This topic contains a solution. Click here to go to the answer

Author Question: You and one of your peers might have observed the following situation in Part I of this experiment. ... (Read 86 times)

jman1234

  • Hero Member
  • *****
  • Posts: 560
You and one of your peers might have observed the following situation in Part I of this experiment. Student As sample melted at 89-92 C. Student Bs sample melted at 96- 98 C. Because Student As and Student Bs samples were within  4 C of each other, they prepared a mixed melting point sample. Each student recorded the following results: each sample began to melt at 89 C and melting seemed to stop around 92 C. The temperature increased with continued heating. The solid began to melt again at a temperature of 96 C. By 98 C, all solid in the melting point capillary was gone. Explain what happened.

Question 2

The melting point/composition diagram for compounds A and B is shown below. If a mixture of A and B had a final melting range temperature of C, what are the approximate mole fractions of A and B in the mixture?

Question 3

/pSefPLJIBTJ02Xw67MSAtnTzQrGeZmAXy96LzOFbd4g8O2332phsPjv7Nmz6dJLL3XdsNWrV2t+0K2trdpwOGLUuo48YwaxWIzOP/984l7XqVOn0l//+ldXQ/5lNMSFH7hMHJaOI3Lsueee1NLS4kIuSFIl4NdnJQSyWov4DAJ5EPDrRZ9HEXFoBRHghRS4Z42jFfBqeiyOeeNhaV52uhQb+7f++Mc/1rL6/PPPaYMNNihFtshDIXDFFVfQNddco+1h9wN+URk2bJhyhD8/8kjIAw88QDzhkN2GePvjH/9I55xzjj8L5COr/fqshED2USODqd4i4NeL3lsUYY0XCLA4Tl0UhNs3h13jWMWl3GbNmkXsG3rxxRdTXV1dKbOu6Lx4+WUWi3/+8581DtyDzH7o+n3Oz3DYv5393NXtiCOO0NxGeMVIbO4S0NtQKSb8OlkSCGQnaSKtiiLg14u+oioJhc2JwPXXX081NTXasby0NH9mf9Pvf//7OZ3v5EEclmvMmDFaktyTvdtuuzmZPNKyIfDdd99Zeom5B5kX2AjC1t7ebkTd2GabbTRRvP7662MiaAkr16/PSgjkEjYSZBUsAn696INVCyiNEwR22GEHbclgXmKaw3qVezvyyCPpb3/7G02aNElz99CvtXLbFcT8WRyffPLJRog/jg/8f//3f4EpKi+dzj3hLIqxkl55qlW/ftGDXB7+yBUESk7Arxd9yUEhQ88T2H777emf//ynZueqVavKvlgHD/ezWH/55ZfhJ+pi61HF8Zprrqn5G7OLS5C2Sy65hG644QatSH6M4RyEuvDrsxI9yEFofShDWQj49aIvCyxk6mkCTz/9NHHIK97YvaGqqorY1UKfMFcO41mwc6g59hFta2ujrbbaqhxmBDZPnoTJky//85//EIvju+66i2bOnBm48n766ae0ySabGOXiiYe8MA2HE8RWGgJ+fVZCIJemfSCXABLw60UfwKpAkRwgUF1dTRzeS91YQHEUi3JtPDTOQ+Qch3fx4sWBmDBWLpZqvl9//bW2+AsvDMNbIpEIpDjWy8wxnO2WTeeRCv0+rh+Lv84T0BnDxcJ5tkgRBDxJwK8XvSdhwihPEODetldeeUWLIvH//t//02zi73vssUdZ7FNdLc466ywjwkJZjAlIpsuXLyf28X7ttde0EvFoAS8KEvSNe8ybmpq0lfRuueUWrbgXXXSR4X4R9PKXs3x+fVaiB7mcrQZ5+5qAXy96X0OH8SUj8MMf/pA++ugj4ri4HB+5XBu7WrCPNG/cE/jzn/+8XKb4Pt+Ojg46/PDD6f3339cmrTU0NGjffV+wPAughxLkSaC8MA02dwn49VkJgexuu0DqASbg14s+wFWCojlIYNy4ccS9jV4I+XXUUUdRY2MjjR07lpYsWUIbb7yxgyWtjKQee+wx4+WCfXIff/xxLUpIZZTeWkp+yWIee++9N7300kvWH/HNcQJ+fVZCIDveFJBgpRDw60VfKfWDcuZP4OGHH6YXX3yRnnzySXr77be1BHiC3MSJE/NPzMEzODwX9yJ//PHHWqrwHc0P7lNPPWWZlLZ06VLixTMqaWOXEl4ym8vO7Zw3jvd93XXXVRKGspTVr89KCOSyNBdkGgQCfr3og8AeZXCeAEeJYPGgbnvttZcWak3dV67P7BN99NFHa9mzywe7fmAbmsCDDz5IM2bM0JYO33DDDenvf/97xYnjyy67jGbPnm2BxYvgfPDBBzRy5EjLfnxxnoBfn5UQyM63BaRYIQT8etFXSPWgmHkQeOihh2jatGnaGfvuuy8dd9xxWo+tHvotj6RcPfS3v/0tXXvttVpYMl5I5LDDDnM1P78nrrumcDk4rBn3nK633np+L1Ze9nMYu0033dQ45+677yYegTj11FMRwcKg4u4Hvz4rIZDdbRdIPcAE/HrRB7hKULQCCeyzzz5aTzH7HXMkCy9vxx57LPHkMo7XzBOsOBQdNisBXgDkggsuoDlz5mg/8MtPfX09rbXWWtYDK+AbR6xgFrx98cUX2hLqFVBsTxXRr89KCGRPNSMY4ycCfr3o/cQYtpaGgB6xotxxj3Mp7Zdffkm77767tjT2T37yE3rhhRfKvvJfLnaX6hgWgccffzwtWrRIy3LdddfVlljmxUAqcePFT+655x4aNmwYffXVVxX5klDuevfrsxICudwtB/n7loBfL3rfAofhrhG4+eab6cILL9TSP+KII7ThZ54Ut9NOO7mWZzEJt7e3a7GZWSxvt912mlguJr2gnPvcc8/RQQcdpBVn+PDhdNttt2krIgalfIWUg9vKjjvuqJ3K92yesLh69Wq45xQCs8Bz/PqshEAusMJxGgj49aJHzYGAHQEWVCwc1I19WPUFQ9T9XvjMk8/YV5q3yy+/XAtH5wW7ymXDggULaPr06Ub2zz77rLYCobGjgj/ovcgqAp6UyhFaKs0nW2VQqs9+fVZCIJeqhSCfwBHw60UfuIpAgRwjwD2OLKxef/11I6LFG2+8QbvuuqtjeTiZ0GabbUZdXV3aZCuegMaCvtK2b775Ruv9/9Of/mQUnSNV7LLLLsZ3fCB65plntJUYP/vsM23ZcmaCMG+laRl+fVZCIJemfSCXABLw60UfwKpAkVwgMHr0aPr888/pyiuvpN///vcu5FB8kkIIOuGEE7T4tiNGjNBEEIemq5SNV8TjSYv8EsNbNBqlWCxG66yzTqUgKKickydP1kQyVtIrCF/eJ/n1WQmBnHdV4wQQGCDg14se9QcCuRDQe2fLvdT0ULZyDyqHo3v++eeJY9u+/PLLtM022wx1mu9/Z5eK0047jXp7e7VYvnPnztVeFnxfsBIU4MQTT6T777+feJInLyCCzV0Cfn1WQiC72y6QeoAJ+PWiD3CVoGhFEnjzzTe1njUWD7pwYMHp9V7ZFStWEIeqe/fddzUCHR0dtPXWWxdJw5unp7pU7LzzzsT+2Ntuu603DfaIVR999BElk0nt38KFCzWrzjrrLM3twiMmBtYMvz4rIZAD2yRRMLcJ+PWid5sL0vcngcMPP5yeeOIJi/E8+/8f//iHZZ9Xv/AqgDzxSt++/vprYreLIG38IsBuAZ2dnVqx4FKRW+2yb/3ZZ59tOZhX0GOOG220kWU/vjhPwK/PSghk59sCUqwQAn696CukelDMPAg8+uijNHXqVO0M7nn9zW9+Q1VVVbT++uvnkUr5D/3rX/+qxQBmS7g8PHHve9/7XvkNc8ACriMWxLwyHJfp3nvvJXYVwJadQE9Pj7aojH7UNddcQxzVYsKECfou/HWZgF+flRDILjcMJJ9CYNUKWvZpb8rODF9l2Kl1h4+gdeSb/sh1hmU4qHy7/XrRl48YcvYqAY55/M9//lNbwplDvelt26v