXr77be1BHiC3MSJE/NPzMEzODwX9yJ//PHHWqrwHc0P7lNPPWWZlLZ06VLixTMqaWOXEl4ym8vO7Zw3jvd93XXXVRKGspTVr89KCOSyNBdkGgQCfr3og8AeZXCeAEeJYPGgbnvttZcWak3dV67P7BN99NFHa9mzywe7fmAbmsCDDz5IM2bM0JYO33DDDenvf/97xYnjyy67jGbPnm2BxYvgfPDBBzRy5EjLfnxxnoBfn5UQyM63BaRYIQT8etFXSPWgmHkQeOihh2jatGnaGfvuuy8dd9xxWo+tHvotj6RcPfS3v/0tXXvttVpYMl5I5LDDDnM1P78nrrumcDk4rBn3nK633np+L1Ze9nMYu0033dQ45+677yYegTj11FMRwcKg4u4Hvz4rIZDdbRdIPcAE/HrRB7hKULQCCeyzzz5aTzH7HXMkCy9vxx57LPHkMo7XzBOsOBQdNisBXgDkggsuoDlz5mg/8MtPfX09rbXWWtYDK+AbR6xgFrx98cUX2hLqFVBsTxXRr89KCGRPNSMY4ycCfr3o/cQYtpaGgB6xotxxj3Mp7Zdffkm77767tjT2T37yE3rhhRfKvvJfLnaX6hgWgccffzwtWrRIy3LdddfVlljmxUAqcePFT+655x4aNmwYffXVVxX5klDuevfrsxICudwtB/n7loBfL3rfAofhrhG4+eab6cILL9TSP+KII7ThZ54Ut9NOO7mWZzEJt7e3a7GZWSxvt912mlguJr2gnPvcc8/RQQcdpBVn+PDhdNttt2krIgalfIWUg9vKjjvuqJ3K92yesLh69Wq45xQCs8Bz/PqshEAusMJxGgj49aJHzYGAHQEWVCwc1I19WPUFQ9T9XvjMk8/YV5q3yy+/XAtH5wW7ymXDggULaPr06Ub2zz77rLYCobGjgj/ovcgqAp6UyhFaKs0nW2VQqs9+fVZCIJeqhSCfwBHw60UfuIpAgRwjwD2OLKxef/11I6LFG2+8QbvuuqtjeTiZ0GabbUZdXV3aZCuegMaCvtK2b775Ruv9/9Of/mQUnSNV7LLLLsZ3fCB65plntJUYP/vsM23ZcmaCMG+laRl+fVZCIJemfSCXABLw60UfwKpAkVwgMHr0aPr888/pyiuvpN///vcu5FB8kkIIOuGEE7T4tiNGjNBEEIemq5SNV8TjSYv8EsNbNBqlWCxG66yzTqUgKKickydP1kQyVtIrCF/eJ/n1WQmBnHdV4wQQGCDg14se9QcCuRDQe2fLvdT0ULZyDyqHo3v++eeJY9u+/PLLtM022wx1mu9/Z5eK0047jXp7e7VYvnPnztVeFnxfsBIU4MQTT6T777+feJInLyCCzV0Cfn1WQiC72y6QeoAJ+PWiD3CVoGhFEnjzzTe1njUWD7pwYMHp9V7ZFStWEIeqe/fddzUCHR0dtPXWWxdJw5unp7pU7LzzzsT+2Ntuu603DfaIVR999BElk0nt38KFCzWrzjrrLM3twiMmBtYMvz4rIZAD2yRRMLcJ+PWid5sL0vcngcMPP5yeeOIJi/E8+/8f//iHZZ9Xv/AqgDzxSt++/vprYreLIG38IsBuAZ2dnVqx4FKRW+2yb/3ZZ59tOZhX0GOOG220kWU/vjhPwK/PSghk59sCUqwQAn696CukelDMPAg8+uijNHXqVO0M7nn9zW9+Q1VVVbT++uvnkUr5D/3rX/+qxQBmS7g8PHHve9/7XvkNc8ACriMWxLwyHJfp3nvvJXYVwJadQE9Pj7aojH7UNddcQxzVYsKECfou/HWZgF+flRDILjcMJJ9CYNUKWvZpb8rODF9l2Kl1h4+gdeSb/sh1hmU4qHy7/XrRl48YcvYqAY55/M9//lNbwplDvelt26v2ZrOLh9E5lrO+8bLCfi4P9xqfe+65NH/+fK0c7BbAYe0g8PQazv734osvphtvvFE7iCOejB8/PvsJ+NVxAvr1x5Nq/bRBIPuptgJg6xtzJtNu5y3OvyShMEWnHUVV00+g/bcfm//5Lpzh14veBRRI0ucEJk6cSG+//bbmx/viiy/6vDRE119/vRbCiwvyy1/+kjgEmn69+qlw3Gt85pln0ieffKL5VN999910wAEH+KkIZbf1sssuo9mzZ2ujITyh0Y/toOwQizRAZw6BXCRInB5sAkvmzqDQWfOLKmS4up7m33gijS9zp7JfL/qi4OPkQBK49dZb6fzzz9fKxiuxcWg37lXedNNNfVveM844g+68807Nfvbb5UmHflluObXX+JxzztFEPy8bjS0/Ajwywm2ZN3YZeuihh7Ted6+uEplf6fxxtF+flehB9kf7CoyVTghkDUaohtpfuI62H1k+NH696MtHDDl7lcB3331Hw4alv3GyMPvjH//oVbOHtEsV/nwwT8rafPPNhzyvXAdwPcyZM4cuuOACzQT2B0evcfG1wb3uHAZQ3fbcc09qbm6mtdZaS92Nzy4Q8OuzEgLZhcaAJDMTcEwgcxahOup+62Iql8OFXy/6zLWDXyqZAIszFmNPPvkkLVq0iL788ksNxzvvvEM77LCDb9Eceuih9NRTTxn2L1++XIuXbOzwyIfHHnuMLr30UiNqCEfkWLJkCaHX2JkK4jZQX19PTU1N9O9//1tLlCfssT83NncJ+PVZCYHsbrtA6ikEMgnkULSWTtt6bVqlHf8Nff5JD30kwza1NTZSW0oa6tdofTvNPXFg+EzdX4rPfr3oS8EGefifwHrrrUccKu2qq66i3/3ud74u0B133KFFgOBCsL81LzvMi4p4YXv66ae1hU50W4488kiqq6sjuADoRJz/u/vuu2vLqWMlPefZ2qXo12clBLJdbWKfawTsBXIVtfXPo4npI7zSjlX0/vMP0BkHzCL7qX1Rau+fS9vbnutaMbSE/XrRu0sFqQeFQCgU0now4/G4NlHM7+Xi5ZgPOeQQYv/esWPHaj21/LdcGy/uwe4U6qRIjkPNPd7Y3CVQU1Oj+XQffPDBxC8o2Nwl4NdnJQSyu+0CqacQsBfIEWrpXUh7ZvMnXv48HTXuAGpMSY+/1iS76LrDSx+6x68XvQ1C7AIBjcB///tf4tX0uMeVBRxv7GrBvclB2Fgk84p7vBodi2OObjF9+vSSFY1D6DU0NGgvHCtXrtTyZV9Y7qGfMmVKyeyoxIx4NOStt97SJunddNNNGgJ2uUAsafdbg1+flRDI7rcN5KAQyCSQW6VAnpRNIMs03l9wPm0z/VYltcGPVfXUN+9EWif9F1f3+PWidxUKEvctgcMOO0zzP1YLwLF2dX9Ndb+fP7Pg5ygdt9xyi1GM9vZ2I9KBsdPBDx9++CHxhEcO26Zu/CJy+umnq7vw2QUCLIh58ZvUze8xslPL49Xvfn1WQiB7tUUF1K5iBDKtWkIzRoRofhqb8rhZ+PWiT8OHHRVPgGf46/F1t9tuO/rZz35Gp556KvFS00HdXnrpJdp3332N4vHSwxzVYJdddjH2FfOBV7zjRSrY3/njjz8mPQYsv4jU1tbSHnvsUUzyODdHAhz7eIMNNtCO3nDDDemYY47Reo0nT56cYwo4rFgCfn1WQiAXW/M4Py8CRQlkWkl/OWoUzUrzswhRY2crTd28DI7IeZUeB4OANwn8+Mc/1nxyeeIaR3molI0jd3CsZF6dTt222WYbLeIBT+bSH+7q73afOa1XX31Vmwz4wQcfUF9fnyGKOQ7vjBkz6IQTTqAtt9zS7nTsc4kAu6/wCwnXI9dRrvXpkjlI1kcEIJB9VFlBMLU4gUxkfz5RrLWHzp00OgiIUAYQKDkBfanp/fbbLy1ebMmNKUOG7A/Mrg7c0/vCCy8YFowbN07rUa6qqtIWTeGYuaNHD9xn+EVi1apV2hLd9913H/3rX/+iL774wjiXXzq4B57P/fnPf27sx4fSErjooovoD3/4g7ZIiO73XVoLkJtfCUAg+7XmfGq3vcCNUC4+yFxk+/MhkH3aHGC2RwgsXLiQfvGLX2jWHHjggdrEtVmzZlVkDF7u/b399tu1pbc5JnR/f39OtcQuGhwlY9ddd6VIJEIcBQRb+QnwxMjhw4drhvAIydlnn629DG222WblNw4WeJoABLKnqyd4xtkL3GAI5GxDd7r/oVqj+R