Which energy difference corresponds to the activation energy of the rate-limiting step for A to E transformation?
Question 2MQwEf+9M+pVqtc8bWvsvzRJylHBY8yE7D5Mj0CHoFtRUDE09YaTGAxKqJSMwQHVUk+eBIaQ+PiGxkad4qSIroJSgfeuXBbgd6J13cUAXGMqngTpSkXf/bTDoY3vPktHHrYwUw0LYaAVGJj2UBsOib3sRqcftYpHHnU0YyuXcOif/kC1cgr0nfiOPKP8ghsGQHx8wgUOhPfEAlxYlFxwvA7Xkqy7zzqtywn/uEDjJTzrIXyeylzEu0tl73z5qsiAAATn0lEQVQTr3DzlFuf5qGE85mmHUWyiCa5kU8hoLk9Wgc2ajvx6ygCIm0YHFLceP0t3Pjf/0kQlDjhtNNdLhDdDrgmfSDiUcl6Vuxyn9WKk08/08Fwxde+xsPLVlIWx5D2JuywmBXKp988Ah6BXYSAzLlW3kt5DxU21ugXD2MvPJEoVdQvup5sTcwgijAUnUnWce+s46SQv/l8Iq1xOeK1hGLZ9C4tFtIh1+Rb8bmL+mIaHttxVlii/xhds4bHH1tOqTrEgiMOJ5YgiZuZ98XeSgeKyGb8+r57yIzmoPmHU62WmPRjKrqs7WDoCck0jB5fhEdgRxBQiixJsVXLwOqM2sKLiZc/TrDoXcx538tpjqfERmJpBYXR5Y48bXrvdeJ2RagtI4OaTL5v4QlCPMRqKUuhVhMeTKjJlu7aQqG7+OeOIyCCR6BgYECTWGg0BOMtiaOUU8rpUDE4kEeHrtdFUbd+thohGlrnJoKFk5MnJLt4BPrH9zUCQQbNSkalGtH87C3Ef3EF4TGHo3/yYcKRiHIdYq07aqJVLmQwhOWAp1c8ycf/5CNkaYLVkmJ7M5tYmMUx++53IP/w+Ysw0q7ME5DNILbtP4lgSsRVymZYJao1tcXwziJRFUKeiqGvE3E5l9fJhwuRKIhHo9Fw4RVKpQgXqycIHPs5ebE/8Ah4BHYaAm4BrhT1CgytSqi/7iKS+5Yx8IX3En30JLLxFGzgRF65BmGnVW2TDxIjHpmnyoMByx5YxiuPnb/Jazf2w9DQbB548llsGOJWyRu7qEvOdZYfSC4VbWc1Cxw13yxFb4PsXAbbehF3ShRYUzYnn2wTlkqlRKvVYnx8nFKp7Cy3hCuRreBKptzqDz0CHoEZQkDW3kIaRDFQaqYkc0tEf3gG6oOPk33pVoJzXkI2b5CwliHuhUJs5B01Kl8wzlC1tlisUTI3Za4+kjE1DCKyLOH8330ve+6zL2krdvpZuy4y3+RcZm3GnH3mSkNQm5fMb7EenXBBxxGQqaDsKHNXiKdyAmHJMjH5DRgYGKBaraBU4MwFJeBbQWS8jn1qD/hjj8DMISDLvMxRBesSTtWbGbPfdDTxoiNZe9sS0ivuZtbfLiRWMaiA1L2nUp9cjT1zNduWknPTZJmr/uTjf81x8w+k2TYR2HD+yvmoXJG+djRzlmibl3ltSz12zbUdTUB2FJKCo8hFWEL0A0w730D+m538vu6a9bmXHa2Dv98j4BHYNAKiNzBioJ9aykrx7J6a8GOnEL3lUVpf/QWNtx5JePjulMZAolCIAVNoJRzKlpXWm37qzPwy9vwoz6fQqEkqRpPnyJp8lCWzGu2s0JQL1+JWr10+3ayzc51saO8e5ERDt7kN5YhHznmIniXfe7f1vmUegc5DQFKii2OhmOHbTDPQajL4hvmUzz0W9fT/EnzuRqotRRLkRCPT0Kk5pwrlulPaWhFRicNzsVtCq5yBUJ77JJMEKZ3XIdtYo54nIIUYKyceTvToIHKGFFNMeovrthE/f7lHwCOwAwiIAYxMrEacCsVxsAVlrYn//DSYvScTV/+S9IZHsYP5wk8CMUr2QlFjd8zWrsrQ7GFGAhgZhtnDmtnD0eQ+ZzhizrBiZJamVNJYsxV2vx3TwE1XpKdFWNLsgnBsGoKtu2Zz9/vfPAIege1DQAiBThXiWyi2L6mqYGsZnLAP+r2nYb7wPWqf/zHVUy4gCiJIEoz4j3SQ6EesObEZ3/7GVdxx0AHEknNbwtdvpI5iwXXy6a9i3oHzaMVbck/YPkx35l09T0B2Jpj+WR4Bj8C2IyCpbJ1XOtYFRI1JnU5k6MJTqV/7EOb6B0muXAx/cBKqlhEkEVqiSmz7o2bkDudZbuBzn/ybrSr/Xy+7isMPn0cj7X4plicgW9Xl/iKPgEdgphGQBbsQhoqOSJoZ6cGzCP54IeaPHkf9v59hzj6c5IBBF0y1kuVRe2e6TttS/v7zXky1UsVYMTvOieLU+52OxBrm7LGXC8/k6ObUC7rw2BOQLuw0X2WPQK8gIAa5suXTrXLBFmPx6rYhcSsjes8xpN+/h/SG24g+eQN7fPk86rZFpsSiSTmxV27NtBF50U4CyWS5KGrRf1zDUa84luZY5vToG4qwJHhJ7ssSMDGee4ls4LK2k2o8fY/peCV6odyWT9FnBEHHV3n6eseX5BHocQRkpV4oxN07LhEltOQcNZRSSzCkqP6fs1Aj+zPxzTuw1y6FWWUXNkQISBIoArF02qUCrVyYZoMyoQYdaVQYOJ8z8Ttbt4do8T5Xkt7X5sSvy/u342fjQgkun2masGrVcy4USXG+y/H31fcI9DUC8h5PfZeFiGiVu9xJLDtdzwjOnEd04akM1es894kfYx+vk5UMsWo5JYKJcofgXQ2kJLQzYpacpWRZ7rgszsvFLpyK7G5RvOsYpmmFqeMJiAO7bU1VOAFOKwK+MI/ANCNQTIjF2J3m4nu6OBHxBOKHJ+FClHa6grCZEX7kRMLjjoAHHoFP/YxBcQouaaJWi0RZsnY4op4GpwMb1/E6kOJllHAjYRiy++67Oxj9y9mBo8lXaT2HVBmzshVj2MPzQgQKbIr32QgHIk54ot9o60aCpiHat0Ltk68iPfcR0stuIj1rPtlb5hMkDUKbR+B+Yek798zI7DnsHkB1OGoL1NZnM3JBl5NgUYsl0riEUNq5dZzup3U8ASkaLANNdhloshcDr/jdf3oEOgGBYiL0Y3T7ekPmU5lUM/H0bb/nTYnKPd6gcvaBRBeeQfLP16D+7w8ZPm5/kgOqUJPAhqatUHdRVSfniu2rxZbuyrU2ogB38cKlwhb+7Quf5dr99iaJJc7VxoQ7YjKQJ8g67azX8ooTX0azVZCVLT2zM3/vGgIi8BUvpycenTmYfK1yBPw43fqRUGBV3OEWiaJYl4i77Ri24qnesCFG4mX95enEty6H2+6j8fFrCS49HxMaCT2FNoFTTgvjJ3P6zK3uhYCID72kKclITe44+PWvXlQ0Y4ufWlvOOv14T0C2iJS/wCPgEfAIbCMCk4tEFzhREegANZHS2qtM5R/fzNo3PUXp6lsovWIe6o9PRDVbWKegzi01Zzaqdp44ymSW8sAgJ77yVZik6XQ2m2ymY60kJL1xRkCHHLqARFIUdvnWkRkJuxxTX32PgEdgmhAQ34lyCmmAi8AbSA6NkYA1F91K5aNXoQdno7/7AcqvPhA7EWMzSxBE7SjbM6lgcPyH43KqFe3EZ1sURkl12helMSSpcFlbvGuakJyZYjwBmRlcfakeAY/ADiDgRFltfacrRtQMEsvdGkJl0EFE+sEf0LjqBuL585hz7QdQBw+T1mO0zSXzdoqXnnPim6bkG3ndhBgYVyejNIHoa7bQXpcF3elLct8V+Z6JbncL93XyzxvT9HRyfX3dPAIegT5AoNCNOFGWlklWOT2HsprMaBolS/mfzkadeDClh5fS/JNvUxqNSQYCbOo89VwwQyclcpP09K3287q59IjOs1wcGR0xEYKymT3PXifGAZIrRBwJu5t4yDD0BKQPXkbfRI9ANyMwNWaUkwIpTTiekM2tMPzp82C/F9H40RJW/+1/UU00cSVFBQbniCikxxgCM9NpcKVmW7PnPTF95GzX9qwnILsWf/90j4BHYBsRUMYSJZa42YKT92PvT76Ncnk29qKfw+duwlZLkmadqtFEElbdWlqiQ5lKibbxmf7yjSPgCcjGcfFnPQIegQ5FQCL2ZtUSQRLQrCWMvXs+lb89gxBN8+9+QnTp3dihiIkIWsaQFSIw0aH4bVoR8ARkWuH0hXkEPAIzjYBwF6mkh7WaagZZcwI+dhLlv3gdNonJ/vCb6EVLqA4pmpU8h3ol1QSZdmqI3PDJuiyI3W0DNdNIb7l8T0C2jJG/wiPgEeggBGTSkl1MexvaECUBumUxf38W6v2nYes1Vn/sGrjmYYYqAaiMuJwTj1yKJQps4/J2dLsZ7a7uFk9AdnUP+Od7BDwC246ANRITHU0Ja6okWUgSGUb++Ryy33sl1TU1nv/gN0i+vgQ9XCYjRpGiJfCiRGuUO41Mf16ste3gr7vDE5B1WPgjj4BHoEsQkICLeSwRJXSELINSLaY2kDD3n9+C+eAZDI6uRX34SppfuYOoHGIGNASGkhAeCa3e5U58ndBVnoB0Qi/4OngEPALbhoAwEc55L8PomAGxukq08+5ePWwZ/tzrsBeeSdKIqX/4alqf+inaWrJqQDkzRMaStvOqu6KmGOFuW0X6+2pPQPq7/33rPQLdiYALlijRucUZL4DQkAUa1aqQ1SxUUiqfPQf98TcTUCL96/8mveD7RCsarJ0T0BywLnugEBItGhVxUFQZgZVIun7bWgQ8AdlapPx1HgGPQEchUEQqERIizuASEzeUtNdCAVqi6zCU/34hI1/4bdRAifTrN1B71+WY258lrEj62YCxcoompZxlJIF2u9eKbH03ewKy9Vj5Kz0CHoEORcBIGlzleIk8YggB1VpKEsdkHz2e3a9+P+nhB1O75X6GX7eI7AuLaWWWkVIZlQnnYUD0Ip792KYe9sEUtwkuf7FHwCPQCQiIOW7BgeT6dIWW8FTGYLQik8yAmXWmumuGYCAICJePY//qP4m/s5gmhsobjmH2X53N6Mn7YloJ1abYZAUuhlYntLEb6uAJSDf0kq+jR8AjsB4CUwmIWOIalwZXjHPFxEqRiIJdVCFKgi+mpEGGKmvCOKCx6C6Sf/wR1WeeIp6zF+aPT2fw3SdgDhgkTUFS6OYmwrmFlybLk1u5NLsKG0gc3TyJVR4OsX+9STwBWW9Y+i8eAY9AzyCglYuDJToNMfUtpwYiQzpUIrznOcw/3czENbei7fNE8+aR/dEZlN90JKUXzaapQcUGlWZopUkkfIroV1LRs+TZUZ2upCAqStIgTkGuT0RhnoBM6XN/6BHwCPQOAm4OnzKpi4jLyERvDZVKyXEb4z9ZSvVfrsf8/AFqpAzNnUf0zuNpvOU4gpfsQTSQF2AmYkInNrMujIqxoXNKlNyESnQnoaiTpzxMHj6zaRE7oqM8AemIbvCV8Ah4BGYSAZna8/lcrLPEn9BQjyyDlRJ2DNIblqK+eCP6pmWMM4Gq7k542qFUzlpA5ZQDab54N1p7RlSwVGJFaqFpUpQyRFZ0LSUkd4nkixKLMITb6YPNE5A+6GTfRI9AvyIgk7oxxk3uBQYShDFzQbEywizFRhHZYIAeyxj/xXLUf9zLyHUPsmbsOQl+QhTtRvWY/YmP/S1aL9mD4YP2prr3MOnegzQHIaiE6FT0L8rlIMmyFFWSrIhTOJLi4T326QlIj3VoPzdHMsW5DHZTQJDvRXa7Kaf9YZ8gIH2vtQRSzJUSbkpvW3CJv4hYcGWSRTCQXxR2QBNlEP1mFPOzB2ne/Ci1u1cw+NgTBCQ0KaHE771SJhqMCPYYIhkpkaKIwpBoImWi0mTgBxfCcMVxIgXns+HY7IUu8ASkF3rRt8EhUBCQqURj6rGHqX8QEFFSHMekqWFgoDpJQDZEYOqYSZIYI57p5RBVCWk1Y9Y+t4ZgtIn69UqSlc8T1WKGJ0KSx0YZX/wIpScmmMMACS0SUsYYw0SDqJ//AXOPPRidtRXuPbqQybPPb4iq/+4R6AoE2qtKmS2cjDv/PlV3Waw8u6I5vpLThoCMgSgqEUXrJvCpY6R40FSuQK63mZV4i9hm5pwQd9ttiMG5e8Ph81xWQ9GVi7q8VU+oP/Q49RXPMzw4hyEd8vSzT7J8yVIG953NnnuVCK1y3E2uF8l1IlOfV9Shmz89B9LNvefr7gw0i1Wky1QnL78FLVnoenTV57t96xGQMbChDmTq3cXYkXOTx0oCvxtCpZH0uU5fYpUz53X+JzLAAoUugwmc2wmZ80UR5XlOYKKWWGuJwZeZFKFNlj+1Al1+7DmQLu/Afqq+seuUoTIx5AQi/xQc8jWedU5fnnj008jYeFtlwt7SpC3jRLbJ6+SrtZScf4eMKYVGysnHnowxpS3KZJimOISIjg0J50igUlChC4eSycnJMbo+p7zx2nbnWU9AurPf+rPWEoE10JhMMjlIFFU5oSc5jVRiGslL27Z+mZwU+hOtvm91QRy2BojJa/O5vh3ORBYjshWLlfZ34SxcBN+85DyUihyHeY4SoUFtwpRf0bt/PQHp3b7tuZY5wuAWdrlllRAR2YRQyBZo7cJXyFvviYeDxP/xCMwoAp6AzCi8vvDpRMARELNuFZivDl/4hEJ8VXy+8Ap/xiPgEZgOBHw49+lA0ZexUxBwYoaN+HpMPrwt85bvBVcy+Zs/8Ah4BKYdAc+BTDukvsCZQsARhbZl1aTMeurDnP5jnfjKE5Gp4Phjj8D0I+A5kOnH1JfoEfAIeAT6AgFPQPqim30jPQIeAY/A9CPgCcj0Y+pL9Ah4BDwCfYGAJyB90c2+kR4Bj4BHYPoR8ARk+jH1JXoEPAIegb5AwBOQvuhm30iPgEfAIzD9CHgCMv2Y+hI9Ah4Bj0BfIOAJSF90s2+kR8Aj4BGYfgQ8AZl+TH2JHgGPgEegLxDwBKQvutk30iPgEfAITD8CnoBMP6a+RI+AR8Aj0BcIeALSF93sG+kR8Ah4BKYfAU9Aph9TX6JHwCPgEegLBDwB6Ytu9o30CHgEPALTj4AnINOPqS/RI+AR8Aj0BQKegPRFN/tGegQ8Ah6B6Ufg/wOSZhTnQ0G39AAAAABJRU5ErkJggg== />
1.B A
2.C A
3.D A
4.E A
5.D C"
Question 3Which of the following equations is correct?
1.G = H TS
2.G = s + TH
3.H = TG TS
4.G = H + TS
5.S = TH G
Question 4Consider the reaction profile shown below. If there is a sufficient amount of thermal energy available to overcome the highest activation energy and sufficient time for all molecules to do that multiple times, what is the main structure present under such conditions?