2ZrOLh9E5lrO+8bLCfi4P9xqfe+65NH/+fK0c7BbAYe0g8PQazv734osvphtvvFE7iCOejB8/PvsJ+NVxAvr1x5Nq/bRBIPuptgJg6xtzJtNu5y3OvyShMEWnHUVV00+g/bcfm//5Lpzh14veBRRI0ucEJk6cSG+//bbmx/viiy/6vDRE119/vRbCiwvyy1/+kjgEmn69+qlw3Gt85pln0ieffKL5VN999910wAEH+KkIZbf1sssuo9mzZ2ujITyh0Y/toOwQizRAZw6BXCRInB5sAkvmzqDQWfOLKmS4up7m33gijS9zp7JfL/qi4OPkQBK49dZb6fzzz9fKxiuxcWg37lXedNNNfVveM844g+68807Nfvbb5UmHflluObXX+JxzztFEPy8bjS0/Ajwywm2ZN3YZeuihh7Ted6+uEplf6fxxtF+flehB9kf7CoyVTghkDUaohtpfuI62H1k+NH696MtHDDl7lcB3331Hw4alv3GyMPvjH//oVbOHtEsV/nwwT8rafPPNhzyvXAdwPcyZM4cuuOACzQT2B0evcfG1wb3uHAZQ3fbcc09qbm6mtdZaS92Nzy4Q8OuzEgLZhcaAJDMTcEwgcxahOup+62Iql8OFXy/6zLWDXyqZAIszFmNPPvkkLVq0iL788ksNxzvvvEM77LCDb9Eceuih9NRTTxn2L1++XIuXbOzwyIfHHnuMLr30UiNqCEfkWLJkCaHX2JkK4jZQX19PTU1N9O9//1tLlCfssT83NncJ+PVZCYHsbrtA6ikEMgnkULSWTtt6bVqlHf8Nff5JD30kwza1NTZSW0oa6tdofTvNPXFg+EzdX4rPfr3oS8EGefifwHrrrUccKu2qq66i3/3ud74u0B133KFFgOBCsL81LzvMi4p4YXv66ae1hU50W4488kiqq6sjuADoRJz/u/vuu2vLqWMlPefZ2qXo12clBLJdbWKfawTsBXIVtfXPo4npI7zSjlX0/vMP0BkHzCL7qX1Rau+fS9vbnutaMbSE/XrRu0sFqQeFQCgU0now4/G4NlHM7+Xi5ZgPOeQQYv/esWPHaj21/LdcGy/uwe4U6qRIjkPNPd7Y3CVQU1Oj+XQffPDBxC8o2Nwl4NdnJQSyu+0CqacQsBfIEWrpXUh7ZvMnXv48HTXuAGpMSY+/1iS76LrDSx+6x68XvQ1C7AIBjcB///tf4tX0uMeVBRxv7GrBvclB2Fgk84p7vBodi2OObjF9+vSSFY1D6DU0NGgvHCtXrtTyZV9Y7qGfMmVKyeyoxIx4NOStt97SJunddNNNGgJ2uUAsafdbg1+flRDI7rcN5KAQyCSQW6VAnpRNIMs03l9wPm0z/VYltcGPVfXUN+9EWif9F1f3+PWidxUKEvctgcMOO0zzP1YLwLF2dX9Ndb+fP7Pg5ygdt9xyi1GM9vZ2I9KBsdPBDx9++CHxhEcO26Zu/CJy+umnq7vw2QUCLIh58ZvUze8xslPL49Xvfn1WQiB7tUUF1K5iBDKtWkIzRoRofhqb8rhZ+PWiT8OHHRVPgGf46/F1t9tuO/rZz35Gp556KvFS00HdXnrpJdp3332N4vHSwxzVYJdddjH2FfOBV7zjRSrY3/njjz8mPQYsv4jU1tbSHnvsUUzyODdHAhz7eIMNNtCO3nDDDemYY47Reo0nT56cYwo4rFgCfn1WQiAXW/M4Py8CRQlkWkl/OWoUzUrzswhRY2crTd28DI7IeZUeB4OANwn8+Mc/1nxyeeIaR3molI0jd3CsZF6dTt222WYbLeIBT+bSH+7q73afOa1XX31Vmwz4wQcfUF9fnyGKOQ7vjBkz6IQTTqAtt9zS7nTsc4kAu6/wCwnXI9dRrvXpkjlI1kcEIJB9VFlBMLU4gUxkfz5RrLWHzp00OgiIUAYQKDkBfanp/fbbLy1ebMmNKUOG7A/Mrg7c0/vCCy8YFowbN07rUa6qqtIWTeGYuaNHD9xn+EVi1apV2hLd9913H/3rX/+iL774wjiXXzq4B57P/fnPf27sx4fSErjooovoD3/4g7ZIiO73XVoLkJtfCUAg+7XmfGq3vcCNUC4+yFxk+/MhkH3aHGC2RwgsXLiQfvGLX2jWHHjggdrEtVmzZlVkDF7u/b399tu1pbc5JnR/f39OtcQuGhwlY9ddd6VIJEIcBQRb+QnwxMjhw4drhvAIydlnn629DG222WblNw4WeJoABLKnqyd4xtkL3GAI5GxDd7r/oVqj+R7P5wbpnCCVxY91o7ZJHnpOXUmP6+faa68lDomlb3qdqeem/qZ/V//aHc+/6+mpx+qfvXxOIpEgXkCFYxbzctxrr702bbHFFrrpaX+9XJZy2laq+md/b15qXN24V59fDDMtP14q20qRTynyYLaF5KPWiec+y4sDGwiUjEBbvErIiyDlX0S09uZmgv35JKSLRW4JuHhUernMctplm+14GY7I7pQUbmb6nJaM75r3ObYnyJ3ZbHPqnGx5LF261DabbOfI0F15n2N7gtyZLR+/nSN7QG3Lk1oOGQZLnHzyyULG4RXyQWec09XVpR0qZ/wb+1LP5e/ZmPG5dlu2c+yO532lOOftt9/OO59S2FWq8ste17zLz+0kXwbZjneyzTC3K664QkybNk3IlxnDzttuu41/st2y2WZ7gtzp1XO8alcmjl7Zjx5k2XKwlY5AkHuQS0cROYGAuwT4Wb/xxhtrE/Yefvhhw/3C3VyROgiUhgC7wvCS0xzRYsGCBaXJFLn4jgAEsu+qzN8GFyuQ35h7FO12VmMahFiLnKS358DkmbQfsQMEQCBvAvpKeojVmzc6nOBxApdeeqm2nPfhhx9OyWTS49bCvHIRgEAuF/kKzbc4gZwpzFuYkl1P0uHjEeatQpsViu0QAY6HzCvMTZ06VYvKwMm+99579KMf/cihHJAMCJSHwD/+8Q/69ttvNWH817/+VTOCF4z5/e9/Xx6DkKvnCUAge76KgmVgUQJ51bt0/ogdKH0tvWrq6L+FtoY+DlZjQWlKSmDMmDHU09NjyTMcDmsLXVh24gsI+IwAR66Q/sYWq3lyJYfmC8oy6pbC4YsjBCCQHcGIRHIlUIxAXiaXmt7CbqnpaCP1z51KpdbH7Lt23nnn0bx58wirMuXaAnCcFwm8/vrrxIti8MZ/R40apYXD0kO/edFm2AQCuRDg5aS/973vaYfyXw5jyD7IanSWXNLBMYUT4BEoXoznwgsvLDyRMpwJgVwG6JWcZSaB3NK7kPYcmYXM8udpxrgDbJaZLl8M5GuuuYbkzGjikE8zZ87MYjx+AgFvE9hrr73olVdeofHjx5OMRuBtY2EdCORBgBdxOemkkzSRzMtOr7vuunmcjUOdIMAvJtOnT6cHHnjAieRKlgYEcslQIyMmkEkgt/YtpEnrpDJaTatWrqC3Ft9P0ch51Jb6M38P1VH3WxfTWLvfXN4HgewyYCRfMgIsGnhp5GOPPZZ0/8ySZY6MQMBFApdddhnNnj1bGxVRVzp0MUsknUIAAjkFCL6CgB0Be4Esda70dRyjnvDZZ7S4zVYSq0dRnYxecXGZoldAIFuqAl98TEDvZeMiXHzxxXTAAQcQz/DXh6Z9XDSYXuEEZHx0Wmedgd6XffbZR2vf+++/P2200UYVTqZ0xYdALh1r5ORjApkEciFFCtUkqfW6w0vue6zbCoGsk8BfvxPg2f28Gpy68UPt7rvvJrl4iLobn0HAdwR4lcNly5ZZ7I5GozR37lzLPnxxhwAEsjtckWrACDglkMM1DdR43TTK5rbsNjoIZLcJI/1SEuju7tZ6jXlZ3jvvvJN4+WneeD+HfsMGAn4lwG356KOP1vyPn3jiCZKrjmpFueeee/ACWIJKhUAuAWRk4X8CxQvkCCWabqKZk7cuOwwI5LJXAQxwicDKlStpwoQJxH8bGxu1uMguZYVkQaCkBDiqxS677EJLliyBz32JyEMglwg0svE3gSV/mUGhWfNzL0QoRJHQXrTb7nvTvvvtT/tM2prS5vLlnpqjR0IgO4oTiXmMwN57700tLS3aMDQPR2MDgaAQuP7667Uwb4ceeihxjzI2dwlAILvLF6mDgOcIQCB7rkpgUJEE3n//fVq6dCmxIOa/vL399tu00047FZkyTgeB8hL4+OOPNXehc889l3jFSN4uuugiuuGGG8prWAXkDoFcAZWMIoKASgACWaWBz34noMdCVsuxww470DvvvKPuwmcQ8B0BFsGXXHKJxe6RI0fShx9+SBtuuKFlP744TwAC2XmmSBEEPE0AAtnT1QPj8iDAvcQTJ07UzuAlpzfYYAO6+uqr6cQTT8wjFRwKAt4jIISgNddc0zCMfetPOeUUrX2r+40D8MFxAhDIjiNFgiDgbQIQyN6uH1iXO4GDDz6YnnnmGW2W/1dffZX7iTgSBDxO4N5779UEMZuJiCzlqSwI5PJwR64gUDYCEMhlQ4+MHSaw2WabaUtMs68x9yZjA4GgEJgxYwbNnz9fi/O9atWqoBTLV+WAQPZVdcFYECieAARy8QyRgjcIXHfddXT55ZdrxrC/5jHHHENbbbWVN4yDFSBQBIE2uSLrzjvvrKXAsZCvvfZa2nbbbS1uF0Ukj1NzIACBnAMkHAICQSIAgRyk2qzssnBsWPY9/vzzzy0g/vCHP9CFF15o2YcvIOA3AgceeCA1NzdbzD7ooINo8eLFln344g4BCGR3uCJVEPAsAQhkz1YNDCuAAIvj3//+9/TWW29Ra2sr9fb2aqnwJCdsIOBnAv39/RSLxaipqYm4R5lDvvH25ptvGr3Lfi6f122HQPZ6DcE+EHCYAASyw0CRnKcIjBs3jpYvX05PP/008SQ+bCAQFAKRSIQeeeQRmjlzJiUSiaAUy7PlgED2bNXAMBBwhwAEsjtckao3CGyxxRa0bNkyuuyyyzS/TW9YBStAoHgCp556qiaMd911V3rjjTeKTxApZCUAgZwVD34EgeARgEAOXp1Weom++OILbQW9K6+8kh599FENx3PPPUcHHHBApaNB+X1OgMMXfvrppxSPx+nGG2/USsNC+a677vJ5ybxvPgSy9+sIFoKAowQgkB3FicTKTGDWrFn0l7/8xWLF+PHjtfBvlp34AgI+I3DffffRSSedZLF6+PDh9O9//5vYlQibuwQgkN3li9RBwHMEIJA9VyUwqEACPMOfZ/rztv7669O+++5L4XA4bXneApPHaSBQNgI8+XT06NFG/tzOeQl1nrS31lprGfvxwT0CEMjusUXKIOBJAhDInqwWGFUAgUMOOUSb4c+nrl69mviBhg0EgkCAJ+GxKwVv77//PuJ7l6FSIZDLAB1ZgkA5CUAgl5M+8naSALtSfPLJJzRp0iQtxJuTaSMtECgngeOOO44efPBBGjFiBH399dflNKVi84ZArtiqR8ErlQAEcqXWfPDKffHFFxsTl3hFPZ6kh+Hn4NVzJZbo5Zdfpn322UcrOq8O2d7ejrZd4oYAgVxi4MgOBMpNAAK53DWA/J0iwAsppAri9dZbj6666ir6zW9+41Q2SAcEykKAfY7fffddI+9hw4YR9yzzpFT+jM1dAhDI7vJF6iDgOQIQyJ6rEhhUBAEWyb/85S+1JXk7OzuJv/PGq45tuummRaSMU0Gg/ARuvfVWmjt3rtae9VUi+Xs0Gi2/cQG3AAI54BWM4oFAKgEI5FQi+B4kAuussw598803dPPNN9P5558fpKKhLBVOYMcdd9RcLTiixbPPPlvhNNwvPgSy+4yRAwh4igAEsqeqA8Y4TIBXGXvzzTfpiiuuoNraWodTR3IgUD4C7GN/9dVX0+67706vvvpq+QypkJwhkCukolFMENAJQCDrJPA3aAQWLFhA06dP14r1wAMPaP6aQSsjylOZBNgXeeedd6Zvv/2WjjzySHrssccqE0QJSw2BXELYyAoEvEAAAtkLtQAbnCLAQiESidD//vc/I0mewMShsXjVMWwg4FcC7FO//fbbay5Da6yxBgkhtKK0tbXRxIkT/Vos39gNgeybqoKhIOAMAQhkZzgilfIT+OCDD2jrrbfWDOFoFptssgltsMEGtGjRIuIYydhAwK8EUiO0sP8xT9KbN28eHXTQQX4tlq/shkD2VXXBWBAongAEcvEMkYI3COy333704osvasYgaoU36gRWOEMgHo9r0Vk4tYaGBpo2bZozCSOVnAlAIOeMCgeCQDAIQCAHox5RCqItt9ySeBj6iCOOoMcffxxIQCAwBGbNmqXFOx49ejT19PQEplx+KggEsp9qC7aCgAMEIJAdgIgkPEGA4x9zTxtvHPaKw19hA4EgEHjhhRdo//3314pywQUX0E033RSEYvmqDBDIvqouGAsCxROAQC6eIVLwBoH//Oc/lsVAOAbyiBEjaOHChXTAAQd4w0hYAQIFEFi9erVlkin3JPPEU75/Y5XIAoAWcAoEcgHQcAoI+JkABLKfaw+2pxL497//rfW0ffLJJ9psf/13HpZmUYENBPxKgEO6HXbYYfTSSy8RR7HgBXB448gtHOoNm7sEIJDd5YvUQcBzBCCQPVclMMghAhwrlmf7czisOXPm0K9//WuHUkYyIFBeAl999ZUWmYUjWfDoyHPPPVdegyogdwjkCqhkFBEEVAIQyCoNfA4agUmTJtHf//53rKQXtIpFeeh3v/udtjrkHnvsQa+88gqIuEwAAtllwEgeBLxGAALZazUCe5wi0NLSQnvvvbeW3P3330/HH3+8U0kjHRAoKwF2Jdp88821BXF+9rOf0aOPPlpWeyohcwjkSqhllBEEFAIQyAoMfPQ9Ae4tPvjgg+mLL76wrKanrzrm+wKiABVLYMWKFfSTn/yEli1bRt99953Bobu7m8aOHWt8xwd3CEAgu8MVqYKAZwlAIHu2amBYngR4cZAJEyZoZ6255pq08cYbaxP27rjjDho1alSeqeFwEPAOARbEvGS6vo0ZM4Z22mknmjt3rrb8tL4ff90jAIHsHlukDAKeJACB7MlqgVEFEDj00EPpqaee0s7kCXrbbbddAangFBDwHoF77rmHZs6cqRmGCaflqR8I5PJwR64gUDYCEMhlQ4+MHSbAPpkffvihFgpr0aJFDqeO5ECgfAROOeUUuvfee2nDDTckdrXAVnoCEMilZ44cQaCsBCCQy4ofmTtI4OSTT6Z58+ZpKb799tvaELSDySMpECgbgaamJjrkkEO0/P/4xz/SOeecUzZbKjVjCORKrXmUu2IJQCBXbNUHruBLly6lrbbayigXr6LHfshPPvkk/ehHPzL24wMI+I3AqlWrtFUhdbu5bfNKkeyDPH36dH03/rpIAALZRbhIGgS8SAAC2Yu1ApsKJdDW1kY//elPtWHo/v5+LRmesMfD0pioVyhVnOcFAhyZZZ999qEPPviAWDDrGy8SgqXUdRru/YVAdo8tUgYBTxKAQPZktcAoBwg8++yzFA6HtZQ4ksXpp5/uQKpIAgTKT+A///kPbbnllppQ5rCGTz/9dPmNCrgFEMgBr2AUDwRSCUAgpxLB9yAR4FXGXnvtNW3FsSuuuCJIRUNZKpyAfu/ec889iRfFweYuAQhkd/kidRDwHAH9JptIJIwwQp4zEgaBQAEEurq6aLPNNtPObG9vR7zYAhjiFG8S+Oqrr7SV9D777DO69NJLafbs2d40NEBWQSAHqDJRFBDIhQAEci6UcIxfCDz++OPai96XX35p8dPESnp+qUHYmYkAr6A3efJk+uSTT6ivr884rKenh0aPHm18xwd3CEAgu8MVqYKAZwlAIHu2amBYngS4N42X3GUxvMYaa9C6665LO+64Iz388MNGT3KeSeJwEPAEAW7TvHqeHgOZo1iMHz9ei2LBPsjY3CcAgew+Y+QAAp4iAIHsqeqAMUUQmDZtGj300EPakrzcy/b973+/iNRwKgh4h8AjjzxCkUhEM2jx4sV00EEHece4CrEEArlCKhrFBAGdAASyTgJ//U6Ae415O+mkk2j+/Pl+Lw7sBwGDwIwZM7Q2PXz4cPr222+N/fhQOgIQyKVjjZxAwBMEIJA9UQ0wwgECv/3tb+naa6/VUuKV9LbddltiQYENBPxOgEdE2KWCN3YZ4lX1Ro4c6fdi+cp+CGRfVReMBYHiCUAgF88QKXiDwH//+1/NB1m1ZueddyZeSGGDDTZQd+MzCPiOgD5Cohu+ySabELte7L777vou/HWRAASyi3CRNAh4kQAEshdrBTYVSqC+vp6qqqqIH2bfffedlsywYcPo888/p/XWW6/QZHEeCJSdwHvvvUfbbbcd8cqQ//vf/wx7WltbadKkScZ3fHCHAASyO1yRKgh4lgAEsmerBoYVQWD16tV022230Xnnnael8vzzz9N+++1XRIo4FQS8Q+CJJ56gqVOnav7IM2fOJI5jj81dAhDI7vJF6iDgOQIQyJ6rEhjkIAE9skU8HqczzzzTwZSRFAiUl8CCBQto+vTpdPjhh1MymSyvMRWQOwRyBVQyiggCKgEIZJUGPgeJwL333kunnHKKVqRnn32WDjzwwCAVD2WpYAJvvfUW8RLT33zzDZ188sl0zz33VDCN0hQdArk0nJELCHiGAASyZ6oChjhAoKGhgY499lj6wQ9+QB999JGWIvsg88pj/BcbCPiVwD//+U9tufRx48ZRd3e3UYx3331X8002duCDKwQgkF3BikRBwLsEIJC9WzewLD8Cvb29RrQKDu/GE5l22GEHLYrFRhttlF9iOBoEPEZAjWLBYo3b9N/+9jf6yU9+4jFLg2kOBHIw6xWlAoGMBCCQM6LBDz4jcOGFF9LNN9+sWb18+XKspOez+oO5mQksXbqUttpqK+2Axx9/nI444ojMB+MXVwhAILuCFYmCgHcJQCB7t25gWX4E9B62X/3qV/SnP/0pv5NxNAh4mAD7Gc+bN49GjBhBX3/9tYctDa5pEMjBrVuUDARsCUAg22LBTh8SOPvss7XQbvwg+/TTT2nMmDE+LAVMBoF0AnoMZP7l1VdfxeIg6Yhc3wOB7DpiZAAC3iIAgeyt+oA1hRPo6uqizTbbzEhgrbXWonA4rPlp8uIK2EDAzwT0ERIuA7ftLbbYghYvXmwsQe3nsvnBdghkP9QSbAQBBwlAIDsIE0mVnUBdXR1deumlNHLkSFq5cqVmz7rrrku8DDUPT2MDAb8SeOWVV2ivvfZKM7+9vV2LbpH2A3Y4SgAC2VGcSAwEvE8AAtn7dQQL8yMghCDubZs9ezZddtll2sktLS1a3Nj8UsLRIOA9Aty+n3vuOTrkkEO05dTPOOMMuv32271naMAsgkAOWIWiOCAwFAEI5KEI4Xc/E9BX0mMBwUICGwgEhcBDDz1E3L6xkl5pahQCuTSckQsIeIYABLJnqgKGOEigv7+fHn30UW0pXo6H/OSTT9JPf/pTB3NAUiBQPgJvvvkmHXDAAZob0UknnUTz588vnzEVkjMEcoVUNIoJAjoBCGSdBP4GgcBLL71EkUiEVq1aRV9++aVWJHa34JX01l577SAUEWWoUAIcmYWXl+Z2/dlnnxkUXnvtNSwWYtBw7wMEsntskTIIeJIABLInqwVGFUCARXHqRDyOavH0009jKd4CeOIUbxFQo1iwZeuvvz7dc889dPTRR3vL0IBaA4Ec0IpFsUAgEwEI5ExksN9vBNRJeX//+99pwoQJNHbsWL8VA/aCQBoBXhly3Lhx2v4///nP2kp6P/zhD9OOww73CEAgu8cWKYOAJwlAIHuyWmBUAQSi0SjdcccdNGfOHPr1r39dQAo4BQS8SeDBBx+k4447jqZMmaLF9famlcG2CgI52PWL0oFAGgEI5DQk2OFTAh0dHfT6669rQiJ1ONqnRYLZIKAR+OKLL6ihoYF4Ql6qGxEQlYYABHJpOCMXEPAMAQhkz1QFDAEBEAABEPAoAQhkj1YMzAIBtwhAILtFFumCAAiAAAgEhQAEclBqEuUAgRwJ6AJ5+vTptMkmm+R4Fg4DgfITCIVCdPrpp+dlCFwv8sKFg8tIgFfMy3e79tpricPBYXOeAE+OPOaYY+iBBx5wPnEXU1xDNqT8W5KLBiFpEPALgZtuuoluu+02+uCDD/xiMuwEAY3AxIkTqa2tLS8aEMh54cLBZSTAC9zk216HDRumLT9dRrMDm/V6661HZ555JvEz008bBLKfagu2eorAihUriP9hAwG/EeAH1sYbb+w3s2EvCLhGYOnSpYT+Qtfw0siRI30XOhIC2b32gJRBAARAAARAAARAAAR8SAAC2YeVBpNBAARAAARAAARAAATcIwCB7B5bpAwCIAACIAACIAACIOBDAhDIPqw0mAwCIAACIAACIAACIOAeAQhk99giZRAAARAAARAAARAAAR8SgED2YaXBZBAAARAAARAAARAAAfcIQCC7xxYpgwAIgAAIgAAIgAAI+JAABLIPKw0mgwAIgAAIgAAIgAAIuEcAAtk9tkgZBEAABEAABEAABEDAhwQgkH1YaTAZBEAABEAABEAABEDAPQIQyO6xRcogAAIgAAIgAAIgAAI+JACB7MNKg8kgAAIgAAIgAAIgAALuEYBAdo8tUgYBEAABEAABEAABEPAhAQhkH1YaTAYBEAABEAABEAABEHCPAASye2yRMgiAAAiAAAiAAAiAgA8JQCD7sNJgMgiAAAiAAAiAAAiAgHsEIJDdY4uUQQAEQAAEQAAEQAAEfEgAAtmHlQaTQQAEQAAEQAAEQAAE3CMAgeweW6QMAiAAAiAAAiAAAiDgQwIQyD6sNJgMAiAAAiAAAiAAAiDgHgEIZPfYImUQAAEQAAEQAAEQAAEfEoBA9mGlwWQQAAEQAAEQAAEQAAH3CEAgu8cWKYMACIAACIAACIAACPiQQDAE8qoVtKyrh2jERrT5+NGuVsOKZW/Q86+9S19+S7TW+hvRVjvtSZO2djfPQgq0asXH9GlvP9HwUa4zKcQ+4xyuu097ta/DR21M40evY/yEDyAAAiAAAiAAAiBQDgKBEMgr35hDo3Y7T+OXaO+lmduPdIXlkvvOpNBJt1vSrkq007yZ21v2lfrL6hVL6OZL76dD/nAdTRos+htzJtNu5y0mCsWo561zyXsSfoDS81fvTAdc2TbwJZyg3mdmkju1V+paQX4gAAIgAAIgAAJ+JRAMgbxkLo0KnaXVQay1h86d5IIcXLWEZowI0XyjpkPyUxvF23rpzInlk3Sr3l9AI7aZLm2JUGvvQkUgHyUFcqO3BbJkeqZkar5yhKihs5WmbT7MoFzuDx8/cwNNOb+exux1CTXOPbFA8b6a3n1+Id07v5Fa/tUlizSKJvxoN5py3FF09OSJhD5zrmU3GK2kNxY9RPPqF9JbXQOjFKMm7ExTps+gE6dOKrAuy90ikT8IgAAIgEBJCIgAbL1tcSFhaf+kQHanRL0tIjKYR1WsRfRruQz8706GuaVqlj0iWnvNc7qaE6KmpkbEGloHbTV/88qn7qZao970+gvXNXvFPCG6m0R4sM4pHBcFtaz+ThGLDLRNvYyWv5GY6PJOictjiRuMelpFdSgL91C1aCmoQsuDCLmCAAiAAAiUlgCVNjt3cjNFIgm3BHJ/e8IQc4n28gtjnaRpV5Vo845ZunlZ/vaKhC4cw9Wipio0yFeWoy/LaSX6qb+rWVTp4pj/SoGsvH/kaEW/SNbo5WKxFhI18XqRiFUbbUkTy9WNnn2JybGgRRzmBqNuEQur4lhyjyVEIl4j5LiPyT5Uh5eTImoOp4IACIBAkAk442Kx6n2ae+NdtIx+TGdWT6EPH7qDbrq3npZ+Jh//NIYmn1ZNF0Wn0ng5lrzkkTl0xa13Df4mJcOR59NVNTNp61QvhdXL6ZkHE5R4cBG1DSREY7bci4469VSaNXVPy/DoyqwuFivplQUJ+r/b7qI2zR5pkZbOmRSVw6xDDm/Lsv3lxvvovZ5Wmn2rdFmQWyRaS/ts1kcb7H4aHT3hHxS/v4V+MOVkCn3aQL+5egF9JsscOvI4uvyi02j70cNo1cdL6OEFCyn5zGKzLGO2pB/tNZmOO/kEmrz9WC1dy3+y/M8vvJ/mz19ILUr5Tz7rHDr+cB6WX0XPzJ1DT7/xEs2+ne0KUbT2JNqs7xva/bSLaIdlD9DcF9+jEeMOoYvOnGwtZx5syajbbemcmuPpowdvpJq6BbRYy1GWc/JRFD1nBu2f70TFjxfRzhOmSCcVyTPWSnfs+TSNk24MvNUkO+m6wzfXPpfjv/efmUPbHDzg0z7gSCOtCMelf/SZlnY3lG2rlz1Cw7eQ4w7aVkVNXQmaPH7AfWTVskV0/BZTaKBFETV09NG0rYdsjUNl6bvf3WC06t25NGKHswZZRKmlZy7tOXrw64o36PyNdqNbB7/GWnulS1bqzcd3GHM2ePWKd2nhvHup8Zl3qKu3l0aNmkA7Tp5CJ5xwNE0cW2j743vsfXT3/CT9S6bJ26gJe9Gxs06AC5FGww33IS1hy38rl9xHv7oiqe2LXH8bTXNpLo4lUw99caNtL3/3eXq44WFKLn6LBls2Tdh5N5p+/Mk0dc/yPaM8hJ3c4O6Oy10B1BxR/72thvuBNMHsoVE/R2pFvDZi/xtFRbvSa9jXmcyeXqhGqJ4UGXuQe9pETbZh1nCtJV9bFn2t5jC7Wh75OVT3jIhbeqqsZU/IQnUm6zKU2Ty2NtlpybpfDu3r7hy2PMN1orO/V8QylK1Ojh23xgZZh2MW14B82Ypc6layiOc5Xt0WrzK41HfIru/+NrPHNsVmCxwXv/R1tohaoyfb7PnVeh0L6EFu0etA8qlt6k6zvLvZbBvyJSHt90rY4Qajjgazh746me7A0qNyj1cO984ms73Z3VdizemshmyD3S3ZXVnkvapDubcPmV7QDnDDfciOUV+biCrPJ7dGUu2y9sI+59t2j2ioCRvPKLvrhapiorOS27aseOe5y0RLdc3k0HCdcbGQItIyHE0R6fuaFM3JuI3QC4vaWFzEE3FRrYjLqvr2AXP72y0XeqiqVjS1tou2lkbL8SSHR3XJYS+Qu0WdKiClQE+2ton21iYpgkxxSpHEkEPnnfIc1Y80WlcvGhsbZHrvmW4C+s0pXCUiWr7Svp5mi7iuiTeI1nZZFpleXVS5+CxDvSl26+VvbhBRpTzRhg7R09kqYkZZQqKuvlE0Nsg8uvqEIUBVYVcAW5FWt2FRl6gXDQ31ipiUPPPy0e0UNTovpR6bak0m9WV4qrbGzPz5hlhdW2PeIFWOOVxYQr6WmC9PEdFi558hH2rGdROqFdbXpJwy8flB7jBSBXJts36XMFH1KXMWKuXFpL8raXEvCVXViPr6hKjW3Zy06zEkGjvz8NOSL89G+9XOj4jaeELE66LmdcP7pQtRZeoIN9yHzHZsfuoTjdXmCz3fuypJILvRtpvrrM+CcLRWJOrrRV11SidfVX2Ftm2pY924p0hnQy+5JbogkKssYqBP8d2V49Qiqd6AFQGpP6g