7P5wbpnCCVxY91o7ZJHnpOXUmP6+faa68lDomlb3qdqeem/qZ/V//aHc+/6+mpx+qfvXxOIpEgXkCFYxbzctxrr702bbHFFrrpaX+9XJZy2laq+md/b15qXN24V59fDDMtP14q20qRTynyYLaF5KPWiec+y4sDGwiUjEBbvErIiyDlX0S09uZmgv35JKSLRW4JuHhUernMctplm+14GY7I7pQUbmb6nJaM75r3ObYnyJ3ZbHPqnGx5LF261DabbOfI0F15n2N7gtyZLR+/nSN7QG3Lk1oOGQZLnHzyyULG4RXyQWec09XVpR0qZ/wb+1LP5e/ZmPG5dlu2c+yO532lOOftt9/OO59S2FWq8ste17zLz+0kXwbZjneyzTC3K664QkybNk3IlxnDzttuu41/st2y2WZ7gtzp1XO8alcmjl7Zjx5k2XKwlY5AkHuQS0cROYGAuwT4Wb/xxhtrE/Yefvhhw/3C3VyROgiUhgC7wvCS0xzRYsGCBaXJFLn4jgAEsu+qzN8GFyuQ35h7FO12VmMahFiLnKS358DkmbQfsQMEQCBvAvpKeojVmzc6nOBxApdeeqm2nPfhhx9OyWTS49bCvHIRgEAuF/kKzbc4gZwpzFuYkl1P0uHjEeatQpsViu0QAY6HzCvMTZ06VYvKwMm+99579KMf/cihHJAMCJSHwD/+8Q/69ttvNWH817/+VTOCF4z5/e9/Xx6DkKvnCUAge76KgmVgUQJ51bt0/ogdKH0tvWrq6L+FtoY+DlZjQWlKSmDMmDHU09NjyTMcDmsLXVh24gsI+IwAR66Q/sYWq3lyJYfmC8oy6pbC4YsjBCCQHcGIRHIlUIxAXiaXmt7CbqnpaCP1z51KpdbH7Lt23nnn0bx58wirMuXaAnCcFwm8/vrrxIti8MZ/R40apYXD0kO/edFm2AQCuRDg5aS/973vaYfyXw5jyD7IanSWXNLBMYUT4BEoXoznwgsvLDyRMpwJgVwG6JWcZSaB3NK7kPYcmYXM8udpxrgDbJaZLl8M5GuuuYbkzGjikE8zZ87MYjx+AgFvE9hrr73olVdeofHjx5OMRuBtY2EdCORBgBdxOemkkzSRzMtOr7vuunmcjUOdIMAvJtOnT6cHHnjAieRKlgYEcslQIyMmkEkgt/YtpEnrpDJaTatWrqC3Ft9P0ch51Jb6M38P1VH3WxfTWLvfXN4HgewyYCRfMgIsGnhp5GOPPZZ0/8ySZY6MQMBFApdddhnNnj1bGxVRVzp0MUsknUIAAjkFCL6CgB0Be4Esda70dRyjnvDZZ7S4zVYSq0dRnYxecXGZoldAIFuqAl98TEDvZeMiXHzxxXTAAQcQz/DXh6Z9XDSYXuEEZHx0Wmedgd6XffbZR2vf+++/P2200UYVTqZ0xYdALh1r5ORjApkEciFFCtUkqfW6w0vue6zbCoGsk8BfvxPg2f28Gpy68UPt7rvvJrl4iLobn0HAdwR4lcNly5ZZ7I5GozR37lzLPnxxhwAEsjtckWrACDglkMM1DdR43TTK5rbsNjoIZLcJI/1SEuju7tZ6jXlZ3jvvvJN4+WneeD+HfsMGAn4lwG356KOP1vyPn3jiCZKrjmpFueeee/ACWIJKhUAuAWRk4X8CxQvkCCWabqKZk7cuOwwI5LJXAQxwicDKlStpwoQJxH8bGxu1uMguZYVkQaCkBDiqxS677EJLliyBz32JyEMglwg0svE3gSV/mUGhWfNzL0QoRJHQXrTb7nvTvvvtT/tM2prS5vLlnpqjR0IgO4oTiXmMwN57700tLS3aMDQPR2MDgaAQuP7667Uwb4ceeihxjzI2dwlAILvLF6mDgOcIQCB7rkpgUJEE3n//fVq6dCmxIOa/vL399tu00047FZkyTgeB8hL4+OOPNXehc889l3jFSN4uuugiuuGGG8prWAXkDoFcAZWMIoKASgACWaWBz34noMdCVsuxww470DvvvKPuwmcQ8B0BFsGXXHKJxe6RI0fShx9+SBtuuKFlP744TwAC2XmmSBEEPE0AAtnT1QPj8iDAvcQTJ07UzuAlpzfYYAO6+uqr6cQTT8wjFRwKAt4jIISgNddc0zCMfetPOeUUrX2r+40D8MFxAhDIjiNFgiDgbQIQyN6uH1iXO4GDDz6YnnnmGW2W/1dffZX7iTgSBDxO4N5779UEMZuJiCzlqSwI5PJwR64gUDYCEMhlQ4+MHSaw2WabaUtMs68x9yZjA4GgEJgxYwbNnz9fi/O9atWqoBTLV+WAQPZVdcFYECieAARy8QyRgjcIXHfddXT55ZdrxrC/5jHHHENbbbWVN4yDFSBQBIE2uSLrzjvvrKXAsZCvvfZa2nbbbS1uF0Ukj1NzIACBnAMkHAICQSIAgRyk2qzssnBsWPY9/vzzzy0g/vCHP9CFF15o2YcvIOA3AgceeCA1NzdbzD7ooINo8eLFln344g4BCGR3uCJVEPAsAQhkz1YNDCuAAIvj3//+9/TWW29Ra2sr9fb2aqnwJCdsIOBnAv39/RSLxaipqYm4R5lDvvH25ptvGr3Lfi6f122HQPZ6DcE+EHCYAASyw0CRnKcIjBs3jpYvX05PP/008SQ+bCAQFAKRSIQeeeQRmjlzJiUSiaAUy7PlgED2bNXAMBBwhwAEsjtckao3CGyxxRa0bNkyuuyyyzS/TW9YBStAoHgCp556qiaMd911V3rjjTeKTxApZCUAgZwVD34EgeARgEAOXp1Weom++OILbQW9K6+8kh599FENx3PPPUcHHHBApaNB+X1OgMMXfvrppxSPx+nGG2/USsNC+a677vJ5ybxvPgSy9+sIFoKAowQgkB3FicTKTGDWrFn0l7/8xWLF+PHjtfBvlp34AgI+I3DffffRSSedZLF6+PDh9O9//5vYlQibuwQgkN3li9RBwHMEIJA9VyUwqEACPMOfZ/rztv7669O+++5L4XA4bXneApPHaSBQNgI8+XT06NFG/tzOeQl1nrS31lprGfvxwT0CEMjusUXKIOBJAhDInqwWGFUAgUMOOUSb4c+nrl69mviBhg0EgkCAJ+GxKwVv77//PuJ7l6FSIZDLAB1ZgkA5CUAgl5M+8naSALtSfPLJJzRp0iQtxJuTaSMtECgngeOOO44efPBBGjFiBH399dflNKVi84ZArtiqR8ErlQAEcqXWfPDKffHFFxsTl3hFPZ6kh+Hn4NVzJZbo5Zdfpn322UcrOq8O2d7ejrZd4oYAgVxi4MgOBMpNAAK53DWA/J0iwAsppAri9dZbj6666ir6zW9+41Q2SAcEykKAfY7fffddI+9hw4YR9yzzpFT+jM1dAhDI7vJF6iDgOQIQyJ6rEhhUBAEWyb/85S+1JXk7OzuJv/PGq45tuummRaSMU0Gg/ARuvfVWmjt3rtae9VUi+Xs0Gi2/cQG3AAI54BWM4oFAKgEI5FQi+B4kAuussw598803dPPNN9P5558fpKKhLBVOYMcdd9RcLTiixbPPPlvhNNwvPgSy+4yRAwh4igAEsqeqA8Y4TIBXGXvzzTfpiiuuoNraWodTR3IgUD4C7GN/9dVX0+67706vvvpq+QypkJwhkCukolFMENAJQCDrJPA3aAQWLFhA06dP14r1wAMPaP6aQSsjylOZBNgXeeedd6Zvv/2WjjzySHrssccqE0QJSw2BXELYyAoEvEAAAtkLtQAbnCLAQiESidD//vc/I0mewMShsXjVMWwg4FcC7FO//fbbay5Da6yxBgkhtKK0tbXRxIkT/Vos39gNgeybqoKhIOAMAQhkZzgilfIT+OCDD2jrrbfWDOFoFptssgltsMEGtGjRIuIYydhAwK8EUiO0sP8xT9KbN28eHXTQQX4tlq/shkD2VXXBWBAongAEcvEMkYI3COy333704osvasYgaoU36gRWOEMgHo9r0Vk4tYaGBpo2bZozCSOVnAlAIOeMCgeCQDAIQCAHox5RCqItt9ySeBj6iCOOoMcffxxIQCAwBGbNmqXFOx49ejT19PQEplx+KggEsp9qC7aCgAMEIJAdgIgkPEGA4x9zTxtvHPaKw19hA4EgEHjhhRdo//3314pywQUX0E033RSEYvmqDBDIvqouGAsCxROAQC6eIVLwBoH//Oc/lsVAOAbyiBEjaOHChXTAAQd4w0hYAQIFEFi9erVlkin3JPPEU75/Y5XIAoAWcAoEcgHQcAoI+JkABLKfaw+2pxL497//rfW0ffLJJ9psf/13HpZmUYENBPxKgEO6HXbYYfTSSy8RR7HgBXB448gtHOoNm7sEIJDd5YvUQcBzBCCQPVclMMghAhwrlmf7czisOXPm0K9//WuHUkYyIFBeAl999ZUWmYUjWfDoyHPPPVdegyogdwjkCqhkFBEEVAIQyCoNfA4agUmTJtHf//53rKQXtIpFeeh3v/udtjrkHnvsQa+88gqIuEwAAtllwEgeBLxGAALZazUCe5wi0NLSQnvvvbeW3P3330/HH3+8U0kjHRAoKwF2Jdp88821BXF+9rOf0aOPPlpWeyohcwjkSqhllBEEFAIQyAoMfPQ9Ae4tPvjgg+mLL76wrKanrzrm+wKiABVLYMWKFfSTn/yEli1bRt99953Bobu7m8aOHWt8xwd3CEAgu8MVqYKAZwlAIHu2amBYngR4cZAJEyZoZ6255pq08cYbaxP27rjjDho1alSeqeFwEPAOARbEvGS6vo0ZM4Z22mknmjt3rrb8tL4ff90jAIHsHlukDAKeJACB7MlqgVEFEDj00EPpqaee0s7kCXrbbbddAangFBDwHoF77rmHZs6cqRmGCaflqR8I5PJwR64gUDYCEMhlQ4+MHSbAPpkffvihFgpr0aJFDqeO5ECgfAROOeUUuvfee2nDDTckdrXAVnoCEMilZ44cQaCsBCCQy4ofmTtI4OSTT6Z58+ZpKb799tvaELSDySMpECgbgaamJjrkkEO0/P/4xz/SOeecUzZbKjVjCORKrXmUu2IJQCBXbNUHruBLly6lrbbayigXr6LHfshPPvkk/ehHPzL24wMI+I3AqlWrtFUhdbu5bfNKkeyDPH36dH03/rpIAALZRbhIGgS8SAAC2Yu1ApsKJdDW1kY//elPtWHo/v5+LRmesMfD0pioVyhVnOcFAhyZZZ999qEPPviAWDDrGy8SgqXUdRru/YVAdo8tUgYBTxKAQPZktcAoBwg8++yzFA6HtZQ4ksXpp5/uQKpIAgTKT+A///kPbbnllppQ5rCGTz/9dPmNCrgFEMgBr2AUDwRSCUAgpxLB9yAR4FXGXnvtNW3FsSuuuCJIRUNZKpyAfu/ec889iRfFweYuAQhkd/kidRDwHAH9JptIJIwwQp4zEgaBQAEEurq6aLPNNtPObG9vR7zYAhjiFG8S+Oqrr7SV9D777DO69NJLafbs2d40NEBWQSAHqDJRFBDIhQAEci6UcIxfCDz++OPai96XX35p8dPESnp+qUHYmYkAr6A3efJk+uSTT6ivr884rKenh0aPHm18xwd3CEAgu8MVqYKAZwlAIHu2amBYngS4N42X3GUxvMYaa9C6665LO+64Iz388MNGT3KeSeJwEPAEAW7TvHqeHgOZo1iMHz9ei2LBPsjY3CcAgew+Y+QAAp4iAIHsqeqAMUUQmDZtGj300EPakrzcy/b973+/iNRwKgh4h8AjjzxCkUhEM2jx4sV00EEHece4CrEEArlCKhrFBAGdAASyTgJ//U6Ae415O+mkk2j+/Pl+Lw7sBwGDwIwZM7Q2PXz4cPr222+N/fhQOgIQyKVjjZxAwBMEIJA9UQ0wwgECv/3tb+naa6/VUuKV9LbddltiQYENBPxOgEdE2KWCN3YZ4lX1Ro4c6fdi+cp+CGRfVReMBYHiCUAgF88QKXiDwH//+1/NB1m1ZueddyZeSGGDDTZQd+MzCPiOgD5Cohu+ySabELte7L777vou/HWRAASyi3CRNAh4kQAEshdrBTYVSqC+vp6qqqqIH2bfffedlsywYcPo888/p/XWW6/QZHEeCJSdwHvvvUfbbbcd8cqQ//vf/wx7WltbadKkScZ3fHCHAASyO1yRKgh4lgAEsmerBoYVQWD16tV022230Xnnnael8vzzz9N+++1XRIo4FQS8Q+CJJ56gqVOnav7IM2fOJI5jj81dAhDI7vJF6iDgOQIQyJ6rEhjkIAE9skU8HqczzzzTwZSRFAiUl8CCBQto+vTpdPjhh1MymSyvMRWQOwRyBVQyiggCKgEIZJUGPgeJwL333kunnHKKVqRnn32WDjzwwCAVD2WpYAJvvfUW8RLT33zzDZ188sl0zz33VDCN0hQdArk0nJELCHiGAASyZ6oChjhAoKGhgY499lj6wQ9+QB999JGWIvsg88pj/BcbCPiVwD//+U9tufRx48ZRd3e3UYx3331X8002duCDKwQgkF3BikRBwLsEIJC9WzewLD8Cvb29RrQKDu/GE5l22GEHLYrFRhttlF9iOBoEPEZAjWLBYo3b9N/+9jf6yU9+4jFLg2kOBHIw6xWlAoGMBCCQM6LBDz4jcOGFF9LNN9+sWb18+XKspOez+oO5mQksXbqUttpqK+2Axx9/nI444ojMB+MXVwhAILuCFYmCgHcJQCB7t25gWX4E9B62X/3qV/SnP/0pv5NxNAh4mAD7Gc+bN49GjBhBX3/9tYctDa5pEMjBrVuUDARsCUAg22LBTh8SOPvss7XQbvwg+/TTT2nMmDE+LAVMBoF0AnoMZP7l1VdfxeIg6Yhc3wOB7DpiZAAC3iIAgeyt+oA1hRPo6uqizTbbzEhgrbXWonA4rPlp8uIK2EDAzwT0ERIuA7ftLbbYghYvXmwsQe3nsvnBdghkP9QSbAQBBwlAIDsIE0mVnUBdXR1deumlNHLkSFq5cqVmz7rrrku8DDUPT2MDAb8SeOWVV2ivvfZKM7+9vV2LbpH2A3Y4SgAC2VGcSAwEvE8AAtn7dQQL8yMghCDubZs9ezZddtll2sktLS1a3Nj8UsLRIOA9Aty+n3vuOTrkkEO05dTPOOMMuv32271naMAsgkAOWIWiOCAwFAEI5KEI4Xc/E9BX0mMBwUICGwgEhcBDDz1E3L6xkl5pahQCuTSckQsIeIYABLJnqgKGOEigv7+fHn30UW0pXo6H/OSTT9JPf/pTB3NAUiBQPgJvvvkmHXDAAZob0UknnUTz588vnzEVkjMEcoVUNIoJAjoBCGSdBP4GgcBLL71EkUiEVq1aRV9++aVWJHa34JX01l577SAUEWWoUAIcmYWXl+Z2/dlnnxkUXnvtNSwWYtBw7wMEsntskTIIeJIABLInqwVGFUCARXHqRDyOavH0009jKd4CeOIUbxFQo1iwZeuvvz7dc889dPTRR3vL0IBaA4Ec0IpFsUAgEwEI5ExksN9vBNRJeX//+99pwoQJNHbsWL8VA/aCQBoBXhly3Lhx2v4///nP2kp6P/zhD9OOww73CEAgu8cWKYOAJwlAIHuyWmBUAQSi0SjdcccdNGfOHPr1r39dQAo4BQS8SeDBBx+k4447jqZMmaLF9famlcG2CgI52PWL0oFAGgEI5DQk2OFTAh0dHfT6669rQiJ1ONqnRYLZIKAR+OKLL6ihoYF4Ql6qGxEQlYYABHJpOCMXEPAMAQhkz1QFDAEBEAABEPAoAQhkj1YMzAIBtwhAILtFFumCAAiAAAgEhQAEclBqEuUAgRwJ6AJ5+vTptMkmm+R4Fg4DgfITCIVCdPrpp+dlCFwv8sKFg8tIgFfMy3e79tpricPBYXOeAE+OPOaYY+iBBx5wPnEXU1xDNqT8W5KLBiFpEPALgZtuuoluu+02+uCDD/xiMuwEAY3AxIkTqa2tLS8aEMh54cLBZSTAC9zk216HDRumLT9dRrMDm/V6661HZ555JvEz008bBLKfagu2eorAihUriP9hAwG/EeAH1sYbb+w3s2EvCLhGYOnSpYT+Qtfw0siRI30XOhIC2b32gJRBAARAAARAAARAAAR8SAAC2YeVBpNBAARAAARAAARAAATcIwCB7B5bpAwCIAACIAACIAACIOBDAhDIPqw0mAwCIAACIAACIAACIOAeAQhk99giZRAAARAAARAAARAAAR8SgED2YaXBZBAAARAAARAAARAAAfcIQCC7xxYpgwAIgAAIgAAIgAAI+JAABLIPKw0mgwAIgAAIgAAIgAAIuEcAAtk9tkgZBEAABEAABEAABEDAhwQgkH1YaTAZBEAABEAABEAABEDAPQIQyO6xRcogAAIgAAIgAAIgAAI+JACB7MNKg8kgAAIgAAIgAAIgAALuEYBAdo8tUgYBEAABEAABEAABEPAhAQhkH1YaTAYBEAABEAABEAABEHCPAASye2yRMgiAAAiAAAiAAAiAgA8JQCD7sNJgMgiAAAiAAAiAAAiAgHsEIJDdY4uUQQAEQAAEQAAEQAAEfEgAAtmHlQaTQQAEQAAEQAAEQAAE3CMAgeweW6QMAiAAAiAAAiAAAiDgQwIQyD6sNJgMAiAAAiAAAiAAAiDgHgEIZPfYImUQAAEQAAEQAAEQAAEfEoBA9mGlwWQQAAEQAAEQAAEQAAH3CEAgu8cWKYMACIAACIAACIAACPiQQDAE8qoVtKyrh2jERrT5+NGuVsOKZW/Q86+9S19+S7TW+hvRVjvtSZO2djfPQgq0asXH9GlvP9HwUa4zKcQ+4xyuu097ta/DR21M40evY/yEDyAAAiAAAiAAAiBQDgKBEMgr35hDo3Y7T+OXaO+lmduPdIXlkvvOpNBJt1vSrkq007yZ21v2lfrL6hVL6OZL76dD/nAdTRos+htzJtNu5y0mCsWo561zyXsSfoDS81fvTAdc2TbwJZyg3mdmkju1V+paQX4gAAIgAAIgAAJ+JRAMgbxkLo0KnaXVQay1h86d5IIcXLWEZowI0XyjpkPyUxvF23rpzInlk3Sr3l9AI7aZLm2JUGvvQkUgHyUFcqO3BbJkeqZkar5yhKihs5WmbT7MoFzuDx8/cwNNOb+exux1CTXOPbFA8b6a3n1+Id07v5Fa/tUlizSKJvxoN5py3FF09OSJhD5zrmU3GK2kNxY9RPPqF9JbXQOjFKMm7ExTps+gE6dOKrAuy90ikT8IgAAIgEBJCIgAbL1tcSFhaf+kQHanRL0tIjKYR1WsRfRruQz8706GuaVqlj0iWnvNc7qaE6KmpkbEGloHbTV/88qn7qZao970+gvXNXvFPCG6m0R4sM4pHBcFtaz+ThGLDLRNvYyWv5GY6PJOictjiRuMelpFdSgL91C1aCmoQsuDCLmCAAiAAAiUlgCVNjt3cjNFIgm3BHJ/e8IQc4n28gtjnaRpV5Vo845ZunlZ/vaKhC4cw9Wipio0yFeWoy/LaSX6qb+rWVTp4pj/SoGsvH/kaEW/SNbo5WKxFhI18XqRiFUbbUkTy9WNnn2JybGgRRzmBqNuEQur4lhyjyVEIl4j5LiPyT5Uh5eTImoOp4IACIBAkAk442Kx6n2ae+NdtIx+TGdWT6EPH7qDbrq3npZ+Jh//NIYmn1ZNF0Wn0ng5lrzkkTl0xa13Df4mJcOR59NVNTNp61QvhdXL6ZkHE5R4cBG1DSREY7bci4469VSaNXVPy/DoyqwuFivplQUJ+r/b7qI2zR5pkZbOmRSVw6xDDm/Lsv3lxvvovZ5Wmn2rdFmQWyRaS/ts1kcb7H4aHT3hHxS/v4V+MOVkCn3aQL+5egF9JsscOvI4uvyi02j70cNo1cdL6OEFCyn5zGKzLGO2pB/tNZmOO/kEmrz9WC1dy3+y/M8vvJ/mz19ILUr5Tz7rHDr+cB6WX0XPzJ1DT7/xEs2+ne0KUbT2JNqs7xva/bSLaIdlD9DcF9+jEeMOoYvOnGwtZx5syajbbemcmuPpowdvpJq6BbRYy1GWc/JRFD1nBu2f70TFjxfRzhOmSCcVyTPWSnfs+TSNk24MvNUkO+m6wzfXPpfjv/efmUPbHDzg0z7gSCOtCMelf/SZlnY3lG2rlz1Cw7eQ4w7aVkVNXQmaPH7AfWTVskV0/BZTaKBFETV09NG0rYdsjUNl6bvf3WC06t25NGKHswZZRKmlZy7tOXrw64o36PyNdqNbB7/GWnulS1bqzcd3GHM2ePWKd2nhvHup8Zl3qKu3l0aNmkA7Tp5CJ5xwNE0cW2j743vsfXT3/CT9S6bJ26gJe9Gxs06AC5FGww33IS1hy38rl9xHv7oiqe2LXH8bTXNpLo4lUw99caNtL3/3eXq44WFKLn6LBls2Tdh5N5p+/Mk0dc/yPaM8hJ3c4O6Oy10B1BxR/72thvuBNMHsoVE/R2pFvDZi/xtFRbvSa9jXmcyeXqhGqJ4UGXuQe9pETbZh1nCtJV9bFn2t5jC7Wh75OVT3jIhbeqqsZU/IQnUm6zKU2Ty2NtlpybpfDu3r7hy2PMN1orO/V8QylK1Ojh23xgZZh2MW14B82Ypc6layiOc5Xt0WrzK41HfIru/+NrPHNsVmCxwXv/R1tohaoyfb7PnVeh0L6EFu0etA8qlt6k6zvLvZbBvyJSHt90rY4Qajjgazh746me7A0qNyj1cO984ms73Z3VdizemshmyD3S3ZXVnkvapDubcPmV7QDnDDfciOUV+biCrPJ7dGUu2y9sI+59t2j2ioCRvPKLvrhapiorOS27aseOe5y0RLdc3k0HCdcbGQItIyHE0R6fuaFM3JuI3QC4vaWFzEE3FRrYjLqvr2AXP72y0XeqiqVjS1tou2lkbL8SSHR3XJYS+Qu0WdKiClQE+2ton21iYpgkxxSpHEkEPnnfIc1Y80WlcvGhsbZHrvmW4C+s0pXCUiWr7Svp5mi7iuiTeI1nZZFpleXVS5+CxDvSl26+VvbhBRpTzRhg7R09kqYkZZQqKuvlE0Nsg8uvqEIUBVYVcAW5FWt2FRl6gXDQ31ipiUPPPy0e0UNTovpR6bak0m9WV4qrbGzPz5hlhdW2PeIFWOOVxYQr6WmC9PEdFi558hH2rGdROqFdbXpJwy8flB7jBSBXJts36XMFH1KXMWKuXFpL8raXEvCVXViPr6hKjW3Zy06zEkGjvz8NOSL89G+9XOj4jaeELE66LmdcP7pQtRZeoIN9yHzHZsfuoTjdXmCz3fuypJILvRtpvrrM+CcLRWJOrrRV11SidfVX2Ftm2pY924p0hnQy+5JbogkKssYqBP8d2V49Qiqd6AFQGpP6g66s2ba7i2KcU3s0fUR80bQW3TQI+HnUDuaTF7S0I1qTfoPpFUxJiMRGHeazJ86u+oN276ccNJVvGjlTclnrw3sPWJnt5+0dFglkW31Uy+X7mpmQKqM2mKsjS7LQK3VntB6O/QfaOtPsh2ArkQtlaBLOvWMrGpRyQMgW6WwSyj/afe1pjBMqq/GMlD1bYSqmmyP9nFvW3xgZtfqKpOtHSxUGg3BUC+All9scj48tAr4oZAyZ2fiwhKm7RLjFQBLP13jBfpgcL1Wu4hPNoS/E0+dBQBFYk1K/fVPtFUpzz0ow3Kb9nJNCv3UKpKWDj3dTQqnQMhkdSup+zpBe3X/s5G4z5HVCWaFAapI3nSxarg4ncl0yc7V45AdqFtyxFcc65CSCRarS/Zve0NStsmwSPFlbe5wF1CLNU1k2t9OS6QI6lDlkovWbg2NUKBKTAHBLL8bgiuqP2kM0VUh6SA5i1dIKvis0q02nWK9LUYjTycw/B2eh5azkoPsjWKBP/a09Eqe3TrRSxWbzMZqF+Yw8vmubpIk565otnm2d3eUCui1dJdpT4p+H5r2mWmwXmnC+TC2KoCWcZ85qQtm5GPtFeNomE5yPJFrZtUUdijTK7KNT1L4sV96e8W7R3KzVDtIStGIFdlGqXoEw1RfTSjDOUtjlbxZ6sC2UlG/R3mCAX3YMpJoI0t1tGjgQdgNMc2W3xRy5qCvGcaLltypCLdkUKOWhmjeanXZAbLVZcoKf6MPgPlcHVEpk71iVOOCfJH8/7uoouVHmnHGF0c6ECqGIHsQttWXd+qUvXMYIPtbDQ7stROniC3Z0vZXODO6ZfkmrEUJPsXxwWynPRizVF5CKaJZ+nckBjsQdMFstGjJnsy7N/LzHNo0FfVFIn60JLaM0ciEq0W0WhU+Se/Gz138ncnBHIkW5QD6Yvc1iKS0i0jEasTNdEq5Q2VBZIujmTvlv6CkDU9E7FZdj2Ngd8M4WoIO4VJHmxVgWzX097TovcGW/M3LUz5pITLI+l73tjcIpqbm7V/La3NopYFzeA/diMp66a03byjWCi+25F4W8ZitCV0X+wc+WVMyYc/uMqoU1QrbUlvU+bfyuGtjthkuteZ7ZCEnCQ7ZGPqUkI02r04awn0dMjrukW0tUt3MPub+ZD5+PcAd9yHrDxkHsZzLCyqIqZbQKUIZDfaduvgSOKAq0qKnhmsAHW0M2yMHFtrJ8jf3ODuRbdEFwRySrenIjLSb86m2B34zQzPFKrV3RVSm5l5Dg2KSFMkmgJZF97mA9EUXmn7QtaJbKk58vf0PLS9hsDPJKDaZI9vWn5pD279Ya2IWEPY2llj7jPt0tMY+C1dIBfGVhXIdjfdTPmbFlo/qf6hQ3JR/JOtqZTom9J2M9VvRkuUSTOhmtSRE/Mso56MlyTzt8B/co2RHJ2JmxP1MrWzaFx1NQgubbON6ffH9LKa1zGJXEbUjEnA8l7WMKine7o6RGtLi2iR/1rbOzN0cKTnHcg9KfeOlKfiYJGV+728/m3nKWSBo77UVDd2iHbFPdHuXp0lKd/+5EbbZhj9fb2ip7s744udyrq63B05Zag9V7iX4JrJF5XHBLL5RpzZB1URyIO+nerNfeDGoBwjb+CJZJNIJpNpjZgK6QAAIoNJREFU/5qamkRTk9zf3D7kzTw9D0at5GMjaNVeFu0hHYpo7hGxRINokb0qjUaMXF3cKjdMx3uQC2PrrEA2RfoAj5AIhdL/qYLGrtc630Ze8PEpF6x9X0KG1JVz018MzXPMG43eBszfAv/JJUbqw4vbUm19s+ju7RN9vd2ipcGcm8C/VSUy9+4Hhb/ZxuS9MMN8i752c45FtvaqMzHTjIrmdhn9xejJVDsiqkRDm+KypJ9cCX+Vts3+2fb3jsJdrPo6GsyOF/ms4A56s04yvwgFDb1aZqfa9pCMLKOg7INsX7tDpuPjA1zh7vI1UwhujwlkRSDa+srJIkr/QmPotGrgxpMuXhXhmikdORWls61VG/7rlhPqhtrS8+AzlHzSBLJSFrlARLwl3fOvPW14XXV8r7GNatDdPODSEArXaH5/pl3S11oZxjQasGGXYk8mJjZsnRTIfcpEx1B1MuNkIMsKe+VcREO9YA2OQ7WUwd+Vc7OtDthsTJCqbIHsGCO1DUsBHLfxfe1VxCC7+Xho3Z8cG1d+hxn3AukrrN4jLKkoc0WGFsiKK5hkrL7Q2n2uG5xMbckv6F9cdh8yogDJnmd9ropZz5UokJ1q20M1zC7FX1+2/RyiYA2Voh9/N9uag9xdvWYKo+wxgdwv1FBfdTYhmtQhej00nCkSzRuDKT5J2DnRdzebrg+huqFjodrlMZRANtw8pLhStOtATckHkiH0leF1NfJFTVoM137RoPsoDz7sTLs4RJPZCIwGbAi7wtg6KZDVWe/xVF9103T5EqSG+gsbDwD1kJJ8VkRu3i4WysWe+VzlpaWAIdaSMHAzEzcYqb07WUIwqfeZso5SuMl3MO32hB5NJySa7Mf6ZQgZM2RbLgLZ9H3VBXJYxJOtMrRlj+hqbxI1xqQ//j3LQ7QE5S9LFq65DwnLM1J9Rhj3fPnSUikuFs637WytpVvEjecvt+uwaOoeunMtW4p+/c0V7i5eM4Vy9phAlsWQsfXUXoi6xrYBcdnfI1rqzZmjPLFNj9BkikTlxqBEu+D0qhPNokdry32iozlhRLDg5X9zif1pm8dQPcjGQ0L2IDd3DPaY9ovujuaUB4jif6Y+4KXddclB94++bpGM6Q86eXHWDPTA9rbGDV6R2nrR2tYuuvv6zeE2QyAXxlZ9cNrddE0uQ/SA9qmi1753XG3ELUocyrINgyuiIbPIVa1WPqsiX/bYK+8uykFdolaffZ7xGOXwoH10gZHZHvkayeL7bYzeKPeMoPEdLI8pnJT7TGpZlbaei0A2Xv61HuSIDGGWmqB0p1LcLsp2DaeaVarvOfJU6yZbn4FutjkpWrbvlNE1M63gt2mdh1lmp9q2nnLK3/5OS3tm3VCfwV0p5cxAfnWFu0vXTDEV4JhA1sMIpYkopZco/cZruiiov7UrK2GpYln9XKes+qQ+FNX8O23iQ6pp8OdsQ7sqWHXWppmHaT8LqNTOGTUUjJYv+9tqDxR++7T+i+lqX2Y6tN1meKr+TsUXbTBNXhzBaMApduXLlgVyxrqVtprsswtk1R9brWuVsfq5X/WxIymoy/GirlyweQtk+TqkBu9vsCtAlxIntSpT1BaVStA+u8BIaa/6JF47aupoRn3A45ga9wJlOD6NSbe5qNHQ16c68mE/QsfpqzP9h04zzSJ/71DuHdmeMXm5WMlnqbkwi+yVT3F9bVVWJzWfUf7GOJT1zrft9Bz7u1osi5dVujhmQq5wd+OaSa/OvPY4JJD1FcHkW1Xqw0a+eenLPWcN85YSb7C7rdGycpwuKEORGpFst0pRU6Sl+xz2yuE+dcU+PR2SE+bisnc2Z92lx5uUItT0azQFcsh2tSjZkysnBdmJ4midjGOsXHipD5Cedll+owfaFNPh6rhInRPQkhiYsR+ODAT851noxgxnm5Bu+bAVhm+iTd3KptbXZi5UknrDVluiOaSdW4+9FvLF6IEKiWIC6at25PVZuWCzCeS+3l7Rq/3rs7Qn1Y2HovUpE3XkBB1l8Yb0hWTystS3BxfDyJa72istr1U7N60+GejfuA9kiOHrW6A2hpux1blnMUVVDR6v3kPzjWJRY+MKpyVr3Dvk/SvlRd3GzGDtUjqGMt871BeNLD2geh0pCyxx+w3po0+DHSNmmzafF+nP3GBhdqNtq4R6WutTnt8RudhZmsOkekpFfHaFuwvXTLGV4YxALtYKnA8CXiSQk0CWDznjRSZsDdUkJ4xFlYdXKJoQHT1STMv4sAlFHBP3kHux/KWwqWBGmbmrfvwsGmoSTaKzu3cgikWj9YU1UgExTNUVNDPFOFZXY1P9WjM1ATVWrN1y3tp5ikAODbqEZUovcPvVF7WM7lP5uVipo5h2YthuXy4vO35m70bb1nl0t5juixrbcK2oYK8KHYv21xXuLlwzFqML+AKBXAA0nFIhBFLeaK3jFjqD7L1APUYPu9mrk/ogM0ck9DQr629hjLJx77X0zqfyNr7L8FiVEITMsnxrit+q3tLUpajrc1j2WBXU+oqmelr6X8v8iBwWY9LPC8Zf592H+jqbRV1tnVyZNWb7rzoysIoet+9ItTyurk4kmoL96u1G2+b215t635adG5Vwr8j12nOHu/PXTK7lyXQcBHImMtgPAtI9yJhEJ10k7AfWpJuNMbNZLo9uc1BfZwY3H7kEcqq7UKVCz5/RUNyle1MypkzGVV9QwqK2oSVDfQaxBmRoKmM4nl2lrG4WHAPZcANLDQHZ3zfoPiRHPuTkX2NTe3ukIEtNU862VpaNt3d1MdIK6Idi3IfkShX23LOwUiM3xe1uRFnO9e9PLrRtJZqC9rJRmzkkqX+5FWt5Edxl1rbucXJ/UddMsUWyOR8C2QYKdoGA8wRk9JJOudpVe7v2r7PLvj/a+Xz9lKIbjPos3Ds6uypIGJt1b3U7GYiq0ytXC+OIPoY4lkK3Wo0VKU9Xh/XDKeEwVT9EnrgUa5Rh3qQvfndnysIh4ToplytwK9h9KDv3TCTNiVOVE8WCWTjdto35O/J60EaborWitqZGVMt/NSn/qqujok6uYliJW6HcZev2jVsiBHIltmyUGQRAoMII9Ij6qNqLbvNZupykvrapk/dSJxLzRFp1oqnhuqILC+1vWCS7lJ7nSqOeOlRvYTNQB3YuVtm520NU/cIrJYrFAAkn27ZccdaYU2JzjdjUX9D9vO1bG+8tjLsmkI0J+OmTUwtzuctsZTG/QCAXQw/nggAIgIBvCPSK5vhAxJtUMVsdS6aJYy6WGaUmUzi3zJF6wtE60dJl43PkG17OGJq/+1Au3NNtU8OK2onu9DOCtMehtq1OzLYRw6nXDX+vbqjMHuSB1pM/dxbIfnFLXIMLKSsZGwiAAAiAQAUQWL1yOS3r+oz6uazDR9DGEzan0esUWfDVK+njZV3Uy4kOH05jNppAY4tOtEibPHX6alq+bBl91qdRpxGjNqbNx4/2lIVBMMaVth0EMC6XwR3u5b9mIJBdbjhIHgRAAARAAARAAARAwF8EIJD9VV+wFgRAAARAAARAAARAwGUCEMguA0byIAACIAACIAACIAAC/iIAgeyv+oK1IAACIAACIAACIAACLhOAQHYZMJIHARAAARAAARAAARDwFwEIZH/VF6wFARAAARAAARAAARBwmQAEssuAkTwIgAAIgAAIgAAIgIC/CEAg+6u+YC0IgAAIgAAIgAAIgIDLBCCQXQaM5EEABEAABEAABEAABPxFAALZX/UFa0EABEAABEAABEAABFwmAIHsMmAkDwIgAAIgAAIgAAIg4C8CEMj+qi9YCwIgAAIgAAIgAAIg4DIBCGSXASN5EAABEAABEAABEAABfxGAQPZXfcFaEAABEAABEAABEAABlwlAILsMGMmDAAiAAAiAAAiAAAj4iwAEsr/qC9aCAAiAAAiAAAiAAAi4TAAC2WXASB4EQAAEQAAEQMBdAqtXvEsL591Ljc+8Q129vTRq1ATacfIUOuGEo2ni2HUKynzlsjfooXvn0cLFb1GvlsIo2jk8hWacfCJN2nxkQWkG+6RldMNRs6h+KdH58xtp5sTCGLlRl4Vwh0AuhBrOAQEQAAEQAAEQ8ASBZc/cQFscfElGW2LNXXTu/uMz/m73wxv3nU+7nXSr3U/avupEK90yc1LG3yvxh+dvmEwHXLJYK3qstYfOnTQ6bwxu1GXeRgyeAIFcKDmcBwIgAAIgAAIgUFYCqz9eRLtNmEJtg1aEqmrokinb0msPzqJbG3XTQtTY2UpTNx+m78j6d8Urc2ijvc4zjglFauj8Y7elj5K30JXz9ZyIaqXwviJP4W0kGqgPq+n5ObPogPPmG6UqRCC7UZeGQQV8gEAuABpOCTKB1fTu8wvpXjk81PKvLlnQUTThR7vRlOOOoqMnT6TCBurcSDNodeACo9XL6fmFD9PDjUl6q2tggJTksGt4ynQ6+cSpVIkjpKUYuly55D761RVJrYFGrr+Npm1f2DBrcFq4C21bg7OSXllwH909P0n/ki4FvI2asBcdO+uEIu5VWjI++m81LTpf3p9vHRCtkVgzLTh3fxqQwavomRuOp4MvGVTJ0Qbqnztt8LdsRVxJfzlqFM3ST5M9xXOVnuIlsmc5pPcsh+PU+8yZVNEtfOX7NOdXR9N5/OIQChG1DdRF/gLZjbrMVs85/CaCsPX1iM6ODtHZ1eN6aXo6W0VjQ72or68XDY1J0drhfp6FFKqvp0t0dnaWhEnu9vWJLrYp07+uLtHT25d7ck4f2d8pYhES8rKx/xeJia5883QjzXxt8PrxLjDqaasX4Uz1OLg/1tTpdTKO2tfZVGffrnUezXm37nT7+tpEVOEuH5Lpx1TSHhfatoavu0VUhzLcp5h/uE50lPFWWrIq7mkWEb29hWpt7s/doi6sc4qIlt4cLOtvF9V6mlQzRJpVojWXNHPI1n+H9IqW+lohJfHAfSWlPeZ97btRl0VCpSLP98Tpva0x48afaHevtbbVR418dBFVlWgvO4P+njZRF62xXKitsfBgo40JzzyieluGFC0a13BUNLR2l5hrv0jWhJT6DYmaeL1IxKqVffJGUN0o+nO2zI00c87cJwe6wEjeaK3iOCxq4wlRn6gTkZSbeL2L9wsvVUB/V9J8kMkHmhyGli/5CVFteSEMicbO3Ft3evn6RGO1eg2RyPshmZ6oj/e40LaZRm+rqNJFifY3orXveF3K80neq4KukdVnfyTWattW2hJVxj28JpnDS7FFINeK9CdRr0gY102OotvWMp/vTH2eR6pFjcEl/2vflbosEnEwBHJb3LgAXLshy54R601p4EEQb3NPkOdSt30dDYNlj6QI5MjA/pCHBHJf6o1df7O3/xtrTr815cKkkGP6OxuNNkRUJZq6TKHQ15k0eynkA6khx64ZN9IspGxePscNRk21gy+HLASjCdFtVqVE0SMaa8zfKZIIvIgQ8pUuqQhXOQytvOT1iaa6wXsFi61og/Jbfi2nK1mrXEMD17Rr9+P8TCvL0W60bS5Is9K+qUq2b6V0fR2NysthSCSV+5hyWGA+tsVN8ZuprfUq+iCcQURbgagCWAq9lOdQb1vCbOdeer5aC+H+N6mJBnrvQ6KuoUW7j3YoLyOZ6iOTYe7UZabcctsPgZwbJ/nW3mKIpKpYy+BDxPLkzTUlR48zL36rQO5qToiamhoRa2gt+IHnqKGcmCKQwzWNokO6WnRI15iBf+2itaVJxKsV8ULVoqNEiFtipkiobVIfOQMUupvN4elMPRWpvNxIMzUPv393npEcUjV6iTMNf3aIGq3njUVcVLQHvZutFEOX3U0DwsxgP9CBkO9D0u/tWbXf+bYtU+9XO2qqRJtN2zVGD2Ubrwu4i4sqqhIZOqv62usNQZvrvbuzsWbgnMH2XB1vFG0d7aJJuhRoo5yD+6sSbWqVV9znHsmkW2mDan3ke+2r5zpZl8VUCgRyjvT62823xkR7iVRbDraZdsmbpXfMsrdcEciReKYbS7/s4dOHacMi5eXdPt2i9/aI+FB+auoIgvR1G3qgzo00iy6oxxJwgZEcfjZ9EmPCfnynT9RX6aMWwR8idX/oUtajMbQaFlUR8yU334ekxxpoEea40LalNV1NZi99Rve+ng7R3Nwi2to7RI8iXooojGdPNUWVfBnOVFbl3p2rQOYCdzamuNcZL9UD945wxmeYZ3G5bphZH/m7WJjnOl+XhRbcGYHc1yHitTWiprZedPb2iGb29QuHRCjE/8KiOtYougYbb1tjTPktJKpqEqLD7inW3y3f1uq0m+1AOiERjkRFrLEl7aFn9qLaVYp0JG+IiSrDHj2d1tyGVmXZErW1oqba7GGMRGtFnSxvPNkhutsaRa3sqU00yx7QhloRHixzVU1ctPcMKNa+rjZRH6u1liUcEdGamGhqT++t1CpTlr9Z2h2VDxu1/Ilk26Ddcmg0XidqorpdIRGtrZO21IqkdAHobJI9yNLG2nhTejnzYCuMuk2Irv4+zSmfyyhnq2p1W1UdE825TlRUBXKWoa52ZZimJC4sil0Ujmfw2e5VREAOosqNNAu9yr16nluM+vtFr7wPdXfb3VgkDOljaE4kqynZKEW5qsF88NjdHwesUu+huQ1Dm6VRfTyrGztEuzJXo2IFskttu1UZ6WoYfEvv6eqQo28tokX+a23vTL/fm1UVuE/tCd3vOiSaMk22UeoiV4Hc39Usqo1OE/1lOuVvqFo0B9yFJd8Gk8u9JlOabtVlpvxy2e+MQFZ7bVLesvTJbBSplSJaF3MpDS1lmDPV59NIQ087JCekKReDenO33JDl5LUaY8gvNU/5PVw79PCqvLisE37MdEJ1zyg9j+Z+3d6EHLvtTJpD8/r+1L+1KRMH+uVwpdELppdZ/StnKHf294pYhrLVtfQI40Yatvog58uWJ4RktWXQrrjMc8hNvVHF7SdUcBqmD6nVbWTI9As9QLGLffrsZVWfaIjqdZyDXW6kWWj5vHpemRi1xpX7UAX4IKsPLaeHLs05EPLaiMQ1cabmZ7kfe7UdumGXS23bZBsVze0totboudfvTfy3SjS0Zeh4caOsZUzT5JGl00Kpi5wEsuxxNl+guV3Xyk6gbtEnO4i6O1pEnTH6NMA6g2dHGamUL2uzPjK/jGeyzjzXwbrMlFmO+50RyEoDHBB/Een7mhTNybiNuJIzymNxEU/ELW9oVfXtAyZbend4tnWtaGptF20tjZbjKVRnTE6wF8iqL+JAI0+2ton21iZRqzZw+YC0F0QmwU55jhr+K1pXLxobG0Sy9T1lNitfLPJfuGpwpry0L2U2fU28Qb7hy7LI9Oqi5jAkl8UMsJRit17+5gYRVQRxtEEOn8mQczGjLNJRvr5RhqCTecjueqOxyR5Ro3wFsFX9hgfqNizqEjLEnQx1V1ulu0JwuTP1vJoc1bTCtUnR1S1D0cnQbl3yX2en7HlqbRbxGkW8yAlDmUbNlFSL/6i8BGR2/RDC7CnLQSC7kWbxJfVWCmVg1JUS6iyTYPQWqOKsMe4FUjg5OwzdqfhyR0Tz4DuymV/+D8niSuqhs11p272Ka9Dg80btOEn5XNdkPlU8RMZRU8y2Zra/tAy6zag2uQjkjgbFtUK+9KV3/ch6MDpLSBjaJS3jytth1kf+1755rnN1WWwNuCCQqyyxBvsU312isEiqYYQUAak33A5leC5c25QywaxHNkxTlNUO3gDsBHJPi9lzG5ITwqxCq08klZnAuQzj93eYjv5xY2aEdbYrT94b2PpkPN9+0dGgD/+Q0G01K0z62hozy803ps7k4OQAebNLs9sicAfCz/R36L7RVh9ko7EpArkQtqqo5Z4Ja0dxj0gYAt0sg1nGlE9pL1LZbvJR5aUhJR2nvyo9BqGa5oypG0wpB4HsRpoZLfPpDyVm1N1iRrvhlz2+v1TC5tbQpTnSQ6ImaYox8zrJ/yEZmPpwpW2rbl76vTMsXf1aZWdMj+hqbxI1FreALC9EAQHdpowGxTIEJFb1QS7uQ8boq7xH1GeawatPSuWXkhw62QKCe8hiFHPtu1GXQxo8xAGOC+RI6tC5vFHo4dHCtaniwxSYAwJZfjcEV9R+0pkiqkODDzj1AhgY0lPFp7xJ2E1e6zNj8uZy0aTnwWRN+8lGNPV0DCwqEovV24i9fmHOcjYFl9lI7N+i2qWfc7RauqvUyx5YWS7TLjMNtsxoqIZALoytKpDtJoUY+diUn+2wbHkJZPlmXmfjP21J0KEvil36i5pdyoWW1bE07Yzy8z43uGfg0dVkxkrXRkKi9ebISoZzgrJbbbcZF0rIsS50Jj0tCs+U2OBmfpUskM2Qls5d/+rzhgVyRIaj1GtE/9ttGe0MepQFtdMnU4xjNfyg+iKnE7P+VRln82s2dU1Oo6fWTAL7rZhr3/m6LB6z4wI57S1OvfGmimdFYOoC2ZgNnXF4XWnAg/61pkjUb8jWN+1ItFpEo1Hln/yu+G5lu4HpiNPz4F8UW+RQjOHKoJ9k/JW+yG0tIindMhIxnlhXZQnab4prZQgta3pGwnkJ5ELYqgLZrqfdfFBaBbppofJJaQvpYd46pOtJs2iI11jYlGT4SrWrLvUlzrS/2YgXm2dZnUrTNCUYn9zgnkZGvogaE3kGet1C1Q1ZrtW0BHy/w3xo2b90awXMZxhaug/onR48qpTacdeaQ2xa30MdqgCutG3rcy2quyWm2KKO2ubybEs53VdfLbGmU17U9IKoMcDrc4hhb14vJOyeeVq6PYNhDbkHOaNW0S2onL8qu3znH7hRl8WSd0Egp3jsKDeK9IvVFJgDv8m338EholCt7q6QWkTzHJ4UwqI0Xbwqx3ADHupfDsG+0/Ngu5R8jJ5aq71tssd3yPyN3lflBpghPWvqatmtos1oqEY6hbFVBbJdgze5WPNPtVP7rraFLCFy+tobFJFst3yobeqF71T8Bbk3wP5FR6kbWV8Ze+J0K9xIU087KH9dZyRdsgw3poH7QKQumeJuFRSYmcthjkpxB0KG1p3HYgpq2Di+t4WUuRGZ7nVpI4uZzQ3GLy61bXX4vyZTDExl1Db4vZtdStzzkHSJsLZvjoFsLoWc8iyRk+56e3sH/vWZw8xqFBaKxIy5TmbDlBO2lftKtnkr5jmV8cnQHfK+YKcXdAp9OvfePsWNtoi61BN2+K/HBLIZTzNUk8k/0CpKWY6bIk2vFOUYWVGJZJNIJpNp/5qamkRTk9wvQ7RZfZTTKafnwcco+dgIKzVmpfbgCMnQbtI9IpZoEC3tHUq8X11cKiLM8R7kwti6JpCzhHmTK4ookx9zEKPp1ZXfHtW3O2OM4y5RqwuBjMco2bqRppJ8ID66yqhbxA13rQFxXNMwOBE4EPByL4TTQ5epAjmTKFb35+LGlnuJfHCkS21bjcBSm4NADtUkFQHiA24FmKjO9SEKiXhzh+jt6xUdcrEsQxxLHVDd2GlJXW3H4TolqpKsu2p5vNF+IzWiqa1TpqlHsTDnQfHor3VejiWLivuSm0CWOsfwlQ9bOpsKrUu3QHtMICsCUYqQNPcqptDfYTbeqsTQPciZ0pG3jc62Vi2YerecUDfUlr9AVsrCF21LemnMeL+6QFaXhK2xXYyiu3nA9y8UrtFWUTLtsk7IMBqqIdwVezIxsWFbHoGs2GozhDtUXeX/u+qzLpeSVieS6ol1KUtRV+USXcONNHVjgvLXLUY8mVd5wPFLcktlhL2yaxlOD132dTbLOPB1IhaL2f6rjpgCIlItj6urE4kmqzixszNY+9xp26o/rT4HJ5Vbb6s5GTV91Db16CB8T7/eDXGrC13Z4ZQytm3pWEvl1Kv2POtp2PyNVfB9xa7lqC9wmXuQ1ed7agdYYXVpZ4sT+zwmkPuVGLhymUybN2Q1BIvun2qKRL0HWQhTfJKw89XqbjZdH0Lq22MGqnZ5ZO9BtvYup/VQy2Ew8y1VF8jCEvkifUJBv2gwesUGBLFpV0ioL8jpArkwtq4J5CwuFp1Js24oJY5zhuoperfaHihtApd1SC01Ion9cJEQxaRZdIF8kkAxjDJxtwyRyh4eS+Qcn3Bx1swihi4zDENns0+995oRf7KdEczfimnbIhN3tWdaCrZUlwK51p7hpsgi0e4ZGkzavaI5roRnU8RsdSyZJo6ZQV+bHgHKXiP0y3UUYsoCYaroDlXViRZ99bNgAi2oVGoUrkSKu4uZoNRGho6RwRjSxFH+dWmm7ewnjwlkWbiupDm0wRd44+DKcf09chU3MwSaOrRhikRTIAsl2gU37OpEsxhY2K5PG3oxF/9gYelSD7IxjDAw7DOQS78MNt6cEo5HeYvqbbHEjq5LDrp/9HWLZMwMG0eDQ2eW3gK5kmFrG6+N3m8TxaIwtm4JZJKrENXLSYv19fXGv0QiJqqrlPjQXG+lGhaXvedqcPhQVK7w2CP90+SyrQnF34wotWdfvg0b9WwdLuLRjsLSdPYi93RqBTPKwF36fpoTyAZ6kWvrakV1tVzpU654af0nJ+vKHs5MkZw8zS1P4wodusw4DJ0lf+PlXF6/mXuRsiQQlJ8Kbtuy66XVjBJiGf6XbFSfcnYpiDXKMG/Sp7O7M2XhELmgVPq4ZVDg2pejv7dbdMi1Btr5X0enI0tt96lpStfIrqCv322PtuR73ajLfAvhmEDWV1tLuyEqkxVShzHUHlj1t3Y1ULe8yapvbvrnumbz0rcVyJKEpScyQzrhLBEGVJjqDcsso7WXOHUIp7NRFfSyHCG5PHMGO2KKI9PQdkeNmeP9nQ1pfNg3zXhISRcL1a582bJAzli3EpDJ3uwFV7lZPittQa/HbH9LHW2gR+lRyGRXXF3CUStctuEiIQpL00It8F8KY2TPXb1OM9WhdX/KS01gaRc2dGle3yTUe3Q2TLkNs2ZLITi/Fda21fuqHfceyyQxa3vWn5dyzQEsgxychoSSlIWAQwJZjwkYSg+s3S9XWxqc3JQ+k9kUmKm/dbc1WlaO028CIekwn2xXJZ/1ZpIqYHpl8HTbNdXlhLm47J0duu94sF6UwOBmHqb9IRliJm2kQKbe1lBnK4qjcjZ9V1eL0cOY+vDpaZflN3om9ZueXNygOi5SRy5aEgNDS+HIwCp0PCHGWPXNJgRNPmzlONRgj5xN3Uo05jBVerintBYte1T0tqDXZ+rfUJgnMtaJxpbOtNNLsaOvM0N7CVentbsBe4YaLpKM8k6zFCX1Vh75M7LnnjYxNsMLqdnuqkV7zjcBbzHL35r8hy7N69t+GNrOBrVjwLxX2h1ZGfvyb9vqfTUT98zPlnAUw/+V0bJQSrcJrMEZyIeFZ7cVHy+jnj6iYcOI1h21MY0dvU5Btq5c/jF19/bJdGRCw0fRhPGjSX4qzbZ6JX3c1U39nOPwdWnjcWNpnRwzt5R/I1n+kRnKv2oVreKy9ckyjhyZU9ksaRfBtjQQS5nLalq+bBl91tevZTpCstlctpfiNjfSLM4i750NRqWok9Url9Oyrs/k/Uhuw0fQxhM2pwJvq6UwNyB5uNS2+dmyrIt6uTKHD6cxG00o+BkZENAoBgg4RsDzAtmxkiIhEAABEAABEAABEAABEMiBAARyDpBwCAiAAAiAAAiAAAiAQOUQgECunLpGSUEABEAABEAABEAABHIgAIGcAyQcAgIgAAIgAAIgAAIgUDkEIJArp65RUhAAARAAARAAARAAgRwIQCDnAAmHgAAIgAAIgAAIgAAIVA4BCOTKqWuUFARAAARAAARAAARAIAcCEMg5QMIhIAACIAACIAACIAAClUPg/wPB8ihNVRUR0gAAAABJRU5ErkJggg== />"