![](data:text/plain;base64,iVBORw0KGgoAAAANSUhEUgAAAfgAAAEbCAYAAAA2+JZTAAAgAElEQVR4AeydCbglRXn3f1XVy1nuNjMwCC4gGHcE3AAl0SgoQQTXIKgY/TQucY9LVIIm+YiaGDGamKhREZRFQYNbBHGN6EcUXBBU0ADKPsx27z1bd1fV97zV58zcO4w6MNtdquc5c/qe011d9a869a/3rXdR1220nnhEBCICEYGIQEQgIrCkENBLqjWxMRGBiEBEICIQEYgIBAQiwceBEBGICEQEIgIRgSWIQCT4JdipsUkRgYhARCAiEBGIBB/HQEQgIhARiAhEBJYgApHgl2CnxiZFBCICEYGIQEQgEnwcAxGBiEBEICIQEViCCESCX4KdGpsUEYgIRAQiAhGBSPBxDEQEIgIRgYhARGAJIhAJfgl2amxSRCAiEBGICEQEIsHHMRARiAhEBCICEYEliEAk+CXYqbFJEYGIQEQgIhARiAQfx0BEICIQEYgIRASWIAKR4Jdgp8YmRQQiAhGBiEBEIBJ8HAMRgYhARCAiEBFYgghEgl+CnRqbFBGICEQEIgIRgUjwcQxEBCICEYGIQERgCSIQCX4JdmpsUkQgIhARiAhEBCLBxzEQEYgIRAQiAhGBJYhAJPgl2KmxSRGBiEBEICIQEYgEH8dARCAiEBHYDgQUoOQ/ecdhfIXC48L/cla/kDNf4b3FD68entQ3x/8jAjsYgWQHlxeLiwhEBCICywoB54XKNSiPR2Ol9R4Mbj5/K4VTGi3vwvBe/pOVQU33ywq02NhdgkAk+F0Cc3xIRCAisGQRUELuCqM1hfWQJGgLiRfC33w4rUBpXFgBOLQsCMI1Q/F/86XxLCKwQxCIBL9DYIyFRAQiAssXAUWiPc1E0c4UAwEiFdl8PnFrD/JSOVSVpte3aDMU5JcveLHlOxGBSPA7EdxYdEQgIrD0EZhqK8755Gc4499Ox4iErmVaVUE6n9t6LSp5X/HUZ53Anz7nOexzr71Y2wFvRcUfj4jAjkcgEvyOxzSWGBGICCwjBFIDN/7613z/sv+3Ta2+7LLv8bEPf4iTX/IiXvTS19LIEvoDF+5VaqTUj5S/TWDGi34nApHgfyc88cuIQEQgIvC7ERBqNsLyopk3moc8/JG0Gm1ssKTbfG+Sau64/XZ+cfVP+d9rf8Y73vRGfn7lVbzvQx8mTQ1lJdeKzf3o/833xrOIwN1BIBL83UEt3hMRiAhEBIYIiK+x2M/J4VTKB884jwMfvB+zgbCHFwGNBG79zR2cf/YZ/OO73sn0hnWce9YZKJPzbx//dzbOghUjvSi8bwYtnm0XAtEPfrvgizdHBCICyx0BUao7V6vYrXN0S0fHQtHz814bpj0Tq/fgLW9+Ax8/+zxWrFwVoPv8Z8/j+9+9giwRq3uFEqv8eEQEdgACcSTtABBjERGBiMDyRUAIXul6Kk2UQ/sCHHjnAvEL+YcFgPf0ep7rN8KT/+RIPnzWeTSbTTrTG7jwc+ezsqHQWmHrtcLyBTS2fIchEAl+h0EZC4oIRASWIwK1WVz9v/JC8LX/uwS18XNeono3MuN6x3QBDzroEXidB8iu+tEV/Pq2OxAD/CjAL8dRtHPaHAl+5+AaS40IRASWCQJhy7zmdyovwrsOoWs3B6mtg9VKUBuxkjfaURaWlStbvODPXx5Q+sYlF/Hzn19HI1fIIiEeEYEdgUAk+B2BYiwjIhARiAj8HgRE/e4lrK34yjsYb2Y84EEP3HRXmiZ19NpNn8STiMD2IRAJfvvwi3dHBCICEYFtQiCEnkcFS3kl8eiBfq+/TffGiyICdweBSPB3B7V4T0QgIhARuIsICMELsdeSfO3vHl3i7iKI8fK7hEAk+LsEV7w4IhARiAjcPQQkucwo+0y9Kw95mm4uzMkePfjoB78Zk3i2XQhEgt8u+OLNEYGIQERgGxHwDu8qnK993V1lWb/ujnBzqzVOI0tRXvLIDy32trHYeFlE4LchEAn+tyETP48IRAQiAjsSASXW9SZY0jcyuPmWDXzwn98XnnDSyS/ikY98CDMzFUbE+HhEBHYAApHgdwCIsYiIQEQgIvD7EJA9eDGsE/oey2H97bfQnd5Ikqbcc9/7YpVGmwQf8sX/vtLi9xGB349AJPjfj1G8IiIQEYgIbDcCEvRGG8MeE5qf//xXvOTPTqLf73Dv+xzAi172Mtb3JDf80Phuu58WC4gIQEw2E0dBRCAiEBHYbgSGkeyUYsXUJHsk0J2YLz/JZCskftHF3+RNr341//uLK8NTX/HaNzI+lbN+tiZ3PXSh2+4qxQKWPQKR4Jf9EIgARAQiAtuDgFC7uL/JIW+nve1NrNxjNVU1P51clhluvP4GvnjhBZse98hD/4hjnv5U+n2HDlb0ii2yzG66Np5EBO4qApHg7ypi8fqIQEQgIjAHAckEb6s6vKy1jvPPOWvOt1s/bbfaPPXpT+PUd57Oqr32pNu1mxYJtS9dNLTbOnLx07uCQCT4u4JWvDYiEBGICGyBgMSfb41NsnLVKlKdYL1I4XXc+fmXOvbd//687FWvYvU++3LkEw5nQ59A7nKdG4rudSCc+XfGvyICdwcBdd1GG50u7w5y8Z6IQEQgIgAhMt2g16Xsd0h0EohaMsltGaVOgtMmeZNVe7QQ5f3MtAt+70aLtO5DfHpjhOij9B4H1o5BIBL8jsExlhIRiAgsUwQkOaw2iiTR9f65AuXm87tIUUaB847SqpAfPsOGNUAZbJ1F4pdkNMsUxNjsnYJAVNHvFFhjoRGBiMByQUChgu96aX93mtfNJndeEspSzXNiiuS+XMbLrmznfD+OXfnk+KyIQEQgIhARiAhEBHYaApHgdxq0seCIQEQgIhARiAjsPgQiwe8+7OOTIwIRgYhARCAisNMQiAS/06CNBUcEIgK7FgGxUNvyJTWoP1ObvvvdtRIb9tquffN18z8blif53T3IJBr24eVJo0QxcsnWjuHnoTy5P9SuLq+u5+j/zTd75ZHXqA6j981XjM7mXyOfzr929JzR9Vu+/7ZKb3ld/HuxIBAJfrH0VKxnRGAZIiBW5aMocZJIFS2MKmcu5E0XShOTNbFkr1O5iKFb/QqfDb3VJA2rfC7ea5u+D7nXVU3KITzskACFFYeH+LNL6NhgHm+FaEFpj/ElWtWJXYV8pcy6ag4j6WADuda1kxrWiwsVFgRgKbVDvONyJxX0lEYC3bjwHGmvcXKtCvX1VHixuBfL/LCoGNG2HqaWrevtnVjlOwloXz/d14Z79QJkeLN8r1z9LClGS83rBUR4hvjvjy4dgRDfFy0C0Yp+0XZdrHhEYOkjUAvEPnCWBIARgrPCiZnGB6N1cS+rfcc16Z0AkcRsQqRGQyERaZQnMwpnLd46sixBos85ucCbwOPhmWEdUS8brIIqVXitSK2Qpia4qlfi+ibnHq8dEtFOqLwMErcOdZ1XIQ26cuQmDSRbKo0vHZlOqGyFdpB7EyzyCx3oNixutM9D2Tb3eFcvbkK5SpHYejFhrcUYE5LVWCMLnrrd8rmSz0nCZ6P61EuCOrRuuFaI3pl6cRBDo4xgWvTvkeAXfRfGBkQEli4CIs1aZ0kTRSXhYL0jcULlCUocy0OAGJHMRRyf76Ym3wYldbjMkSSeTllCI6ccWJpZgrYVjUTIzwcfdRG9hcglq5sEqxHCFgk+HWoSVOIZGOgNKtqpIdVOrmCgTFhIJA5MAsKRQthBlB++CWUnuegeqrBASKqEpG3oCPHrBD8oGagBLtUo6wPZazSV1EdBQ9on65DQ6lryNomsdqTSNrRBaYNI8s1EY3CYPKGqPFpLC+uFUj1apEGy3lFhEWGdl/UNZSnie71Q2VT5pTu8lnzLIsEv+S6ODYwILF4EhMyU1njrMSjGxzO+cP6Xef97/imQnTFCxmVN8GyZSL2WbqvShsXBK179ap510nNYN/A0WxnX/eIa3vTa19OZnma8IUFqhHyF4GslfmKToK5OZIddfNytLBBmOepFJ/GK178B46BfOO648kpOO/09/PLW6xlTSeDbkhKRm8MfAX6P9gm+UnjJNFc6HnafB/JXL34V7T32oNxjkrE9Grzr7/8vF130BSbSHFVU+IElTVNKL8sDg1I6tFUIXxYhPedpt8c59W/ewUGHPCJE0ZO2fOXCL