66s2ba7i2KcU3s0fUR80bQW3TQI+HnUDuaTF7S0I1qTfoPpFUxJiMRGHeazJ86u+oN276ccNJVvGjlTclnrw3sPWJnt5+0dFglkW31Uy+X7mpmQKqM2mKsjS7LQK3VntB6O/QfaOtPsh2ArkQtlaBLOvWMrGpRyQMgW6WwSyj/afe1pjBMqq/GMlD1bYSqmmyP9nFvW3xgZtfqKpOtHSxUGg3BUC+All9scj48tAr4oZAyZ2fiwhKm7RLjFQBLP13jBfpgcL1Wu4hPNoS/E0+dBQBFYk1K/fVPtFUpzz0ow3Kb9nJNCv3UKpKWDj3dTQqnQMhkdSup+zpBe3X/s5G4z5HVCWaFAapI3nSxarg4ncl0yc7V45AdqFtyxFcc65CSCRarS/Zve0NStsmwSPFlbe5wF1CLNU1k2t9OS6QI6lDlkovWbg2NUKBKTAHBLL8bgiuqP2kM0VUh6SA5i1dIKvis0q02nWK9LUYjTycw/B2eh5azkoPsjWKBP/a09Eqe3TrRSxWbzMZqF+Yw8vmubpIk565otnm2d3eUCui1dJdpT4p+H5r2mWmwXmnC+TC2KoCWcZ85qQtm5GPtFeNomE5yPJFrZtUUdijTK7KNT1L4sV96e8W7R3KzVDtIStGIFdlGqXoEw1RfTSjDOUtjlbxZ6sC2UlG/R3mCAX3YMpJoI0t1tGjgQdgNMc2W3xRy5qCvGcaLltypCLdkUKOWhmjeanXZAbLVZcoKf6MPgPlcHVEpk71iVOOCfJH8/7uoouVHmnHGF0c6ECqGIHsQttWXd+qUvXMYIPtbDQ7stROniC3Z0vZXODO6ZfkmrEUJPsXxwWynPRizVF5CKaJZ+nckBjsQdMFstGjJnsy7N/LzHNo0FfVFIn60JLaM0ciEq0W0WhU+Se/Gz138ncnBHIkW5QD6Yvc1iKS0i0jEasTNdEq5Q2VBZIujmTvlv6CkDU9E7FZdj2Ngd8M4WoIO4VJHmxVgWzX097TovcGW/M3LUz5pITLI+l73tjcIpqbm7V/La3NopYFzeA/diMp66a03byjWCi+25F4W8ZitCV0X+wc+WVMyYc/uMqoU1QrbUlvU+bfyuGtjthkuteZ7ZCEnCQ7ZGPqUkI02r04awn0dMjrukW0tUt3MPub+ZD5+PcAd9yHrDxkHsZzLCyqIqZbQKUIZDfaduvgSOKAq0qKnhmsAHW0M2yMHFtrJ8jf3ODuRbdEFwRySrenIjLSb86m2B34zQzPFKrV3RVSm5l5Dg2KSFMkmgJZF97mA9EUXmn7QtaJbKk58vf0PLS9hsDPJKDaZI9vWn5pD279Ya2IWEPY2llj7jPt0tMY+C1dIBfGVhXIdjfdTPmbFlo/qf6hQ3JR/JOtqZTom9J2M9VvRkuUSTOhmtSRE/Mso56MlyTzt8B/co2RHJ2JmxP1MrWzaFx1NQgubbON6ffH9LKa1zGJXEbUjEnA8l7WMKine7o6RGtLi2iR/1rbOzN0cKTnHcg9KfeOlKfiYJGV+728/m3nKWSBo77UVDd2iHbFPdHuXp0lKd/+5EbbZhj9fb2ip7s744udyrq63B05Zag9V7iX4JrJF5XHBLL5RpzZB1URyIO+nerNfeDGoBwjb+CJZJNIJpNpjZgK6QAAIoNJREFU/5qamkRTk9zf3D7kzTw9D0at5GMjaNVeFu0hHYpo7hGxRINokb0qjUaMXF3cKjdMx3uQC2PrrEA2RfoAj5AIhdL/qYLGrtc630Ze8PEpF6x9X0KG1JVz018MzXPMG43eBszfAv/JJUbqw4vbUm19s+ju7RN9vd2ipcGcm8C/VSUy9+4Hhb/ZxuS9MMN8i752c45FtvaqMzHTjIrmdhn9xejJVDsiqkRDm+KypJ9cCX+Vts3+2fb3jsJdrPo6GsyOF/ms4A56s04yvwgFDb1aZqfa9pCMLKOg7INsX7tDpuPjA1zh7vI1UwhujwlkRSDa+srJIkr/QmPotGrgxpMuXhXhmikdORWls61VG/7rlhPqhtrS8+AzlHzSBLJSFrlARLwl3fOvPW14XXV8r7GNatDdPODSEArXaH5/pl3S11oZxjQasGGXYk8mJjZsnRTIfcpEx1B1MuNkIMsKe+VcREO9YA2OQ7WUwd+Vc7OtDthsTJCqbIHsGCO1DUsBHLfxfe1VxCC7+Xho3Z8cG1d+hxn3AukrrN4jLKkoc0WGFsiKK5hkrL7Q2n2uG5xMbckv6F9cdh8yogDJnmd9ropZz5UokJ1q20M1zC7FX1+2/RyiYA2Voh9/N9uag9xdvWYKo+wxgdwv1FBfdTYhmtQhej00nCkSzRuDKT5J2DnRdzebrg+huqFjodrlMZRANtw8pLhStOtATckHkiH0leF1NfJFTVoM137RoPsoDz7sTLs4RJPZCIwGbAi7wtg6KZDVWe/xVF9103T5EqSG+gsbDwD1kJJ8VkRu3i4WysWe+VzlpaWAIdaSMHAzEzcYqb07WUIwqfeZso5SuMl3MO32hB5NJySa7Mf6ZQgZM2RbLgLZ9H3VBXJYxJOtMrRlj+hqbxI1xqQ//j3LQ7QE5S9LFq65DwnLM1J9Rhj3fPnSUikuFs637WytpVvEjecvt+uwaOoeunMtW4p+/c0V7i5eM4Vy9phAlsWQsfXUXoi6xrYBcdnfI1rqzZmjPLFNj9BkikTlxqBEu+D0qhPNokdry32iozlhRLDg5X9zif1pm8dQPcjGQ0L2IDd3DPaY9ovujuaUB4jif6Y+4KXddclB94++bpGM6Q86eXHWDPTA9rbGDV6R2nrR2tYuuvv6zeE2QyAXxlZ9cNrddE0uQ/SA9qmi1753XG3ELUocyrINgyuiIbPIVa1WPqsiX/bYK+8uykFdolaffZ7xGOXwoH10gZHZHvkayeL7bYzeKPeMoPEdLI8pnJT7TGpZlbaei0A2Xv61HuSIDGGWmqB0p1LcLsp2DaeaVarvOfJU6yZbn4FutjkpWrbvlNE1M63gt2mdh1lmp9q2nnLK3/5OS3tm3VCfwV0p5cxAfnWFu0vXTDEV4JhA1sMIpYkopZco/cZruiiov7UrK2GpYln9XKes+qQ+FNX8O23iQ6pp8OdsQ7sqWHXWppmHaT8LqNTOGTUUjJYv+9tqDxR++7T+i+lqX2Y6tN1meKr+TsUXbTBNXhzBaMApduXLlgVyxrqVtprsswtk1R9brWuVsfq5X/WxIymoy/GirlyweQtk+TqkBu9vsCtAlxIntSpT1BaVStA+u8BIaa/6JF47aupoRn3A45ga9wJlOD6NSbe5qNHQ16c68mE/QsfpqzP9h04zzSJ/71DuHdmeMXm5WMlnqbkwi+yVT3F9bVVWJzWfUf7GOJT1zrft9Bz7u1osi5dVujhmQq5wd+OaSa/OvPY4JJD1FcHkW1Xqw0a+eenLPWcN85YSb7C7rdGycpwuKEORGpFst0pRU6Sl+xz2yuE+dcU+PR2SE+bisnc2Z92lx5uUItT0azQFcsh2tSjZkysnBdmJ4midjGOsXHipD5Cedll+owfaFNPh6rhInRPQkhiYsR+ODAT851noxgxnm5Bu+bAVhm+iTd3KptbXZi5UknrDVluiOaSdW4+9FvLF6IEKiWIC6at25PVZuWCzCeS+3l7Rq/3rs7Qn1Y2HovUpE3XkBB1l8Yb0hWTystS3BxfDyJa72istr1U7N60+GejfuA9kiOHrW6A2hpux1blnMUVVDR6v3kPzjWJRY+MKpyVr3Dvk/SvlRd3GzGDtUjqGMt871BeNLD2geh0pCyxx+w3po0+DHSNmmzafF+nP3GBhdqNtq4R6WutTnt8RudhZmsOkekpFfHaFuwvXTLGV4YxALtYKnA8CXiSQk0CWDznjRSZsDdUkJ4xFlYdXKJoQHT1STMv4sAlFHBP3kHux/KWwqWBGmbmrfvwsGmoSTaKzu3cgikWj9YU1UgExTNUVNDPFOFZXY1P9WjM1ATVWrN1y3tp5ikAODbqEZUovcPvVF7WM7lP5uVipo5h2YthuXy4vO35m70bb1nl0t5juixrbcK2oYK8KHYv21xXuLlwzFqML+AKBXAA0nFIhBFLeaK3jFjqD7L1APUYPu9mrk/ogM0ck9DQr629hjLJx77X0zqfyNr7L8FiVEITMsnxrit+q3tLUpajrc1j2WBXU+oqmelr6X8v8iBwWY9LPC8Zf592H+jqbRV1tnVyZNWb7rzoysIoet+9ItTyurk4kmoL96u1G2+b215t635adG5Vwr8j12nOHu/PXTK7lyXQcBHImMtgPAtI9yJhEJ10k7AfWpJuNMbNZLo9uc1BfZwY3H7kEcqq7UKVCz5/RUNyle1MypkzGVV9QwqK2oSVDfQaxBmRoKmM4nl2lrG4WHAPZcANLDQHZ3zfoPiRHPuTkX2NTe3ukIEtNU862VpaNt3d1MdIK6Idi3IfkShX23LOwUiM3xe1uRFnO9e9PLrRtJZqC9rJRmzkkqX+5FWt5Edxl1