Question 4

Clumsy researcher that he was, later that day he spilled a little baking soda (NaHCO3) into the beaker. He figured if a little sand didnt hurt, then a little baking soda shouldnt matter either when recording his melting point. Is this a valid assumption? Explain.
Question 5

fJvKIEHfxeOIoAAAggggAACtgCBB1uDfQQQQCBYAQIPwXrHvDYCDzEnpUAEEEAAAQQQSEABAg8JeFPpEgIIxI0AgYe4uVX+DSXw4O/CUQQQQAABBBBAwBYg8GBrsI8AAggEK0DgIVjvmNdG4CHmpBSIAAIIIIAAAgkoQOAhAW8qXUIAgbgRIPAQN7fKv6EEHvxdOIoAAggggAACCNgCBB5sDfYRQACBYAUIPATrHfPaCDzEnJQCEUAAAQQQQCABBQg8JOBNpUsIIBA3AgQe4uZW+TeUwIO/C0cRQAABBBBAAAFbgMCDrcE+AgggEKwAgYdgvWNeG4GHmJNSIAIIIIAAAggkoACBhwS8qXQJAQTiRoDAQ9zcKv+GEnjwd+EoAggggAACCCBgCxB4sDXYRwABBIIVIPAQrHfMayPwEHNSCkQAAQQQQACBBBQg8JCAN5UuIYBA3AgQeIibW+XfUAIP/i4cRQABBBBAAAEEbAECD7YG+wgggECwAgQegvWOeW0EHmJOSoEIIIAAAgggkIACBB4S8KbSJQQQiBsBAg9xc6v8G0rgwd+FowgggAACCCCAgC1A4MHWYB8BBBAIVoDAQ7DeMa+NwEPMSSkQAQQQQAABBBJQgMBDAt5UuoQAAnEjQOAhbm6Vf0MJPPi7cBQBBBBAAAEEELAFCDzYGuwjgAACwQoQeAjWO+a1EXiIOSkFIoAAAggggEACChB4SMCbSpcQQCBuBAg8xM2t8m8ogQd/F44igAACCCCAAAK2AIEHW4N9BBBAIFgBAg/Bese8NgIPMSelQAQQQAABBBBIQAECDwl4U+kSAgjEjQCBh7i5Vf4NJfDg78JRBBBAAAEEEEDAFiDwYGuwjwACCAQrQOAhWO+Y10bgIeakFIgAAggggAACCShA4CEBbypdQgCBuBEg8BA3t8q/oQQe/F04igACCCCAAAII2AIEHmwN9hFAAIFgBQg8BOsd89oIPMSclAIRQAABBBBAIAEFCDwk4E2lSwggEDcCBB7i5lb5N5TAg78LRxFAAAEEEEAAAVuAwIOtwT4CCCAQrACBh2C9Y14bgYeYk1IgAggggAACCCSgAIGHBLypdAkBBOJGgMBD3Nwq/4YSePB34SgCCCCAAAIIIGALEHiwNdhHAAEEghUg8BCsd8xrI/AQc1IKRAABBBBAAIEEFCDwkIA3lS4hgEDcCBB4iJtb5d9QAg/+LhxFAAEEEEAAAQRsAQIPtgb7CCCAQLACBB6C9Y5JbR9//LGsXLlSHn30UVm9erXU1dXJ0UcfLd26dZPU1FSZNm2aXHbZZdKxY8eY1EchCCCAAAIIIIBAvAns3btXVq1aZX4vvfTSS7J7927p1KmTdOnSRS6++GK54YYbZOTIkaIBCTYEEEAAgbYVIPDQtr4xKf2zzz6Tf/3rX+aL889//rNs3LhR



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

vickybb89

  • Sr. Member
  • ****
  • Posts: 347
Answer to Question 1

The two samples were not the same compound. The two compounds were insoluble in one another and therefore the melting points of the compounds were not affected.

Answer to Question 2

At a temperature of C, you would expect the mixture to consist of approximately 60 A and 40 B or 20 A and 80 B. It is important to list both answers since there is no way to tell with the information at hand which one is correct.


Answer to Question 3



Answer to Question 4



Answer to Question 5

Even though sodium bicarbonate is not expected to dissolve in liquid X, it is expected to undergo acid-base chemistry as shown above. The presence of the carboxylate and water resulting from this reaction are expected to have some effect on the melting point of X.

Answer to Question 6

He was not worried because he knew that, if the impurity does not dissolve or react with liquid X, it will not affect the overall vapor pressure of liquid X and will not depress the melting point of X

Answer to Question 7

The benzoic acid did not dissolve in the water. It reacted with the sodium bicarbonate to form sodium benzoate that is soluble in water.




jman1234

  • Member
  • Posts: 560
Reply 2 on: Aug 23, 2018
Wow, this really help


lindahyatt42

  • Member
  • Posts: 322
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Excessive alcohol use costs the country approximately $235 billion every year.

Did you know?

There are immediate benefits of chiropractic adjustments that are visible via magnetic resonance imaging (MRI). It shows that spinal manipulation therapy is effective in decreasing pain and increasing the gaps between the vertebrae, reducing pressure that leads to pain.

Did you know?

Signs and symptoms that may signify an eye tumor include general blurred vision, bulging eye(s), double vision, a sensation of a foreign body in the eye(s), iris defects, limited ability to move the eyelid(s), limited ability to move the eye(s), pain or discomfort in or around the eyes or eyelids, red or pink eyes, white or cloud spots on the eye(s), colored spots on the eyelid(s), swelling around the eyes, swollen eyelid(s), and general vision loss.

Did you know?

Your skin wrinkles if you stay in the bathtub a long time because the outermost layer of skin (which consists of dead keratin) swells when it absorbs water. It is tightly attached to the skin below it, so it compensates for the increased area by wrinkling. This happens to the hands and feet because they have the thickest layer of dead keratin cells.

Did you know?

Hip fractures are the most serious consequences of osteoporosis. The incidence of hip fractures increases with each decade among patients in their 60s to patients in their 90s for both women and men of all populations. Men and women older than 80 years of age show the highest incidence of hip fractures.

For a complete list of videos, visit our video library