/OBf3xXeLzVCYkWTYcL99TbHgJsrY43GCrnWdfr8Oa//jue+cynMD1dbz8s3pETay4IRIKP4yAiEBFYsAgIick/kSaVSLBW0Ww1mdxzpaR4CZKp7KuHbWdh5nmHSKwOkWVL60naE7WuXvbiJTc7hj1XrmIsTUkzIfiwy48VFb6o8r0Qoqjvw842SZ6SdMaZSicx37sZ/+WrqS6/nt5117DPz3/BrO7UkrIWadqgh/UJCoQgMDu89pTKsecgYV+uYt3nPkA2sRfN/e5Bsd8kE5f9hJU3r2X1wfdlsPdq+hOGojfLWN+T2rzWMngx5iNoARrW0R6bIMsyJOSttLOQtuUpK1avqDUcJkfXK4IhwQ+3NZQllWtLhcoa2JkNNFpjuC3XSfMwjX8sJgRiqNrF1FuxrhGBZYaAELwcI0O7kCvdWcqqCp8JAQ/5P6ib58ETdPS1ol7KMUkSpF8hd1kReOdCStdgACdkV2m8MVRaiFi40ZIo6LVSEpWT//A27Bd+SvG1q0l+dgeDDdPBqK2QpUKa1UZ2GAZD47vUqfCZ2A1IKypjMcqhKyg0JMqQV4pE1PBAnxJUQtkoye8xTvKYB8HRD0I//l7YfSZQMxXaFiRSmDdUErhe8PGQpGJ/IDp3aY3HVVVQ1Tsn2xcaJUYDNRSbIVJixFfbNUiRgqloC2QvPx5LA4FI8EujH2MrIgJLEgEhdnkJUckh79oYkrD/Pr/JwZh9/kdDoq4/lCKC0VltuRc+NGJcNyI+IUutyALZVpTNhEkhvh+soXPO5VRfuJLi2ltoBsVnKvoDUqlb2KsH48SUTSzbq0D8Vqzlaxt1keeDoVxOQkJKPzxd44xnVlmUN8iCoCl1cUUoQy4pc83g4fdgxZ8eSvqch8M9UjpiqFcpGiUUSZ0/3lpJViOaibox8m7kO9m2D2XO2S2o4QhaADkNSyhpuibs148WVcPL4tsiRiAS/CLuvFj1iEBEYDMCWyX4EXlvvuxOZ6K+llStM40KUXlrUVu3MiZ/OsPaj3+TwbmX0bxlhpw2s0qIOqUhJO9LOgzQgeplw8BisibJqjGYalKNpfh2o3at65W4QR/dr2Bdn+m16zFVRZt0uAUhWwZStkjPGp+kdLylacWIr2QWizt8b/Z6yVH4Ew6kyDx5p0+pM3xwhws0HQheyF1Ieu57nQVnftOD1l4+GmpJtDB8+LMua/7V8a/FiEAk+MXYa7HOEYGIwA5BIEi8ouXWQvJlcJtrlIrpz/yI7j9+BffzG2kwQTcztEkYuJKGVVjfZyB7+VM5+kF7MPmo+6EevA+D/VfhV4/hx3JUM0M3stpNb2Dp+YpBr6C5pkuytgO3bMTdsJ7BL25j8MubML/ZAOsLqqqgQYMqyyitZZImmYVp1jPIFO2THkPzr55E9YAJmKn97+v885tXM3PJ/bdJ5KHtcwh9tCjYIcDGQhYEApHgF0Q3xEpEBCICW0NgRE4jMtraNb/rsy1Ja0R8cs+mMsVVTFT/kxp9wwwb334h2dk/wVWeQjdRKiH3lr7r0aVDM2uQPfp+FMc9iNbjHki+/2pcS2NzEFdyySoXCNdrjHUkvt5nFxc3CYYjWvRKrhVtfA/EQF8NKsyv1tL44U1Ul9/I7KXXUl51XTAkzNUKxmnRpc/AW8Yp6R+4J/nbj8cf/0B84VGluMKJul4MC2vpfYTLln+PPh9h8du+H10X3xcvApHgF2/fLbmae+VwriJRov6sY38F6+ktWxr8d+uoYvK9KBRDOE8rLkT1J3HS2hK0+LcgEPzaXR1Zrko8iXWUSYJpa5JLb6b7xvMx37sOr9oMtBjMKSaqipIujLdQR+9P+/mPhccegFuRMOMr8tKQFiLVizp9uOc9dKsTIzZRhQuri2W+7IcHo7vRXrmVXPIan2pCULsMtAV/4zSzX7sKzv4hfO1/aYgrWyILkXoXv+/W0ZjIcaceS/qaI5Bde3qe3JpgqS91kWNE4psWM3EYLCsEIsEvq+5e2I11XqJxSZSxYTSPYQyPzVZQo/r7IP7IHClTqsxlIdBJbS40pPz62kj0I8ziuyAQdpeVIq8shbFUIk2P57Qu+hX6pedyyw1rWKnGcMqEYadtj3WZZeIphzD20sfRPOzedMahX3raPRdIu5RlQ2Dn0QPEQl7C3yjx6qsj3Q3fxbtcguHIEULbDm8RI3epWxWs6yFNDf1M0brNwqd/xI0fvpixn95Cm0k2JiltHNOqi7Ylq19/NL23Hwktg50ekOok/C5kbz0Se431cv0/Evxy7fkF1m6Z3IJnkoQidYpGSzGW35naR9XedD1QAIMeVIX4H4u45INrUFCTjm6I7xEBQSAEiLE4cWXTBtNOSD59FetefR7c1iVNWmG/23pLjxkaD7kX7Tc9Gf+Mh9EbU5iBFXYnMxmVsLdWmGCkFpYOmzEe+qrLB8FnPXwjUfNrCX5YleFoFTu32ttfyqtd9DyJN8way4pGQvaLaW5911epzvsBTQnUo5rMiLl/WWHdRswLHsvY+59FlliKygTL/pHx3OZKxbPlhkAk+OXW4wu0vSPCFmvm1pjh8h/8hDM+8B5MkEbmV7rWbtbxtnEVjzzsCE56/olMTbbZ2LEUpUyqtY9vnOTmY7fc/5KkM1aLD71G5SnFf/4M/9JPkq+3rEsTJr2mrGYpGDD2jMNonHYs6r4TDCrPRuWZkIh6sseuRErWJF4jW0tBDT8HXBnPcz8bWfhvNoObc/EWpyLgp+K37zzTTZhVJeNZRrNrGJzxP/T/+j9pru+ikilmjacxcKSyQ//KIxh/79OxEm5WXOqHIXe3KD7+uYwQiAS/jDp7oTe1lr1hckLz2fM+x4uf84xtrvJDDnwYL3/Nmzn6uGNpNMcoQ2APcReq90W3uaB44ZJFQEhXwss64+iPJ+RfvAb+7EyStSUD3aQMGdt6eNPFveqJrHjL01FTmn7VC3vs2mbYRALW1FtEEjpX8rzJIer4uYd8Gj6pvw6Su3wfktTMuVAWASPyH30swXwGpg4rO1WI+51nuuHJsDTzJhsvvJr+Gy+g+au1IYa9UmPBj77r1qPe/iTGTjlaPPhQVZ2cZouqjR4T35cBAjFU7TLo5MXSRNF0jvYM8xCZq46lvGr16jqEpgTykEkypOOslfFF0efW227lqit/witf/Fw+/5Wv8oQnH8lNG2wIWBIMmIZ+vosFh1jP7UdAxklIvyL77dZTak8qseMTTTqW0PzGTcz+5YW01g7wuolWA5RIzGnJirc+nfabj2JgLEmnxGqD05pMQsFK4Bqv6sxxIZVsbbi3ZY3n0/1w73/Li0aLgC0+F3V9VolRHgzCgIe8L0lvoHAVrac/mObKKda/4hOkV69B9hRkITvlmqz/v19l455TTPzFYeiZikpS29q03iaQssKCow5Vu8Vj459LEIFI8EuwUxdzk2T+Ca+h5CMhPN/9Lx/i6OOPYWaD5OD2VKoOB5IazYZ1a/nQBz/AeZ88k7W338zrXvky/u1TF/CQgw+i7MnENyxoMYMS636XEZBeFzW8RHsTsV3CxKbakDY16RXr2PCyT+GvWYM2LWZUha4smYHJNx6Le/NRQUrXvZJKS946CQkLpVwnS8zhkJJtIDm2JPN5lR1++VtH4Va+2PSRE6M7FazsxZ6krzQTZQXTJbOP24fGv/8Z+uXnYK/6Da69ilLS4paO7t98nvSeK+Fp96ea7dFvKPKi9kyRWDaB5+PvYl43LdU/6tBFS7V1sV1LAgGTtsmzjHysTWNsjLzdJGk18XnOynvuwz//0zt574fODNL/r375K775ta/TEgOkrYQzXRKAxEZsEwJipd41nj6WyUph2wnZ9R3WveJT9K65CZ20mBWrde+Z1Z7s9U/inm86Cp04dKfCiciciJtbHbc+80Lvv5POt6le23qRaLNGZCzx5zPn6GlIrUbPeFpH7M3Uu46n3GeCvFPREa2FSRhf0+f2Uy6guHItSbvJRL+PlnC4uk6JW4f9DeZ+21qVeN0iRSAS/CLtuOVUbWX7IdKmLgt8MUAVYkRUocoSX1rWW7jv/vsG1ang0kwlwWcdt3w54RTbOh8BJ5bsqUYnmkE7Ra8tmXnj+SSX/ZIJPRGi1yVWErjMMPnax1P83ZHc1nC0exIsRuw3RJ1Uu5pJEJlast4kX89/2E74a7RdFZ4oRncaeplhJlG0LLiNjpljD8D8/TMpxismq7KOh6/bpFfdRu/UL1FNW3yWYyQznhLjwug6txO6asEWGQl+wXZNrNgIAbFWFsK24uGuxAUoyDViJhyigWkDJhefunryrXoSH3zodzfSp44Ki+/LBgHxsxB/927L4PrgT7mY7ud+TNNM0DeQOrFULzDP/0OapzyRUlmynqLwmukGJFoHozwheQllK/v4u47e53eTPF+2m5oSJleI3kiWODAzMHbSw/CnPIGuW0Mz2LFoJpjE/edVFB/8Hv1WxiAVm5UQNWL0w5j/gPjXkkQgEvyS7NbF2yihbnnNPcbHJ5lSMD6ZMjaRMD6hGJtMGZ8wjI8bOhtmOfOD7w/S1l732IejjnsKs33hexneW5Y2t+R4vmQQUHVUutQSIr7Jyk9U9AOjyGUh+IFv0f/QxUyYSfoh2ExKr+pTHXMg6fuegZowtGTQSC53X9II48YEKb624xhJvrtuPI3sR+SJtRSvSEtpJ8EgUKz4m5XD2or2Kx8HJz4G57t459nQ0GQqQ7/vEtx3bqJq5DRLEwL7iB2LGBTWEfXmu/MtmfEQGxIQiEZ2cSAsKARkIpsrJcnkdslXPs/69bfQ6YuHsExMYskMaZaxfs0aPvCed3PzTTeEdhz/7JM48KAHsXbGouyQ34fGUAuqobEyOwwBGSNiYGZTkVE91lnEAFNyoIcQtOdeSfXu/0LrJpmvDe7ycob0iD9g7APPpDtpac56yjRhYCqM07StQtzJZcTJ8JFnqBA+ee7o3GFN2LaCJC1tyN9eB7QvvKeXStp6R6YMk29/Jht+cRv5FTei7ETIN+9uX4v728+z4qwXU7QTvC9IB44iz6gkdO5ubM62NTpetT0IRILfHvTivTsdAZlY//X0f9ym55z4/Bfz3n/+R9bM2iDFBMW+1tGSfpvQW7wXCUclQshG3i0TSjFDgR5vkvz3Ddz+V2czubHE5RPMSjrYskv5gL3Y87RjuWn/Bs3eDNaPBVE2GNI5RSVqeZF0hxogkablNdoX311obZbq6xj30vbca5yv6P1Bk/apx7DmhWcysb6kaxIyNY796s/pf+TbVG99IqqncZksWCp00HDtrpbE5+4KBKKKflegHJ+xSxCY3riRmW6fRlOUl7XF82hC3CUViA/ZLQgIyUlvi6V5LmGLfYWfaGKvWY993fk0b5ilm7fo+ZK06uNWTjH2Dycye8Q+6L6lWbQoEXW8RjuFRLsL1D5H87NQxtHcesjk3S4lF4P45ytMt0Ad+yDaf/7HVPRJREIPMe4y7vj3b9C6fI1YoIYQt5JnPt1CW7ZbOi8+dKciECX4nQpvLHx7EZDJ+9TT3s1jH/+HzHTlLzGNthifhEAm4y3N17/2dT5z5sf40uc/w8knOT5y1qfI8pxqINP07jOM2t62x/u3DQHR8ogqXULDl8pRNhOSNRXF2/8LfflNZGoKVWoaqqRoePJ3PJXkmPvSL/tMithfGXwKTjK7BWqXXAYy0mr5R0h1d0vud0JCXOisw2IZJIbMJfStJe2XrPiLx3HrZdcw+c3fMEiatG1G56YNTL/v66z61xNY1zT0TEUlUR4lqc68TbE7PSl+sIgRiAS/iDtvOVRdKP2ggx/FEx9zOOtlH1T2RXU9ocvUJHuIjz3icJ78lOM58lEP56ufv4AXn1jx7584g6w9hS2lhHgsJQRkySb9XntT1GNALMayqkJlCS1vGPzzJehPf5+eamNMSlNJjoIZqjc/mfafP5JucCkDay0kNclpvZnIJbDMgiY+70OkO5+I1kEWsrI/r0kGjv69cybeeDTT//Pv5IMieJs0fYP+hZfDsY8me8Z9KYxHW7GqX8CLmKU0aHdTW6KKfjcBHx+77Qh0e102ALMzFR2J4jXjmZ11dDZaOtOWdR14yMMexPNe8rJQ6CVfvpA1azaQxOXrtoO8iK6UfXGJIidxaIJCR9KsGofTjqplKM66Av/+r5CqjLbPSJ3FluvZeMJBtN9wFANVhYWfrxKcyUIYV5kIJQZ8TetS8OapcSFJ7/PqIlK806ROUiw7cieBbnTIeDf2+ANoPP9wjJ0Otgkqy5nsVNz2gS8zmC5QqcZUYoUqGrG4CF5Ew/8uVXXzKL5Lt8WLIwK7BwGZimSHPZMc8JJvO2TMrJjIDPvuf+9QqWZrLOTENvJlPJYcAkLsLsSE96RJnUA9rTxuvAHfvonBKZ/Fz1RMJ1nwXdeuQ+8x+3Ovv/1TaCU0ep5M9tpDsEMZQ4uX4CQGvdQ+EH8w91dUfRtyySeveyL2gH1oll0smlK34HvXUpz3A7TkehD3QTf0TJljb7DkBswyblAk+GXc+Yux6TKRSUpZEbvCJI+n2UyYLSp++P3LQpP6g4LKiro1esEvxj7+fXUWQpaEbpIOtbRij+ExrZTmL2fovP5curdOU+pxGk6TuFncvhPk73omxf0nyLtVGDsitIp62kqwm5A65vc9deF/PyL5QgnJOwYPmMK+5gnITr2vbEjSlKDRH/wm+bXTqGY29BFY+G2LNbx7CESCv3u4xbt2IQLjExOsAlaOJ6yYTFg5qZicVOF8r8mEVMGrXvJyvvjZC0KtnnXic7nXffakV0YDu13YTbvsUcEfXWm00tjKhWA2zOUmcO4AACAASURBVFg6b/s8+vIbyfM9aaoUbXv0WiX524+j9dh7U/YqulpRJAqXJMGnfLFrp0cq+03vQKaS4AmQFI78pEPQj70/TdejTD2FaZH+7GZmPvl9kkyFML7ScaP7d1knxgftEgTiLuUugTk+ZNsQEMlcrty8Bypnn/v0ufzimisZDFyIwOWUqfdNjRavH7777e/xufPODI+YXLGKF770ZWStBrOdaujHLKXEYzEiIJbxskecDIPMSApV2SvXVhZvJTrTmFSx7p++QfOCn9BUYzhbMWv7VKpD4/XHwskH42b6NH2K0ynFyD4+xHevQ8AuRmy2VmdZsEg0vyLxmMLhVuUkLzmcmSuuJRtUVCrFMEbnE5eRPuNgzINX4bqD2v5AGbQTW4Y6yl3Uf20N4cX1WST4xdVfS7q2wUVJ/JNkTg/uOzXff+I/PrhN7W62WnzsU+dw+BGPZu1GF/yAR65O21RAvGjBIRBGg6/3y8Nec2KonMVoGwzFbNPAWT9GveditMvpaUfTWhJmsM98BJOvexK9yqK8pZNnNPuKdBjERhq7VHQ8I/94wWiQQLA/MZp+4Rg//mHk5x+E+uKVWGMga5HdcDvVx/4bffrTyJRmQIXxOmx92GFOB9GUxGNxIxBV9Iu7/5ZU7WVycuKb+3snXpnw5ap6Ajrk4Y/kr9/xDs664Isc9SdHsW5WpLzRt0ElsKRwWk6NSa1HMv9aSXUqyVUqS16W5OKn3kzwP1zDzCkXkG8ssXlOYtpkviA5eD8m//ZpzEwZBqXFJwmN0oc870uatyRdvVjXhx+TI62gO5Ww8oWPp2hnNGzFTKDzDH/297FX3ILL07Dd4asyuM8N+X05DbMl21Z13UYbZ8Al272LrWESDhS0UfRmZ7jp+v9Fa4Nkk5t3iJo25MYS7a1jr3325v732oMNFcz26qRy2jskqUa9XJh3d/xjESEg/YtRwefbOMgHFpdC1UrJbi7Y8Pz/QP33L7FpC28VLWcZ7N2ETz6PVY/bn86so595WoULxnRFGDuLCIC7UVUthvE4eqknwVA0FOMzMHjpJ2l9+nK6egKnPKWdIXvZ4/H/8jSybhUs6vupplnbIQ6TNd2NCsRbFgwCkeAXTFfEiggC4rYjBj9Zakjz3+2iK9p8MagvKxjIBO59kNyFE7QxtbX9InaBiiNCgtnUY0CH/XIdAtx0Gp6sC4O//CzmY/+N1S1yndCv+gwafRrvey76pYeRbRAbDDBah8RDRarCHrOEhVnKh5EFsSspc4MqPFTgVmrMt37DzLM/wtgdDpVmzJZ9mnu1yb70EtTDVlP2CiovcX+SAHqdjXEpI7X027aFaLT0GxxbuHAREFWSlslYpIvKMttxdLueXtfOe/W7FYNuRXdW3i3VwIU45DqEuRPJvV4oiDYgqqcWbn9vS81EUyPknlSSQdCyLq0YVxrzoUvpnfEdOmk7kFXHl0CPFS95HM0/O5SkO4zSluigxSnrQbEtj1z01xTSYmVC1jjBrp0YdKek/7j7UD77ILrMhkA/mc4Z3HYHxccuCxox0ZyNuaHRYfzhLPpxIA2IBL8kunFpNGKzXCXDsg6iWccWk282v8RwrlbbS6a4ejdeEPBerOtFpV+XJAuFzWUuDYyWcivEUGxu3PdwLnnPjEclPhhNrmim+C9cw8y7vsi4y0ltQloqmnbA4NgDSf7qGFRVoSUErezTh5Sv4vQuY0FG09IfEULqVius1iGcrxjdNcpa+zF50iPJVzQo6eGNpUVOccGP6F+xBtc0lMqGcNDigijatJHx3lIed0u5bZHgl3LvxrZFBBYRArI1I68QH36kzXEV3lVY7xi0U7LLbuHWU8/Fb+gjO8ziMpe5WQYP3puJ//ss+nu3MIUY5alwzyJq/g6r6pY+7WJlJXi0Zyryw/bDPO3hePrBfiUTE8bbbsedeWlYNFdJgjFCC3Vc/i3L2mGVjAXtEgQiwe8SmONDIgIRgW1BYEQoo3frHC2r6E/k6JsLZt58PtlVt4bc7kJGuS3YuDLHvecZNA5ahZq1dFMV3MRUIKpteerSumaE3aZWWYcYF643FQOJ7PvCI3DjKd6W9LQioUV17v9gL78V35K0ej5I77JdJkeU4jchuehOIsEvui6LFY4ILE0EhEjklSRJCDMsKmIhGZOmZD0o3vF53LeuITEraTtDVlk66YDsHU9l7Oj70ekWeOVoVxLGWBKxLE2cfl+rRjiOrhNf/xpXQ9Kp4NH3JD3moXjfR2wTrMpQ62ZJzriMrIRSIteLel+C3gyNXkdlxffFhUAk+MXVXzuttjIBjGK3i2FT+KfE4E2HpBQiFdz5JcOn/nxzxcQ6p7Zuq3fH5fu6HNnXG52rYEw3fNLwXKx/g/ubltzesss+jDk+TAoidlJmmEUs1FV83Te96hN5Zl1Kvddaz/FyXn8vKt1NddhUn621bVSw1Kh2vQsn4sY3bHMoR562FWykYl7Kl7aNMJIil8Ee8OaxcNfOpC+FjCQzWlWJW5vCtRKKpsaf/k1mPvptimSKfpZgq4KSLskrn0zy54fR6jnEPUwi3kmkOieSqezDL9NDfs9yjKT5RGnaPfk1WHQOY88/HN0aw9uKlk7JaNK94Arc1XeQtTIqWR3podHrMsVwKTQ7RrJbCr24HW2oiV1Sb3q8pJxspCHNqrifyXTgN+Vev7Nxkg7zp5Aj9AeeqrKYxGCtI00MWTa0Yhe+DyFGa5enUF2xdA8cKlbSNYFKgI2yVLjKi+szVhYdiSFJgyt0TZRBZXjnush0ZrXE4a4tRweFol9WwZrYW0ulPc1GStNJalGZ5obPlDpI4pqtLHVlQSHG2YP+cIFAGUhbS6rNbEj6ApKQ+Rb3h/nV1fWRxsv3s10LEqFvjoWyTMCjyXg7unFJ3Cqc4o0PGeBMVWNuJenZp69m8M6vsALx3zbkZUXpO9hjHsbYW46kSCHtOxLSYEYnY03CtVoted6X5zEidmn96LzMdDBAFA+DwRPuiz76QIrPfp+u/AZMgrptmuK8y2kd+OQQKarC0h6kYR4oxdBxeUK5qFsdCX5Rd9/2Vl7Iud5vk+3KLDdc8tVLuObqH5FKMnUhWCFfsaj1d54sNVXgKpM1OOapT2XPe6ymJ5HHGgk//fFP+NY3vkqeJigrySoDm28iszDpCBlL3Gsrbm0GVcHBhz6ahz7m0VROYVqGOzas52vnfo71GzeSJCb4vadSmqxA5hwSEEUliNkVs90+BzzggTzluGMpehaDhC71XHDOuaz79Y0kWTtkIgsm1kFzIQFx5Ir5U5gvB+yx99484SnH0RwbQ5UKEsXXv34Jv/zxj2iIC5bRWG+GQUFGdRI5Xdpsw8pGsBMjp2c950Sm9lhFVdbXCbGPFlhzmrJ8T414R1gSb7GJwrYN5lu/ZvC6c9Ddko7JaDpPbntUB92biXc9nWylYdCTvWRNJipl0eAM87rPW0ktX1RDy+XnIqFoxeuk4yyMZYw/79HccsmP6c3Y4Ps+JUFxzv0u3ZMfxcS9p1gnsf5l7CZynw9qeyksLkgXz2CKBL94+mon1FR+tAbvRdKFPNdcfPFFfPaMjzDebmMkY5cTkle1ym6LGohU2q8s7cmVHPLIR7Df/vdksL5krGn42Q9/zPtOeyfjzQYSVU7KEv7cRGiiurbiw1ThjUFZRbff4yVvfwOHPPEwkhLydQU/+9blfPLU07j19jUkWYKSyHbW3knVLZQpvr8iKm/s9Tj6T47n+COOpDfeJGvWi4xPnXkm1172A5rNZpC6g2pdxD3RVqg6r/bcJvZ6fQ487FAOe8ITaE+NkSCqYct3Lv4qn/nofzDezLBGUUnK0RA7f0TwQ6leyR6monQG02jyxCc/mRV7rpo3Wc593nI/lwWWSN4hDsJkTnLNOtwrz8PdPINrjAuoFP0e3ZUZe/79M8kfspLp2Q5Z2iC1JmzrBI3IkIQ2jbXlDqwgJwZzVRlI2ioVFuKNI/dj4sgHw2d/ivcpSpf0brid/BOX4d/5J2Qz0GlIgifZ+pBFfr0gHcE50gyM/o7vCw+BGMlu4fXJLq2RTILyMlqhtePGG29iw4Z1Q1eZ4Wpd9M1bsVhKnfid177F99lvPxqtdi3Jes/0xg3ceMP1NLOEni9rEhcFqkjM4gIV1Nay42oxA4dOm3Rajn0mVnKvmw3di37F4MtX0P3Fr1nX71F5F5KMoGVnXv6NjuFZUDVUeOsxJsVkGavvc09WP/YgOGw/+kftz68Gt5Ksn6GS+gRJT4fFS0g/GrQRm0uV0o1T5PkYe+97X5IsC1bHJIYbb/wNnXV3kGoJoVpPfEENMapSoCKx5K7tAYSYSuXZ7373C+WF8Ktzro2nNQJppShNBU1or3Osed7H0V+7lsI0SRPPitJyh3z/3mex518cxnS3CNsyxsm2kKclWy0yVHWweghjZO5IWc44i12KLKZdIr9Bh7caNWVIvnAtM8/9KM0ZiTeQ0rEdmvecIvuvl9O8/yrWVn1ya0hVhhPJf3hEch8hsbDfI8Ev7P7ZdbWTiCB4siwlTUDsk0KYUAkWEgj5zlURTg3fGSj6HluJNC5qVh8kBtEIiJCeCKOLilCKEKFdhHlRz8sj5SUCteSx/u4a1v7LVxn81y8ZbOgiDjyTZBjjqURqV0m9KRAM3ep7NlOyWE6Lin5oT6Aspavo0KFBijnwHiQvOpT8Tw9F7ZOGPXiKYRlivCc3SyWClqE+DYFSJPVmv16UeO2CVj9PDUrsC9xwH15w2HIPXmwMPCFRSg0S9PoWLalut5CE7ozsMvgkhBWWhY8s9mq7CSeDIq3zB5hXfJri49+hn0wFYkkSR1LM0PzL47HvehJp6UOWOKMTtAS2MWI1X3eC4Ds6lnRimVEjt+FduXrrotQVicTst4aZ3ONTRe8FHyc574dYvYKWU8xyB81Tj6N96pMYDAYoZ6gqEQBqY9TR4+biPPosvi8sBCLBL6z+2K21CerNOZPj/MpsnjRHn9fXb1a7j+4PBDbkS7nLi3pQKXLnSK0kwZDd+xJk0k6bZNdvZPa9X8Oe8f/QXfkmQTUapE6jygJtHE5ClYZ1gthWCwE7KQGNCaZVslKQv3NSMYWjkP34sO8IXQOtcoA8tfvgvWi94nGMPfdQ3JjC9spgXyDJN8IDwjKh3m90QvqbjlpSD88WIrrTcWd8hsuEO10ZP5Cut3Qkran0nxOLBYtkMjWNhJlTvw5//wUyEkrJa+5y+q5AP/dhrPznk5ieNCT92mpetpCCS5fogpzDSCEyTn7rOF6e6AseglP4bTpxRTSkZcXMVEL+mSvpPO8j+HIiaNqMncHff0+aF74C7jdOs+vo1lY0yxO8RdzqSPCLuPN2bdXnsd3w0VuIrb+tQl7CZjqcLYLqX2GCtXTaSLEX/ZLuWz+H/tGvydU4TqcUvmRMjO5wDCgQa169YpJq30nUH+xFfu+VZO0UMW6XffRktmRw81q45haSG9dT3TZLgSWnRT9JsEakPE9qpaReHY7zmIcycepTMI/eh0FHnqHJtEEXFpUoZnQVVJNZbScXlhIyOW5dNVkvPeY3f6gOmP9h/Gu48BNzuOnMsVdXoTLD+rRipcm4/cPfxb7yfMZ8RmUMmUkYFDMkf3Q/8o+eRLnfJPmGik7DkHvxwBC1vJT22/omQj5CYO4CXMheha052Zov6Z10Bq2vXEsvG0NXAwo3Q/LuZ9N4/ePIZir6iVw/Kim+LxYEIsEvlp7a7fXc