Which energy difference corresponds to the activation energy of the rate-limiting step for A to E transformation?
Question 2MQwEf+9M+pVqtc8bWvsvzRJylHBY8yE7D5Mj0CHoFtRUDE09YaTGAxKqJSMwQHVUk+eBIaQ+PiGxkad4qSIroJSgfeuXBbgd6J13cUAXGMqngTpSkXf/bTDoY3vPktHHrYwUw0LYaAVGJj2UBsOib3sRqcftYpHHnU0YyuXcOif/kC1cgr0nfiOPKP8ghsGQHx8wgUOhPfEAlxYlFxwvA7Xkqy7zzqtywn/uEDjJTzrIXyeylzEu0tl73z5qsiAAATn0lEQVQTr3DzlFuf5qGE85mmHUWyiCa5kU8hoLk9Wgc2ajvx6ygCIm0YHFLceP0t3Pjf/0kQlDjhtNNdLhDdDrgmfSDiUcl6Vuxyn9WKk08/08Fwxde+xsPLVlIWx5D2JuywmBXKp988Ah6BXYSAzLlW3kt5DxU21ugXD2MvPJEoVdQvup5sTcwgijAUnUnWce+s46SQv/l8Iq1xOeK1hGLZ9C4tFtIh1+Rb8bmL+mIaHttxVlii/xhds4bHH1tOqTrEgiMOJ5YgiZuZ98XeSgeKyGb8+r57yIzmoPmHU62WmPRjKrqs7WDoCck0jB5fhEdgRxBQiixJsVXLwOqM2sKLiZc/TrDoXcx538tpjqfERmJpBYXR5Y48bXrvdeJ2RagtI4OaTL5v4QlCPMRqKUuhVhMeTKjJlu7aQqG7+OeOIyCCR6BgYECTWGg0BOMtiaOUU8rpUDE4kEeHrtdFUbd+thohGlrnJoKFk5MnJLt4BPrH9zUCQQbNSkalGtH87C3Ef3EF4TGHo3/yYcKRiHIdYq07aqJVLmQwhOWAp1c8ycf/5CNkaYLVkmJ7M5tYmMUx++53IP/w+Ysw0q7ME5DNILbtP4lgSsRVymZYJao1tcXwziJRFUKeiqGvE3E5l9fJhwuRKIhHo9Fw4RVKpQgXqycIHPs5ebE/8Ah4BHYaAm4BrhT1CgytSqi/7iKS+5Yx8IX3En30JLLxFGzgRF65BmGnVW2TDxIjHpmnyoMByx5YxiuPnb/Jazf2w9DQbB548llsGOJWyRu7qEvOdZYfSC4VbWc1Cxw13yxFb4PsXAbbehF3ShRYUzYnn2wTlkqlRKvVYnx8nFKp7Cy3hCuRreBKptzqDz0CHoEZQkDW3kIaRDFQaqYkc0tEf3gG6oOPk33pVoJzXkI2b5CwliHuhUJs5B01Kl8wzlC1tlisUTI3Za4+kjE1DCKyLOH8330ve+6zL2krdvpZuy4y3+RcZm3GnH3mSkNQm5fMb7EenXBBxxGQqaDsKHNXiKdyAmHJMjH5DRgYGKBaraBU4MwFJeBbQWS8jn1qD/hjj8DMISDLvMxRBesSTtWbGbPfdDTxoiNZe9sS0ivuZtbfLiRWMaiA1L2nUp9cjT1zNduWknPTZJmr/uTjf81x8w+k2TYR2HD+yvmoXJG+djRzlmibl3ltSz12zbUdTUB2FJKCo8hFWEL0A0w730D+m538vu6a9bmXHa2Dv98j4BHYNAKiNzBioJ9aykrx7J6a8GOnEL3lUVpf/QWNtx5JePjulMZAolCIAVNoJRzKlpXWm37qzPwy9vwoz6fQqEkqRpPnyJp8lCWzGu2s0JQL1+JWr10+3ayzc51saO8e5ERDt7kN5YhHznmIniXfe7f1vmUegc5DQFKii2OhmOHbTDPQajL4hvmUzz0W9fT/EnzuRqotRRLkRCPT0Kk5pwrlulPaWhFRicNzsVtCq5yBUJ77JJMEKZ3XIdtYo54nIIUYKyceTvToIHKGFFNMeovrthE/f7lHwCOwAwiIAYxMrEacCsVxsAVlrYn//DSYvScTV/+S9IZHsYP5wk8CMUr2QlFjd8zWrsrQ7GFGAhgZhtnDmtnD0eQ+ZzhizrBiZJamVNJYsxV2vx3TwE1XpKdFWNLsgnBsGoKtu2Zz9/vfPAIege1DQAiBThXiWyi2L6mqYGsZnLAP+r2nYb7wPWqf/zHVUy4gCiJIEoz4j3SQ6EesObEZ3/7GVdxx0AHEknNbwtdvpI5iwXXy6a9i3oHzaMVbck/YPkx35l09T0B2Jpj+WR4Bj8C2IyCpbJ1XOtYFRI1JnU5k6MJTqV/7EOb6B0muXAx/cBKqlhEkEVqiSmz7o2bkDudZbuBzn/ybrSr/Xy+7isMPn0cj7X4plicgW9Xl/iKPgEdgphGQBbsQhoqOSJoZ6cGzCP54IeaPHkf9v59hzj6c5IBBF0y1kuVRe2e6TttS/v7zXky1UsVYMTvOieLU+52OxBrm7LGXC8/k6ObUC7rw2BOQLuw0X2WPQK8gIAa5suXTrXLBFmPx6rYhcSsjes8xpN+/h/SG24g+eQN7fPk86rZFpsSiSTmxV27NtBF50U4CyWS5KGrRf1zDUa84luZY5vToG4qwJHhJ7ssSMDGee4ls4LK2k2o8fY/peCV6odyWT9FnBEHHV3n6eseX5BHocQRkpV4oxN07LhEltOQcNZRSSzCkqP6fs1Aj+zPxzTuw1y6FWWUXNkQISBIoArF02qUCrVyYZoMyoQYdaVQYOJ8z8Ttbt4do8T5Xkt7X5sSvy/u342fjQgkun2masGrVcy4USXG+y/H31fcI9DUC8h5PfZeFiGiVu9xJLDtdzwjOnEd04akM1es894kfYx+vk5UMsWo5JYKJcofgXQ2kJLQzYpacpWRZ7rgszsvFLpyK7G5RvOsYpmmFqeMJiAO7bU1VOAFOKwK+MI/ANCNQTIjF2J3m4nu6OBHxBOKHJ+FClHa6grCZEX7kRMLjjoAHHoFP/YxBcQouaaJWi0RZsnY4op4GpwMb1/E6kOJllHAjYRiy++67Oxj9y9mBo8lXaT2HVBmzshVj2MPzQgQKbIr32QgHIk54ot9o60aCpiHat0Ltk68iPfcR0stuIj1rPtlb5hMkDUKbR+B+Yek798zI7DnsHkB1OGoL1NZnM3JBl5NgUYsl0riEUNq5dZzup3U8ASkaLANNdhloshcDr/jdf3oEOgGBYiL0Y3T7ekPmU5lUM/H0bb/nTYnKPd6gcvaBRBeeQfLP16D+7w8ZPm5/kgOqUJPAhqatUHdRVSfniu2rxZbuyrU2ogB38cKlwhb+7Quf5dr99iaJJc7VxoQ7YjKQJ8g67azX8ooTX0azVZCVLT2zM3/vGgIi8BUvpycenTmYfK1yBPw43fqRUGBV3OEWiaJYl4i77Ri24qnesCFG4mX95enEty6H2+6j8fFrCS49HxMaCT2FNoFTTgvjJ3P6zK3uhYCID72kKclITe44+PWvXlQ0Y4ufWlvOOv14T0C2iJS/wCPgEfAIbCMCk4tEFzhREegANZHS2qtM5R/fzNo3PUXp6lsovWIe6o9PRDVbWKegzi01Zzaqdp44ymSW8sAgJ77yVZik6XQ2m2ymY60kJL1xRkCHHLqARFIUdvnWkRkJuxxTX32PgEdgmhAQ34lyCmmAi8AbSA6NkYA1F91K5aNXoQdno7/7AcqvPhA7EWMzSxBE7SjbM6lgcPyH43KqFe3EZ1sURkl12helMSSpcFlbvGuakJyZYjwBmRlcfakeAY/ADiDgRFltfacrRtQMEsvdGkJl0EFE+sEf0LjqBuL585hz7QdQBw+T1mO0zSXzdoqXnnPim6bkG3ndhBgYVyejNIHoa7bQXpcF3elLct8V+Z6JbncL93XyzxvT9HRyfX3dPAIegT5AoNCNOFGWlklWOT2HsprMaBolS/mfzkadeDClh5fS/JNvUxqNSQYCbOo89VwwQyclcpP09K3287q59IjOs1wcGR0xEYKymT3PXifGAZIrRBwJu5t4yDD0BKQPXkbfRI9ANyMwNWaUkwIpTTiekM2tMPzp82C/F9H40RJW/+1/UU00cSVFBQbniCikxxgCM9NpcKVmW7PnPTF95GzX9qwnILsWf/90j4BHYBsRUMYSJZa42YKT92PvT76Ncnk29qKfw+duwlZLkmadqtFEElbdWlqiQ5lKibbxmf7yjSPgCcjGcfFnPQIegQ5FQCL2ZtUSQRLQrCWMvXs+lb89gxBN8+9+QnTp3dihiIkIWsaQFSIw0aH4bVoR8ARkWuH0hXkEPAIzjYBwF6mkh7WaagZZcwI+dhLlv3gdNonJ/vCb6EVLqA4pmpU8h3ol1QSZdmqI3PDJuiyI3W0DNdNIb7l8T0C2jJG/wiPgEeggBGTSkl1MexvaECUBumUxf38W6v2nYes1Vn/sGrjmYYYqAaiMuJwTj1yKJQps4/J2dLsZ7a7uFk9AdnUP+Od7BDwC246ANRITHU0Ja6okWUgSGUb++Ryy33sl1TU1nv/gN0i+vgQ9XCYjRpGiJfCiRGuUO41Mf16ste3gr7vDE5B1WPgjj4BHoEsQkICLeSwRJXSELINSLaY2kDD3n9+C+eAZDI6uRX34SppfuYOoHGIGNASGkhAeCa3e5U58ndBVnoB0Qi/4OngEPALbhoAwEc55L8PomAGxukq08+5ePWwZ/tzrsBeeSdKIqX/4alqf+inaWrJqQDkzRMaStvOqu6KmGOFuW0X6+2pPQPq7/33rPQLdiYALlijRucUZL4DQkAUa1aqQ1SxUUiqfPQf98TcTUCL96/8mveD7RCsarJ0T0BywLnugEBItGhVxUFQZgZVIun7bWgQ8AdlapPx1HgGPQEchUEQqERIizuASEzeUtNdCAVqi6zCU/34hI1/4bdRAifTrN1B71+WY258lrEj62YCxcoompZxlJIF2u9eKbH03ewKy9Vj5Kz0CHoEORcBIGlzleIk8YggB1VpKEsdkHz2e3a9+P+nhB1O75X6GX7eI7AuLaWWWkVIZlQnnYUD0Ip792KYe9sEUtwkuf7FHwCPQCQiIOW7BgeT6dIWW8FTGYLQik8yAmXWmumuGYCAICJePY//qP4m/s5gmhsobjmH2X53N6Mn7YloJ1abYZAUuhlYntLEb6uAJSDf0kq+jR8AjsB4CUwmIWOIalwZXjHPFxEqRiIJdVCFKgi+mpEGGKmvCOKCx6C6Sf/wR1WeeIp6zF+aPT2fw3SdgDhgkTUFS6OYmwrmFlybLk1u5NLsKG0gc3TyJVR4OsX+9STwBWW9Y+i8eAY9AzyCglYuDJToNMfUtpwYiQzpUIrznOcw/3czENbei7fNE8+aR/dEZlN90JKUXzaapQcUGlWZopUkkfIroV1LRs+TZUZ2upCAqStIgTkGuT0RhnoBM6XN/6BHwCPQOAm4OnzKpi4jLyERvDZVKyXEb4z9ZSvVfrsf8/AFqpAzNnUf0zuNpvOU4gpfsQTSQF2AmYkInNrMujIqxoXNKlNyESnQnoaiTpzxMHj6zaRE7oqM8AemIbvCV8Ah4BGYSAZna8/lcrLPEn9BQjyyDlRJ2DNIblqK+eCP6pmWMM4Gq7k542qFUzlpA5ZQDab54N1p7RlSwVGJFaqFpUpQyRFZ0LSUkd4nkixKLMITb6YPNE5A+6GTfRI9AvyIgk7oxxk3uBQYShDFzQbEywizFRhHZYIAeyxj/xXLUf9zLyHUPsmbsOQl+QhTtRvWY/YmP/S1aL9mD4YP2prr3MOnegzQHIaiE6FT0L8rlIMmyFFWSrIhTOJLi4T326QlIj3VoPzdHMsW5DHZTQJDvRXa7Kaf9YZ8gIH2vtQRSzJUSbkpvW3CJv4hYcGWSRTCQXxR2QBNlEP1mFPOzB2ne/Ci1u1cw+NgTBCQ0KaHE771SJhqMCPYYIhkpkaKIwpBoImWi0mTgBxfCcMVxIgXns+HY7IUu8ASkF3rRt8EhUBCQqURj6rGHqX8QEFFSHMekqWFgoDpJQDZEYOqYSZIYI57p5RBVCWk1Y9Y+t4ZgtIn69UqSlc8T1WKGJ0KSx0YZX/wIpScmmMMACS0SUsYYw0SDqJ//AXOPPRidtRXuPbqQybPPb4iq/+4R6AoE2qtKmS2cjDv/PlV3Waw8u6I5vpLThoCMgSgqEUXrJvCpY6R40FSuQK63mZV4i9hm5pwQd9ttiMG5e8Ph81xWQ9GVi7q8VU+oP/Q49RXPMzw4hyEd8vSzT7J8yVIG953NnnuVCK1y3E2uF8l1IlOfV9Shmz89B9LNvefr7gw0i1Wky1QnL78FLVnoenTV57t96xGQMbChDmTq3cXYkXOTx0oCvxtCpZH0uU5fYpUz53X+JzLAAoUugwmc2wmZ80UR5XlOYKKWWGuJwZeZFKFNlj+1Al1+7DmQLu/Afqq+seuUoTIx5AQi/xQc8jWedU5fnnj008jYeFtlwt7SpC3jRLbJ6+SrtZScf4eMKYVGysnHnowxpS3KZJimOISIjg0J50igUlChC4eSycnJMbo+p7zx2nbnWU9AurPf+rPWEoE10JhMMjlIFFU5oSc5jVRiGslL27Z+mZwU+hOtvm91QRy2BojJa/O5vh3ORBYjshWLlfZ34SxcBN+85DyUihyHeY4SoUFtwpRf0bt/PQHp3b7tuZY5wuAWdrlllRAR2YRQyBZo7cJXyFvviYeDxP/xCMwoAp6AzCi8vvDpRMARELNuFZivDl/4hEJ8VXy+8Ap/xiPgEZgOBHw49+lA0ZexUxBwYoaN+HpMPrwt85bvBVcy+Zs/8Ah4BKYdAc+BTDukvsCZQsARhbZl1aTMeurDnP5jnfjKE5Gp4Phjj8D0I+A5kOnH1JfoEfAIeAT6AgFPQPqim30jPQIeAY/A9CPgCcj0Y+pL9Ah4BDwCfYGAJyB90c2+kR4Bj4BHYPoR8ARk+jH1JXoEPAIegb5AwBOQvuhm30iPgEfAIzD9CHgCMv2Y+hI9Ah4Bj0BfIOAJSF90s2+kR8Aj4BGYfgQ8AZl+TH2JHgGPgEegLxDwBKQvutk30iPgEfAITD8CnoBMP6a+RI+AR8Aj0BcIeALSF93sG+kR8Ah4BKYfAU9Aph9TX6JHwCPgEegLBDwB6Ytu9o30CHgEPALTj4AnINOPqS/RI+AR8Aj0BQKegPRFN/tGegQ8Ah6B6Ufg/wOSZhTnQ0G39AAAAABJRU5ErkJggg== />
1.B A
2.C A
3.D A
4.E A
5.D C"
Question 3Which of the following equations is correct?
1.G = H TS
2.G = s + TH
3.H = TG TS
4.G = H + TS
5.S = TH G
Question 4Consider the reaction profile shown below. If there is a sufficient amount of thermal energy available to overcome the highest activation energy and sufficient time for all molecules to do that multiple times, what is the main structure present under such conditions?