rbucXJ/UddMsUWyOR8C2QYKdoGA8wRk9JJOudpVe7v2r7PLvj/a+Xz9lKIbjPos3Ds6uypIGJt1b3U7GYiq0ytXC+OIPoY4lkK3Wo0VKU9Xh/XDKeEwVT9EnrgUa5Rh3qQvfndnysIh4ToplytwK9h9KDv3TCTNiVOVE8WCWTjdto35O/J60EaborWitqZGVMt/NSn/qqujok6uYliJW6HcZev2jVsiBHIltmyUGQRAoMII9Ij6qNqLbvNZupykvrapk/dSJxLzRFp1oqnhuqILC+1vWCS7lJ7nSqOeOlRvYTNQB3YuVtm520NU/cIrJYrFAAkn27ZccdaYU2JzjdjUX9D9vO1bG+8tjLsmkI0J+OmTUwtzuctsZTG/QCAXQw/nggAIgIBvCPSK5vhAxJtUMVsdS6aJYy6WGaUmUzi3zJF6wtE60dJl43PkG17OGJq/+1Au3NNtU8OK2onu9DOCtMehtq1OzLYRw6nXDX+vbqjMHuSB1pM/dxbIfnFLXIMLKSsZGwiAAAiAQAUQWL1yOS3r+oz6uazDR9DGEzan0esUWfDVK+njZV3Uy4kOH05jNppAY4tOtEibPHX6alq+bBl91qdRpxGjNqbNx4/2lIVBMMaVth0EMC6XwR3u5b9mIJBdbjhIHgRAAARAAARAAARAwF8EIJD9VV+wFgRAAARAAARAAARAwGUCEMguA0byIAACIAACIAACIAAC/iIAgeyv+oK1IAACIAACIAACIAACLhOAQHYZMJIHARAAARAAARAAARDwFwEIZH/VF6wFARAAARAAARAAARBwmQAEssuAkTwIgAAIgAAIgAAIgIC/CEAg+6u+YC0IgAAIgAAIgAAIgIDLBCCQXQaM5EEABEAABEAABEAABPxFAALZX/UFa0EABEAABEAABEAABFwmAIHsMmAkDwIgAAIgAAIgAAIg4C8CEMj+qi9YCwIgAAIgAAIgAAIg4DIBCGSXASN5EAABEAABEAABEAABfxGAQPZXfcFaEAABEAABEAABEAABlwlAILsMGMmDAAiAAAiAAAiAAAj4iwAEsr/qC9aCAAiAAAiAAAiAAAi4TAAC2WXASB4EQAAEQAAEQMBdAqtXvEsL591Ljc+8Q129vTRq1ATacfIUOuGEo2ni2HUKynzlsjfooXvn0cLFb1GvlsIo2jk8hWacfCJN2nxkQWkG+6RldMNRs6h+KdH58xtp5sTCGLlRl4Vwh0AuhBrOAQEQAAEQAAEQ8ASBZc/cQFscfElGW2LNXXTu/uMz/m73wxv3nU+7nXSr3U/avupEK90yc1LG3yvxh+dvmEwHXLJYK3qstYfOnTQ6bwxu1GXeRgyeAIFcKDmcBwIgAAIgAAIgUFYCqz9eRLtNmEJtg1aEqmrokinb0msPzqJbG3XTQtTY2UpTNx+m78j6d8Urc2ijvc4zjglFauj8Y7elj5K30JXz9ZyIaqXwviJP4W0kGqgPq+n5ObPogPPmG6UqRCC7UZeGQQV8gEAuABpOCTKB1fTu8wvpXjk81PKvLlnQUTThR7vRlOOOoqMnT6TCBurcSDNodeACo9XL6fmFD9PDjUl6q2tggJTksGt4ynQ6+cSpVIkjpKUYuly55D761RVJrYFGrr+Npm1f2DBrcFq4C21bg7OSXllwH909P0n/ki4FvI2asBcdO+uEIu5VWjI++m81LTpf3p9vHRCtkVgzLTh3fxqQwavomRuOp4MvGVTJ0Qbqnztt8LdsRVxJfzlqFM3ST5M9xXOVnuIlsmc5pPcsh+PU+8yZVNEtfOX7NOdXR9N5/OIQChG1DdRF/gLZjbrMVs85/CaCsPX1iM6ODtHZ1eN6aXo6W0VjQ72or68XDY1J0drhfp6FFKqvp0t0dnaWhEnu9vWJLrYp07+uLtHT25d7ck4f2d8pYhES8rKx/xeJia5883QjzXxt8PrxLjDqaasX4Uz1OLg/1tTpdTKO2tfZVGffrnUezXm37nT7+tpEVOEuH5Lpx1TSHhfatoavu0VUhzLcp5h/uE50lPFWWrIq7mkWEb29hWpt7s/doi6sc4qIlt4cLOtvF9V6mlQzRJpVojWXNHPI1n+H9IqW+lohJfHAfSWlPeZ97btRl0VCpSLP98Tpva0x48afaHevtbbVR418dBFVlWgvO4P+njZRF62xXKitsfBgo40JzzyieluGFC0a13BUNLR2l5hrv0jWhJT6DYmaeL1IxKqVffJGUN0o+nO2zI00c87cJwe6wEjeaK3iOCxq4wlRn6gTkZSbeL2L9wsvVUB/V9J8kMkHmhyGli/5CVFteSEMicbO3Ft3evn6RGO1eg2RyPshmZ6oj/e40LaZRm+rqNJFifY3orXveF3K80neq4KukdVnfyTWattW2hJVxj28JpnDS7FFINeK9CdRr0gY102OotvWMp/vTH2eR6pFjcEl/2vflbosEnEwBHJb3LgAXLshy54R601p4EEQb3NPkOdSt30dDYNlj6QI5MjA/pCHBHJf6o1df7O3/xtrTr815cKkkGP6OxuNNkRUJZq6TKHQ15k0eynkA6khx64ZN9IspGxePscNRk21gy+HLASjCdFtVqVE0SMaa8zfKZIIvIgQ8pUuqQhXOQytvOT1iaa6wXsFi61og/Jbfi2nK1mrXEMD17Rr9+P8TCvL0W60bS5Is9K+qUq2b6V0fR2NysthSCSV+5hyWGA+tsVN8ZuprfUq+iCcQURbgagCWAq9lOdQb1vCbOdeer5aC+H+N6mJBnrvQ6KuoUW7j3YoLyOZ6iOTYe7UZabcctsPgZwbJ/nW3mKIpKpYy+BDxPLkzTUlR48zL36rQO5qToiamhoRa2gt+IHnqKGcmCKQwzWNokO6WnRI15iBf+2itaVJxKsV8ULVoqNEiFtipkiobVIfOQMUupvN4elMPRWpvNxIMzUPv393npEcUjV6iTMNf3aIGq3njUVcVLQHvZutFEOX3U0DwsxgP9CBkO9D0u/tWbXf+bYtU+9XO2qqRJtN2zVGD2Ubrwu4i4sqqhIZOqv62usNQZvrvbuzsWbgnMH2XB1vFG0d7aJJuhRoo5yD+6sSbWqVV9znHsmkW2mDan3ke+2r5zpZl8VUCgRyjvT62823xkR7iVRbDraZdsmbpXfMsrdcEciReKYbS7/s4dOHacMi5eXdPt2i9/aI+FB+auoIgvR1G3qgzo00iy6oxxJwgZEcfjZ9EmPCfnynT9RX6aMWwR8idX/oUtajMbQaFlUR8yU334ekxxpoEea40LalNV1NZi99Rve+ng7R3Nwi2to7RI8iXooojGdPNUWVfBnOVFbl3p2rQOYCdzamuNcZL9UD945wxmeYZ3G5bphZH/m7WJjnOl+XhRbcGYHc1yHitTWiprZedPb2iGb29QuHRCjE/8KiOtYougYbb1tjTPktJKpqEqLD7inW3y3f1uq0m+1AOiERjkRFrLEl7aFn9qLaVYp0JG+IiSrDHj2d1tyGVmXZErW1oqba7GGMRGtFnSxvPNkhutsaRa3sqU00yx7QhloRHixzVU1ctPcMKNa+rjZRH6u1liUcEdGamGhqT++t1CpTlr9Z2h2VDxu1/Ilk26Ddcmg0XidqorpdIRGtrZO21IqkdAHobJI9yNLG2nhTejnzYCuMuk2Irv4+zSmfyyhnq2p1W1UdE825TlRUBXKWoa52ZZimJC4sil0Ujmfw2e5VREAOosqNNAu9yr16nluM+vtFr7wPdXfb3VgkDOljaE4kqynZKEW5qsF88NjdHwesUu+huQ1Dm6VRfTyrGztEuzJXo2IFskttu1UZ6WoYfEvv6eqQo28tokX+a23vTL/fm1UVuE/tCd3vOiSaMk22UeoiV4Hc39Usqo1OE/1lOuVvqFo0B9yFJd8Gk8u9JlOabtVlpvxy2e+MQFZ7bVLesvTJbBSplSJaF3MpDS1lmDPV59NIQ087JCekKReDenO33JDl5LUaY8gvNU/5PVw79PCqvLisE37MdEJ1zyg9j+Z+3d6EHLvtTJpD8/r+1L+1KRMH+uVwpdELppdZ/StnKHf294pYhrLVtfQI40Yatvog58uWJ4RktWXQrrjMc8hNvVHF7SdUcBqmD6nVbWTI9As9QLGLffrsZVWfaIjqdZyDXW6kWWj5vHpemRi1xpX7UAX4IKsPLaeHLs05EPLaiMQ1cabmZ7kfe7UdumGXS23bZBsVze0totboudfvTfy3SjS0Zeh4caOsZUzT5JGl00Kpi5wEsuxxNl+guV3Xyk6gbtEnO4i6O1pEnTH6NMA6g2dHGamUL2uzPjK/jGeyzjzXwbrMlFmO+50RyEoDHBB/Een7mhTNybiNuJIzymNxEU/ELW9oVfXtAyZbend4tnWtaGptF20tjZbjKVRnTE6wF8iqL+JAI0+2ton21iZRqzZw+YC0F0QmwU55jhr+K1pXLxobG0Sy9T1lNitfLPJfuGpwpry0L2U2fU28Qb7hy7LI9Oqi5jAkl8UMsJRit17+5gYRVQRxtEEOn8mQczGjLNJRvr5RhqCTecjueqOxyR5Ro3wFsFX9hgfqNizqEjLEnQx1V1ulu0JwuTP1vJoc1bTCtUnR1S1D0cnQbl3yX2en7HlqbRbxGkW8yAlDmUbNlFSL/6i8BGR2/RDC7CnLQSC7kWbxJfVWCmVg1JUS6iyTYPQWqOKsMe4FUjg5OwzdqfhyR0Tz4DuymV/+D8niSuqhs11p272Ka9Dg80btOEn5XNdkPlU8RMZRU8y2Zra/tAy6zag2uQjkjgbFtUK+9KV3/ch6MDpLSBjaJS3jytth1kf+1755rnN1WWwNuCCQqyyxBvsU312isEiqYYQUAak33A5leC5c25QywaxHNkxTlNUO3gDsBHJPi9lzG5ITwqxCq08klZnAuQzj93eYjv5xY2aEdbYrT94b2PpkPN9+0dGgD/+Q0G01K0z62hozy803ps7k4OQAebNLs9sicAfCz/R36L7RVh9ko7EpArkQtqqo5Z4Ja0dxj0gYAt0sg1nGlE9pL1LZbvJR5aUhJR2nvyo9BqGa5oypG0wpB4HsRpoZLfPpDyVm1N1iRrvhlz2+v1TC5tbQpTnSQ6ImaYox8zrJ/yEZmPpwpW2rbl76vTMsXf1aZWdMj+hqbxI1FreALC9EAQHdpowGxTIEJFb1QS7uQ8boq7xH1GeawatPSuWXkhw62QKCe8hiFHPtu1GXQxo8xAGOC+RI6tC5vFHo4dHCtaniwxSYAwJZfjcEV9R+0pkiqkODDzj1AhgY0lPFp7xJ2E1e6zNj8uZy0aTnwWRN+8lGNPV0DCwqEovV24i9fmHOcjYFl9lI7N+i2qWfc7RauqvUyx5YWS7TLjMNtsxoqIZALoytKpDtJoUY+diUn+2wbHkJZPlmXmfjP21J0KEvil36i5pdyoWW1bE07Yzy8z43uGfg0dVkxkrXRkKi9ebISoZzgrJbbbcZF0rIsS50Jj0tCs+U2OBmfpUskM2Qls5d/+rzhgVyRIaj1GtE/9ttGe0MepQFtdMnU4xjNfyg+iKnE7P+VRln82s2dU1Oo6fWTAL7rZhr3/m6LB6z4wI57S1OvfGmimdFYOoC2ZgNnXF4XWnAg/61pkjUb8jWN+1ItFpEo1Hln/yu+G5lu4HpiNPz4F8UW+RQjOHKoJ9k/JW+yG0tIindMhIxnlhXZQnab4prZQgta3pGwnkJ5ELYqgLZrqfdfFBaBbppofJJaQvpYd46pOtJs2iI11jYlGT4SrWrLvUlzrS/2YgXm2dZnUrTNCUYn9zgnkZGvogaE3kGet1C1Q1ZrtW0BHy/w3xo2b90awXMZxhaug/onR48qpTacdeaQ2xa30MdqgCutG3rcy2quyWm2KKO2ubybEs53VdfLbGmU17U9IKoMcDrc4hhb14vJOyeeVq6PYNhDbkHOaNW0S2onL8qu3znH7hRl8WSd0Egp3jsKDeK9IvVFJgDv8m338EholCt7q6QWkTzHJ4UwqI0Xbwqx3ADHupfDsG+0/Ngu5R8jJ5aq71tssd3yPyN3lflBpghPWvqatmtos1oqEY6hbFVBbJdgze5WPNPtVP7rraFLCFy+tobFJFst3yobeqF71T8Bbk3wP5FR6kbWV8Ze+J0K9xIU087KH9dZyRdsgw3poH7QKQumeJuFRSYmcthjkpxB0KG1p3HYgpq2Di+t4WUuRGZ7nVpI4uZzQ3GLy61bXX4vyZTDExl1Db4vZtdStzzkHSJsLZvjoFsLoWc8iyRk+56e3sH/vWZw8xqFBaKxIy5TmbDlBO2lftKtnkr5jmV8cnQHfK+YKcXdAp9OvfePsWNtoi61BN2+K/HBLIZTzNUk8k/0CpKWY6bIk2vFOUYWVGJZJNIJpNp/5qamkRTk9wvQ7RZfZTTKafnwcco+dgIKzVmpfbgCMnQbtI9IpZoEC3tHUq8X11cKiLM8R7kwti6JpCzhHmTK4ookx9zEKPp1ZXfHtW3O2OM4y5RqwuBjMco2bqRppJ8ID66yqhbxA13rQFxXNMwOBE4EPByL4TTQ5epAjmTKFb35+LGlnuJfHCkS21bjcBSm4NADtUkFQHiA24FmKjO9SEKiXhzh+jt6xUdcrEsQxxLHVDd2GlJXW3H4TolqpKsu2p5vNF+IzWiqa1TpqlHsTDnQfHor3VejiWLivuSm0CWOsfwlQ9bOpsKrUu3QHtMICsCUYqQNPcqptDfYTbeqsTQPciZ0pG3jc62Vi2YerecUDfUlr9AVsrCF21LemnMeL+6QFaXhK2xXYyiu3nA9y8UrtFWUTLtsk7IMBqqIdwVezIxsWFbHoGs2GozhDtUXeX/u+qzLpeSVieS6ol1KUtRV+USXcONNHVjgvLXLUY8mVd5wPFLcktlhL2yaxlOD132dTbLOPB1IhaL2f6rjpgCIlItj6urE4kmqzixszNY+9xp26o/rT4HJ5Vbb6s5GTV91Db16CB8T7/eDXGrC13Z4ZQytm3pWEvl1Kv2POtp2PyNVfB9xa7lqC9wmXuQ1ed7agdYYXVpZ4sT+zwmkPuVGLhymUybN2Q1BIvun2qKRL0HWQhTfJKw89XqbjZdH0Lq22MGqnZ5ZO9BtvYup/VQy2Ew8y1VF8jCEvkifUJBv2gwesUGBLFpV0ioL8jpArkwtq4J5CwuFp1Js24oJY5zhuoperfaHihtApd1SC01Ion9cJEQxaRZdIF8kkAxjDJxtwyRyh4eS+Qcn3Bx1swihi4zDENns0+995oRf7KdEczfimnbIhN3tWdaCrZUlwK51p7hpsgi0e4ZGkzavaI5roRnU8RsdSyZJo6ZQV+bHgHKXiP0y3UUYsoCYaroDlXViRZ99bNgAi2oVGoUrkSKu4uZoNRGho6RwRjSxFH+dWmm7ewnjwlkWbiupDm0wRd44+DKcf09chU3MwSaOrRhikRTIAsl2gU37OpEsxhY2K5PG3oxF/9gYelSD7IxjDAw7DOQS78MNt6cEo5HeYvqbbHEjq5LDrp/9HWLZMwMG0eDQ2eW3gK5kmFrG6+N3m8TxaIwtm4JZJKrENXLSYv19fXGv0QiJqqrlPjQXG+lGhaXvedqcPhQVK7w2CP90+SyrQnF34wotWdfvg0b9WwdLuLRjsLSdPYi93RqBTPKwF36fpoTyAZ6kWvrakV1tVzpU654af0nJ+vKHs5MkZw8zS1P4wodusw4DJ0lf+PlXF6/mXuRsiQQlJ8Kbtuy66XVjBJiGf6XbFSfcnYpiDXKMG/Sp7O7M2XhELmgVPq4ZVDg2pejv7dbdMi1Btr5X0enI0tt96lpStfIrqCv322PtuR73ajLfAvhmEDWV1tLuyEqkxVShzHUHlj1t3Y1ULe8yapvbvrnumbz0rcVyJKEpScyQzrhLBEGVJjqDcsso7WXOHUIp7NRFfSyHCG5PHMGO2KKI9PQdkeNmeP9nQ1pfNg3zXhISRcL1a582bJAzli3EpDJ3uwFV7lZPittQa/HbH9LHW2gR+lRyGRXXF3CUStctuEiIQpL00It8F8KY2TPXb1OM9WhdX/KS01gaRc2dGle3yTUe3Q2TLkNs2ZLITi/Fda21fuqHfceyyQxa3vWn5dyzQEsgxychoSSlIWAQwJZjwkYSg+s3S9XWxqc3JQ+k9kUmKm/dbc1WlaO028CIekwn2xXJZ/1ZpIqYHpl8HTbNdXlhLm47J0duu94sF6UwOBmHqb9IRliJm2kQKbe1lBnK4qjcjZ9V1eL0cOY+vDpaZflN3om9ZueXNygOi5SRy5aEgNDS+HIwCp0PCHGWPXNJgRNPmzlONRgj5xN3Uo05jBVerintBYte1T0tqDXZ+rfUJgnMtaJxpbOtNNLsaOvM0N7CVentbsBe4YaLpKM8k6zFCX1Vh75M7LnnjYxNsMLqdnuqkV7zjcBbzHL35r8hy7N69t+GNrOBrVjwLxX2h1ZGfvyb9vqfTUT98zPlnAUw/+V0bJQSrcJrMEZyIeFZ7cVHy+jnj6iYcOI1h21MY0dvU5Btq5c/jF19/bJdGRCw0fRhPGjSX4qzbZ6JX3c1U39nOPwdWnjcWNpnRwzt5R/I1n+kRnKv2oVreKy9ckyjhyZU9ksaRfBtjQQS5nLalq+bBl91tevZTpCstlctpfiNjfSLM4i750NRqWok9Url9Oyrs/k/Uhuw0fQxhM2pwJvq6UwNyB5uNS2+dmyrIt6uTKHD6cxG00o+BkZENAoBgg4RsDzAtmxkiIhEAABEAABEAABEAABEMiBAARyDpBwCAiAAAiAAAiAAAiAQOUQgECunLpGSUEABEAABEAABEAABHIgAIGcAyQcAgIgAAIgAAIgAAIgUDkEIJArp65RUhAAARAAARAAARAAgRwIQCDnAAmHgAAIgAAIgAAIgAAIVA4BCOTKqWuUFARAAARAAARAAARAIAcCEMg5QMIhIAACIAACIAACIAAClUPg/wPB8ihNVRUR0gAAAABJRU5ErkJggg== />"