2q97a5KsCOvzPxcpyylLs7L4NGV9BhOJofPJy+n+1QWktw4wSTtI4gNlcWWPhAHl2AT+j+5H9sf3p/nIfdEP3Rs1JhbplkGWBBW4CGqp+M2LcdZMH3f9evwVN5Jc/CuS7/wv1U1rRdOO1+OUCeSlo/CeAV3MvuO0/v543IkHo/tA4ckcNJxHMo8NgjQ/Av73LWa2xGc+BqNS4nuNgOzmJt6RekcnsTTGmhTn/gRefBadXoJOGkw4TaeaoffQVex/xgu44xH3oOr3aRcphcRDsCGcDQj5yJgbRmCTJ2w5Bpc77iM8ggQ/1G4EpZXxdMcTGp/7BeqE/2BgFankdPAFGx+2mlUXvBz2HUf1thzfyx3RxdH+SPCLo58WdS1lr12lGj0o6DdNSGqhP/IDem+7gMk1FquaVAlUfkBedanuuQL+9BH4Zz4CHrQnYyuzQL6Vs3S1xCZ3TPUTJHhHVVWUaYJNFUo2xbMUawjpRPWvZ6i+dy2dz/+I8qKf0+6LAV5O6Q1tDD03S8f0mHjbcax89RO4ZczQ946pHox7TT9xlME5W+D/fQS/qLtol1c+Ee8CU5FLRPlGRveCq+i95hzGbu8xSMYDQeuyy/p9m+z10f9D+YR7o6aLYKwoWz5iWGeGnCPxD2Q5Ja6YIwIbEdoub9gieKBgJIfgV6QhtzKmUJTP/RjVl64gZ5KBSajsDO13Po3szY/DzmxNg7cIGrvMqxgJfpkPgG1t/mhS2PJ6mUjl9bsmViF48ReXMKK0NfqMK6je8Bka6ywzaTvkbTe2Sz/rM3HCYeRveDLJA1cFSbssK9qluJOLwZ4ORlmyX66Uq11/RG3u6jrIHmwOVKmnn3oR7EDCnG60DC74KRv/9askV/yaMTVGmTfp2gpf9dH00S94BHu//dncsl8T13OMFb42/pIt3TAf1hJ5mBu3IpxvDZ9IMvVoCYZucwTAAJ+3oZ+SVkbzi9dzx4s/TnLbLLPNFg2Xs3owy217GPJ/fR75Mx5EVZTkXROCFDlj8V6sL+qOsLWnY23EueUAjX9vQkDG6GhMht+rJOpRHlNWDFbkJJ/+Gb3nfAhPm8rkTNgOvYfsQfPLr6ZYnaMHYugqG2fSmTEm4yZgF/CJee1b3v6OBVy/WLUFgoD8sLf2mlu98P3QojxIV0NVvbjfiYo+aSfMXPAT0r/4NGaDZUOSBZcdZQf0GiWr/vp4mn9zHLP3bGFLh+lVYSKpjKIUy3MxwhKrfm/xRtzzfHDTEyYWEpHkImKVLWFOEyc+/BJiz2JUhTnsXkwedTBF6Zi97gbSTpe2y/BpE0Raufx6uHYNex/xQMoVGVSQiZQpFvZiDRCMlOqoe7LAqMPubmb634fNXJyW23mpRO0rWNWpXyWkkKQqbbRz8q/dxC0vPZPs5mlaKmdgFOmgYM2EJ/mnZzL1nIOoBrOhL0ujsKnEOlAhZPHQ2nIovS83VO96e2WMjg45F88PCSyElyQ0Br3HCrqX3Yj9ze04lZKpHHv7Rvz99kQ9Zh+0RIYMLjASCljCSG8ub1RufF9YCES948Lqj0VfGyFCZWvCFX9bGWASGpZWyuA715H/5flUG3uUWgLgKBq2hHHF2D+cAK9/AhsbUA1sCJsbwsmKn7l404mUJuFr5a95o7b2dA7/i9W8qG/FklrUj5XkxU5oFAl2pmDdfi1WvvdpTLz3RDr3aeFdj1ZlyXxGqpr4L/+Y2192Ds2bBgzGNYN0GA8dIXQJ9iNtEd/2zRqLRd9hO7kBIuvl0i+FGC06jLP4RNwxGww+fRV3vPDDmF+vxZkWRWKY7Mv3FRNvOZbJFzySbinmj80QaVD22LWEQ55DVDu5+ku6+KRSyMulOhjA+numTD7/MSF4k/EWWciKd8PgrEtJb+rh8yT8lsdLFTxU5ihlljROi7lx86bKxdyQWPcFgoBItxIwVDhWJglXkaUJ7oZp7GvPw/x6miLssSYktqJsecb/5liaf3EYA1WSFxWt0tbha/OMQRASVFDHB/W4F9WgiPFDxp/3LiFv3SYXqdSY4PPbU4rCGLzEMLeOPZ59CCs++hJmDl7FwG2kXUns/ASVTNL5ylWsf/XZNG+fxTWMFBi0BUnlyYNCYXPI3a2p5RdILyyoashCTXKMb0iKEII2y1PK86+mfMXZ2N9sIG9MSvwiirJkkFfotx7J6lcfgS9LygrKQnQoSYgWmIomaU7AlQXV0EVWGYlo50wSFsFZYemIK+Kf3J/2o/cnk1j/QvAmh8tvwH7pF1SZDoGF+nVs6aCRWWRNXnbVjQS/7Lp85zZYVNcit9tKIuQpVJ6ixc3mzZ9DX3EL3WSczCc428OpPtlfP5XqNUdg+4MQutYXBWKAlYgbT+nIxIJK9vuCOrBW8wq5b+3fKGpZ8PeVZnofEtYUmREZnLwy2EHF2rLCPn5fVp715/QftQ+3+NtD/vBSG4wZY8WFV5C+4Yus6BIMAmcSTzeHjnZYMeQb7mXOVXnuXFQXcemidTES+8CSmZRWltI986fM/MW55GsLJvVUyB43XpZkqiR5yzHs89YncXPSpywl2ckwX4GMArHDEOyHecoXMSoLouqioq/EA6WCtkSQ6DvK++SkJz2cQtkQV0C0KqrK2PiR/ya/pRM8VjoNsaeRJkQZfkF05O+oRCT43wFO/OpuICC/fKORJAdaksM0FHf889fgM5eTMI72mtKV9JjFvf5I0tf8oQS0D2FdKSyJWMEnip7sD0r43OE23yZpORhU3XliCXuKW0aIE2Fb1OzOMiaW8X3QJkMbg1k3wD9kJZMfeiGth98X63pB/Vvp2vBv5uzLWPfOz7NyAGMS1U9UxSFa2uYEMdHMaOvjQ3pn1EPiiiVJYEyiaLYS+mf9lOk3no9e36enG2zIPM2yZDqr6J1yNI03/jG3m5KstKRepHZPpiQEcYlEEpQxYWt22frD46fbjIAEG5LfqRG3E1JSmzJjHfq4A0keeB86rkvqNQ3atH94K9VFV9PINLoaGrhu85PihbsLgUjwuwv5JfBcIWuZyWvyFQvdOvd5qcXvvSIVi/nPXk379G/TCpa5olwv6flp8mMfxsRbjsImnrwLg6CETagke5WvjbIk6ryoCYUkRtJyII6t7MFKHeSaEdGH6yUEqq1zWkva0YFExJPCJJJXmlLNetKD9qD1iZPpHnpvOu4O2mHvUbYPEvrv/Sbr/+N7TKaGcckxntS5340Y3IXAd6IzGMbdXQL9ub1NkL4pJPhQsFFQIUWvUpbKVJg0xZ19FcVfnkvrjg6pyUm8p9Ef0EsL9JuPYuyUo+g1wHVBDVJUCWUjoas1VkIgy15+CA88Wj5sb42X9/0hj4QkSjKKnnileM1Ez9G7TwvzkkcxRk/MIuklVRDz3Scvp5qtcLmEF7a1Vm3Oonr0G13eqC6s1keCX1j9sahqE4hczOWNCy5wsv8dLOarkn47p7pmHYNTP4ueKShUDmLMZgc0Dr4XE6c/h3IiRc3aEFQmbMIOjeOC+n3oq7u9gEgUeTHSC/uJura8x0psex8k8kHP0XrAalZ/6M9Qh9wPVZU0ywSfNmgUKbOnfYGNX7waO9XAVxVKLPhl73JYP1Ew7KCqbm9TF8T9uaT5LWxI66q85Cbw5FmTmU//iA2v+hT5+gHeNAJouS8xuSd52zHkb3lS8HFHUpcqE7QsEuGuDPGC662ZoTJn6By3IJq7qCsxWiaFra0Arkd+G80S2k9/OMkD7gVFlyaanlZsvPQa+hf9nCTPQg55iUchv9UQFW8ri+5FDc4SqXwk+CXSkbujGUHFJ2o+K3vlntzJqt6GzHRZ39N551cxV99O32SUom53BYPV44y/5+mUB4xTFp4y18FCPqkkEctoCt9xrRGpQhYeommQ8keq/kzSvIqRn4bpbkly0BSTp58I++7DwPdDDmybN/HrSnqv+QyD/7mVrJUGy39ZLITM46P6jmbKHVftRVuSQCFJSTYa2Tw3ZM0Mdd5V2NecR7l+QGkaQc3edx06Y5rk/SeSvOWJDGyftFdixNJeNDFGMwheGCoEZAkTlWhNdvwQWbRY74yKi32D65YU+43hX3h4yOzQr7oondDsO9THvofaYFF5FhJGSR1Gv6mdUZ9Y5vYhEAl++/Bb1neLr7mkRFUhR6f4oSf0Jb/8WEbrYz8g+9RlWDUWEsJY36cwHTjlSZRPvB96