Question 4

Clumsy researcher that he was, later that day he spilled a little baking soda (NaHCO3) into the beaker. He figured if a little sand didnt hurt, then a little baking soda shouldnt matter either when recording his melting point. Is this a valid assumption? Explain.
Question 5

fJvKIEHfxeOIoAAAggggAACtgCBB1uDfQQQQCBYAQIPwXrHvDYCDzEnpUAEEEAAAQQQSEABAg8JeFPpEgIIxI0AgYe4uVX+DSXw4O/CUQQQQAABBBBAwBYg8GBrsI8AAggEK0DgIVjvmNdG4CHmpBSIAAIIIIAAAgkoQOAhAW8qXUIAgbgRIPAQN7fKv6EEHvxdOIoAAggggAACCNgCBB5sDfYRQACBYAUIPATrHfPaCDzEnJQCEUAAAQQQQCABBQg8JOBNpUsIIBA3AgQe4uZW+TeUwIO/C0cRQAABBBBAAAFbgMCDrcE+AgggEKwAgYdgvWNeG4GHmJNSIAIIIIAAAggkoACBhwS8qXQJAQTiRoDAQ9zcKv+GEnjwd+EoAggggAACCCBgCxB4sDXYRwABBIIVIPAQrHfMayPwEHNSCkQAAQQQQACBBBQg8JCAN5UuIYBA3AgQeIibW+XfUAIP/i4cRQABBBBAAAEEbAECD7YG+wgggECwAgQegvWOeW0EHmJOSoEIIIAAAgggkIACBB4S8KbSJQQQiBsBAg9xc6v8G0rgwd+FowgggAACCCCAgC1A4MHWYB8BBBAIVoDAQ7DeMa+NwEPMSSkQAQQQQAABBBJQgMBDAt5UuoQAAnEjQOAhbm6Vf0MJPPi7cBQBBBBAAAEEELAFCDzYGuwjgAACwQoQeAjWO+a1EXiIOSkFIoAAAggggEACChB4SMCbSpcQQCBuBAg8xM2t8m8ogQd/F44igAACCCCAAAK2AIEHW4N9BBBAIFgBAg/Bese8NgIPMSelQAQQQAABBBBIQAECDwl4U+kSAgjEjQCBh7i5Vf4NJfDg78JRBBBAAAEEEEDAFiDwYGuwjwACCAQrQOAhWO+Y10bgIeakFIgAAggggAACCShA4CEBbypdQgCBuBEg8BA3t8q/oQQe/F04igACCCCAAAII2AIEHmwN9hFAAIFgBQg8BOsd89oIPMSclAIRQAABBBBAIAEFCDwk4E2lSwggEDcCBB7i5lb5N5TAg78LRxFAAAEEEEAAAVuAwIOtwT4CCCAQrACBh2C9Y14bgYeYk1IgAggggAACCCSgAIGHBLypdAkBBOJGgMBD3Nwq/4YSePB34SgCCCCAAAIIIGALEHiwNdhHAAEEghUg8BCsd8xrI/AQc1IKRAABBBBAAIEEFCDwkIA3lS4hgEDcCBB4iJtb5d9QAg/+LhxFAAEEEEAAAQRsAQIPtgb7CCCAQLACBB6C9Y5JbR9//LGsXLlSHn30UVm9erXU1dXJ0UcfLd26dZPU1FSZNm2aXHbZZdKxY8eY1EchCCCAAAIIIIBAvAns3btXVq1aZX4vvfTSS7J7927p1KmTdOnSRS6++GK54YYbZOTIkaIBCTYEEEAAgbYVIPDQtr4xKf2zzz6Tf/3rX+aL889//rNs3LhR



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

vickybb89

  • Sr. Member
  • ****
  • Posts: 347
Answer to Question 1

The two samples were not the same compound. The two compounds were insoluble in one another and therefore the melting points of the compounds were not affected.

Answer to Question 2

At a temperature of C, you would expect the mixture to consist of approximately 60 A and 40 B or 20 A and 80 B. It is important to list both answers since there is no way to tell with the information at hand which one is correct.


Answer to Question 3



Answer to Question 4



Answer to Question 5

Even though sodium bicarbonate is not expected to dissolve in liquid X, it is expected to undergo acid-base chemistry as shown above. The presence of the carboxylate and water resulting from this reaction are expected to have some effect on the melting point of X.

Answer to Question 6

He was not worried because he knew that, if the impurity does not dissolve or react with liquid X, it will not affect the overall vapor pressure of liquid X and will not depress the melting point of X

Answer to Question 7

The benzoic acid did not dissolve in the water. It reacted with the sodium bicarbonate to form sodium benzoate that is soluble in water.




jman1234

  • Member
  • Posts: 560
Reply 2 on: Aug 23, 2018
:D TYSM


kalskdjl1212

  • Member
  • Posts: 353
Reply 3 on: Yesterday
YES! Correct, THANKS for helping me on my review

 

Did you know?

For about 100 years, scientists thought that peptic ulcers were caused by stress, spicy food, and alcohol. Later, researchers added stomach acid to the list of causes and began treating ulcers with antacids. Now it is known that peptic ulcers are predominantly caused by Helicobacter pylori, a spiral-shaped bacterium that normally exist in the stomach.

Did you know?

Though methadone is often used to treat dependency on other opioids, the drug itself can be abused. Crushing or snorting methadone can achieve the opiate "rush" desired by addicts. Improper use such as these can lead to a dangerous dependency on methadone. This drug now accounts for nearly one-third of opioid-related deaths.

Did you know?

Many supplement containers do not even contain what their labels say. There are many documented reports of products containing much less, or more, that what is listed on their labels. They may also contain undisclosed prescription drugs and even contaminants.

Did you know?

Acute bronchitis is an inflammation of the breathing tubes (bronchi), which causes increased mucus production and other changes. It is usually caused by bacteria or viruses, can be serious in people who have pulmonary or cardiac diseases, and can lead to pneumonia.

Did you know?

Elderly adults are at greatest risk of stroke and myocardial infarction and have the most to gain from prophylaxis. Patients ages 60 to 80 years with blood pressures above 160/90 mm Hg should benefit from antihypertensive treatment.

For a complete list of videos, visit our video library