vVjLK7Ky9qd1kghDUs/t4GM0+YzegwpfCFrCmlaSr93jjGJmukf+2L0p3n88dioh7fXCdy0zTvs3farXXYC/sYsfS+oUcnMWC5Fzhp2moEwcg6QiSRIaeULvjCuZfsU5NO+oaCUtVKKZKAuqyYTsPc9i4uRDGPiSVGlSElJR5VvJWyDRkWqPSNkOkZ2V0RFJfoTEzng3IVmTLSz2WQfDAavp0ye1Eg+iCd/8FeUl15CJoevQ2FF+W6PXzqhRLPPuIxAJ/u5jt+zvrLSmSBL6WcJsZlgreWFbmvZ3b2H9P36p3v9OMgaZZsxtJD/hINp/fji6Vwa1X6BzUZsH1zp537lUOZqEhCuE6JtJihI/eKXRWcagX9A47gDapx6DTqFRWgrrGKgW7rvXMTjlQlzf4bIk1DWUI+Sz7EdCDUBtUCdWdZp2I6V35pVsfOP5qOkBA9NA3LKagwHrxhwT7z2J5v95BOtsQXsgmeEkIZGnFC2QxJkPZl8quEsGcp9D8BHunYOAjGPJyJhIkp9eSXbvKZonPoZ2sI/RIV/8YNCnOOd72FLsbIb9Lh4v8m8n/353TquXdqmR4Jd2/+7U1omqWnuRgDW5hHZNPXvcYSlO+xLFb9bRycdDRDjV6zA4eD/03x5LTxKLWE0/VSEalg0T99CnfScxpUw8myYfOZfsdsNHNnSCLz164NHWk3ZKzCseg3r54cwwCOTvlCS/Maizvk/xr/8vTHiin6z39iUQS23gN1pACOhyvtQPCVmaiKAt2gwJBKRdiG0uBoyDc35K//Vnk6+docwa5JLAp5zltomSifc9F150CNPWUUq0QC/xCiTmQD0AAk+EMiVJ0FAtv5PGxlLvo7vavhCIVvrBpcEY1Tz7EZR/sCcD36EQY3vdJLvoaspvXEPSEim+tnKRjH7RGOWuor3zr48Ev/MxXpJPEPoSK+jKlkECU0Yh+9q3n3Up3Yt/QkON0yjkNz+AhiL5m2eQ77eK8RlHxzv61m4lN5lI1QAAIABJREFUxOjOn8VHT5D6i3o+7M3res/XJYa8UPQ1jL/5T5g69mCcXx+uKdKUcZ+jTvsSG758DY2GIqsKnPFUYXLbbOk/b0GxJHu/bpRYtFfiUSAhhCsbSLyRZ3TO+xHdV55Dc6O4FrYZq2DSlyQTGeOnP5fxkw/Cz5TowtNUCVobrAQiEoOtsPVRl7/0l0gLa3AI3koM57xo5jQ9yad44BTtZz9afi1hOy31KWmnwH7025iepZJMflUd9U586uOxsBCIXbKw+mPR1EaI0irxbxa1XoEdM7SvuJXB6ZeQ2ZRCa0ojka5Lspf8EZNH3o+y6+imKuzbNyQn/G5q7UianytlV1bq6rHOYvqW2/Zp0DjtaLoP34uul+zyhkKnQd3c/6vz6F19C3YqDSlNxZFAEt0sF2IP3SZCnjH0E0s2KLHG1l4RZ/6Y6tVn4zYUoNqUJqPjOtw+rpl49wmsPPnhrB/0aWJoSVxzK/YQDucl3t3uGhG7aSAuwMfKYkt+F5Wy5LYKWqz2CYfiD9gH7UVno5lWTczF11B969eopgoujLKnEkMIL7wOjQS/8PpkEdVIS04WbCOlsd7D312Cv2k9ZdIi8YqN1TTF4fdi4g1H0TU2RIHTKkHSfYr0vLu27EYEPwJa6pGI93blKTLJsAWNjqV42B603vl00pUZY2WPIgRaadC6Zi32lC9QbajoiCazLDdZgc1V04/KX4rvsi8ueQEaSgVPCCZyzMd/woZXfor2WkuWiLU8rCj6TE8q0vefQPP/HMKaQS94WQiXi+ZDFoohcU+0ZFgQw0T8QyTrY6407UKRdBz+gHHy4x4K9JggQeUN8q6l8+FLaa8Hm0n+CUtaxgXagujEOZWIBD8HjHh61xBwXqO8Ic1Tqk9exvov/pBSt0icJ/OWPVtNVpzyVAb3yQMJhoji/RC1JuR/310C20hyHxF92C5XmtxpBsbT1xXjPUu6ocI86YGMv+0pVBLsoyrxorpUDaovXIX6u0sQX+1qIhmG0l0ee+8ySmTPPZMtjtTg8gT/nu+y4VVn42Y1PTMWMvDltsttEwX7vO/5TD33YDYM+oE4srJOOSpYSlbAYFEnnbAM7Bbu2i9sN1wt203BDVQiSaaYtEG3AekJh+BXTzHtO+QSyY42xVd/QfntaxnP0mBpuuN9YHZD+5fYIyPBL7EO3RnNkXlXDSdfcVEKe3UicSlLq5mQ/XgN/dO/gneKnIRmkM5mSU5+FPrJB9DrFiSVCTndfVK71e0u6f234eOogsSZWEkzq+kb2VN3qNJjX/lYkhc/ngrJHy+x0MWhawz7r98m+Y8rQnhdUhfcBSUpSmJVHTFv3gpGZNWRBcBvq8UC/Vy6WsaAk0BBSppaj4dc0ZK8A6d/F/O2/yTtWLJGivEV66pZ1k55Vp3+PKo/O5h1g4qMjLxMsE7wCXl/gyGXLLjCYmuhDYoF2h07s1pKggxJPgkLA2VwA085cKhH3IP02Q+nK0p7SS8rC+JelzVnXUrV9TQTSVxTDLdaItXvzD66K2VHgr8raC3Ta+t5V2b5ORzlHFnq6QCdf7oErtsASY7RCaUY1j3yvvg3HUVVFLT6IIlcav/loWp+gWnzpGliPCw5rsVlS8LS9mTHsVeQGWi85WjMHx5A23UY8wav82B9P33qZ8kvvQXXkhj6lkoXdJuQyJbyPIKXvxcpwct87S1FIjHIHaUvKTPJGKi59d++Q/HWC3CFYJaTlzDpSsxUg/T059J+/kEMulUIEEQp6l+NS9Owzxvc34YwLbDhsEx/6UMligSFCgjIchVScSWVtL8nH0q6egUtybCooVQZ6hvXMPjhTQxMEha1MsLnblONtGTLFtDd3PBI8Lu5AxbL48Udxkkub2epbIFIvL5pKC/8CYPzfoihHX70aVUy0zRMvPyJ9O87gbNlSBgTFgkjSW0RNFrIJyUlZISfLentndF691PZcN9xKlfISgCXNundtoH+q8+m+b8z9FvQtAWNgbjOjch88VOXTBKVkcxjYnFRYcc0DVkEvem/cG/8tIRBwSVNxlxCxw5YP9Vk5T+cwB4vOJg7yllalXgc1P7VYowo4ygK6wvzRzCXnKWGQtDyr+pX+EP2xJ34aDJfBYM6saBP1k3DRy4NGSQrZQjhayWOwTAITogiuTCbuixqFQl+WXTz9jbSY2XfTSlMUkcbkzSw6fUdxk67hLRIsCajIc7ldGg851G4Zz8U0xuQmiz4yYeV/fZWY6feLz+F+a863IpsKTiyTp/+4femcdqzsA0JzFIwUXnG1ASzP7qBzpv+k/YM9CYytLP0TRDhd2qNd1XhEqs8qRytipBjoNHR8NoLGbzvIlpVi0xniIt00/UoVmYk73k6zRcexPrZ2eBlkAlFaB1c6lTIECghg3dV7eNzthcBqw0D50M0O/fiw5jeuw1VD0kMbWiRXHAl6fdvwjQyWRFECX57Ad+B90eC34FgLt2iZEVuQra4qhSiN6hM0/2Xb9P/0W+oTCIOZmhb0jtgT5qv+2M2jKtA+I2+JlES3nUzOotFbTdAfIKh35C9Z2h2ofHMA2m/9on07DSFhgYpmWpRfvZ/KE+/FK0yZtqKRAnBS6PnNHwzBIvqTPbdSRPEUn7V9T3Kkz/Fho9citYttEnJrKKqetyx3xSr/uVEJk8+mG6/H4jfuZxSwgEnkpcsJAQI2yCb1POLComlX9kgsc9Rr4hEL6kctEvwRcXkA/ckfcGjMHRJKk2pU6puh5kPf4tCbDOSmlJCAhuBa05ZSx+9hdfCSPALr08WXI1kMhYPWMmRmko4UUkM963rKM/4AX3y4C5VUTCTDEhe/UekD15J3quwSjOQ+OSSY1piVwdD6Tpu9YJr5FYqJEFXjKQqdRqvUvRA1MsVxVsfT+NPD2W9XceMLsh1gxYrmHnPxZgPXcFUkhOslMTwXnuMk7bLEkGS8dTW4jKRel1Hw9vKo3fJR1IjaaPUSWIAyN8SvEYIXfpO+kvmZ/GJrsYM7qp1zL7wE7gvXE6WtMP3+Apbrac8YJL2h5+HO/EhdDsFxgrxp4j0J4aVoroVtW3t8y5MsEuaGB+ynQjImEhw2NSGlLKy1dJ+9mH0990DfEGmUwpyzJd+Cv9zI7qRBBdZLZtUoqq3YncxP0mQLBrisWsQiAS/a3Be1E8R4zPZU7a+RGU)