This topic contains a solution. Click here to go to the answer

Author Question: Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the ... (Read 364 times)

Haya94

  • Hero Member
  • *****
  • Posts: 558
Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the indifference curve that yields a utility level of 9. Calculate the MUL, MUS, and MRS of L for S on that indifference curve when S = 3.


Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by Haya94 on Jun 18, 2019

johnharpe

  • Sr. Member
  • ****
  • Posts: 338
Lorsum iprem. Lorsus sur ipci. Lorsem sur iprem. Lorsum sur ipdi, lorsem sur ipci. Lorsum sur iprium, valum sur ipci et, vala sur ipci. Lorsem sur ipci, lorsa sur iprem. Valus sur ipdi. Lorsus sur iprium nunc, valem sur iprium. Valem sur ipdi. Lorsa sur iprium. Lorsum sur iprium. Valem sur ipdi. Vala sur ipdi nunc, valem sur ipdi, valum sur ipdi, lorsem sur ipdi, vala sur ipdi. Valem sur iprem nunc, lorsa sur iprium. Valum sur ipdi et, lorsus sur ipci. Valem sur iprem. Valem sur ipci. Lorsa sur iprium. Lorsem sur ipci, valus sur iprem. Lorsem sur iprem nunc, valus sur iprium.
Answer Preview
Only 50% of students answer this correctly



matiaslunam

  • Newbie
  • *
  • Posts: 1
<br />
<img src="data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFyAXgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvhT8SD8TtI1q//ALO/s3+zdf1TRPL8/wA3zPsd3Jb+bnauN/l7tvO3OMnGa7g9K+cf2aPiL4U0PSPGWk6j4l0aw1VvH3iRRY3OoQxzkvq0+wbGYNlsjAxzkUAfR9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZzXm/wC0F4v1/wACfCDxHr3hpbZdSsYVla4udhW0g3qJ7gI7osrRRGSRYy6h2QLnmvE/g98XdT1T4u+HdB8N/EXxD8TtL1K3uJ9Xj8YeH00ZtOt40BjuLZxaWxlYyOiNEEk4cMWi2/OAfWtcVd/B3wHfa22s3Pgnw7cau04uW1CTSbdp2lDBhIZCm7dkA7s5yK4f4j+M/F2h/tE/CbRLbUrSw8H65Lfw3NnFAJLm9misZ5sO7DEcaFIioTLOS2Sqrhu61b4ueB9B1i70rU/Gfh/TtTtCouLK71WCKaEsoZd6M4K5UgjI5BBoA81/Zn/acn/aE8U/FTSX8NLoMPgjX5NDS4F99oN6UeVTIV8tfL/1YOMt97rxz77Xwx/wTbEB+IH7Tclre22o2svj24liurOUSQyozzMrIw4YEEcivuegAor5h+On/BQT4Xfs+fF7Svh/4jlv31G4jEl/c2sIaHTQ4Bh80kgneDn5c7Ry2M19K2t1FeW8U8MqzQSqHjkRgyupGQQRwQRzmgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeU/tJeBNW+IHwvex0W0g1PUbHVdN1mPTLmQRpfLZ3sNy1vuYFVMixFAWG3LDOBk15umpeI/wBof4tfDfVIvh34r+H+meCNVuNXvb7xhb29u9yJLOa2S3tlimlLkmXcxJVVVOrFgK+nqQKB0AFAHivxg8Fa34j+NnwM1jTdPkutL0DWdSudSuVZQttHJpdxCjMCcnMjqvAPJrL+IX7DHwR+K3xC1Hxt4s8ER614k1HYt1czX10qSbI1jU+WsoQEKijIA6ete/0h6UAfCH/BMnR9J8PeLf2jtI0HTxpei6f44ls7OyWRpBBDG0yIgZskgBR1Oa+8K+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AfBX7dn7MXw+8Q/G34MeO9Q0mS71fxJ430rw5rEEk7G2vbTy5mw8fZsRIuVIBXIIOc191WNrDp9lBa28MdvbQxrHFDEgVI0Awqqo4AAAAA9K+W/wDgolb6npvwp8GeNNKu4ba98GeNtJ1mOOeLzFmLSm2C9Rjm5DfRSODzX1cvSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkPSgD4X/AOCa3/I//tP/APZQrr/0bPX3TXwt/wAE1v8Akf8A9p//ALKFdf8Ao2evumgD5h/4KOTLbfso+ILmT5ILfVNHnmfBISNdSt2ZjjsACT9K+kdOvrfVLC3vLOZLm0uI1mhmibcsiMNysCOoIIP415B+2p/yaX8X/wDsWL//ANEmu7+Dv/JJ/Bf/AGBbL/0njoA7GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/wDgmt/yP/7T/wD2UK6/9Gz19018Lf8ABNb/AJH/APaf/wCyhXX/AKNnr7poA86/aD8K2Pjj4HePdC1W6msdNvtEvIri4gcK8aeUxLAkEdu46Zrkf2I9WvNb/ZM+Fd5f3k1/dyaDb757hy7vgFRljycAAfhXqPj3RLjxH4J1/SbRLeS6vtPuLWJLvPks7xMih8AnblhnHOM14X/wTv8AEQ1z9knwRamDyJtESfRJsOHWSS2meNnUjqrYyKAPpaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/8Agmt/yP8A+0//ANlCuv8A0bPX3TXwt/wTW/5H/wDaf/7KFdf+jZ6+6aAGn+or5N/4JkSK/wCy7bBWVyuv6sGAIO0/bHOD6HBB/EV9aV8j/sHWkGneK/2k7a1hjt7eL4nakqQwoERBsj4AHAFAH1xRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC//AATW/wCR/wD2n/8AsoV1/wCjZ6+6a+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AIelfKP7LGlzeEv2pP2pfDdtevNoaa7pmuRwzRoXS6v7Rprg7wASuVRVU5wF9SSfq49K+VvhRdXXhL9v8A+Omg3lnlPFeg6J4ls7uOUEJDbxmyZHXGQzSbyPZPcUAfVVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/8ABNb/AJH/APaf/wCyhXX/AKNnr7pr4W/4Jrf8j/8AtP8A/ZQrr/0bPX3TQAV8rT38Og/8FJ4Vvlntk174aCz02V4XMdzPBqEk00auBt3JGQxyf4h3Iz9U18x/GH/k+r9nv/sDeJv/AETb0AfTlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/wDBNb/kf/2n/wDsoV1/6Nnr7pr4W/4Jrf8AI/8A7T//AGUK6/8ARs9fdNABXy1+1xplsnxl/Zp1tIvL1aHxt/Z8d2mVkFvNaytLHkHlWMaZB/u/WvqWvlz9ve0m0/wL4A8W2V7PZax4a8baRdWTxqjIzTTi2cOrKcjy5n6Y5xQB9Qp0H0p1NXp+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPhf/AIJrf8j/APtP/wDZQrr/ANGz19018Lf8E1v+R/8A2n/+yhXX/o2evumgAr5u/wCCg2kzXv7Kvi7UrW6W0vPD7Wuv27SR+YjyWlxHKqMMjhiuOtfSNePftaeDbrx9+zT8StBs7mK0nu9Duds06lkG1N5BA55CEZ7E5welAHpXhfUZdW8O6ZfTKizXVrFcOsYIUM6BjjJPGSe9a9eafs3eMJ/iD8Afh34kubdLW41TQbK6khiJKIzQrkAnnFel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHwv/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAVzHxF0K88UeAfEmj6fJBFf6hptzaW8l3nylkkiZFL7QTtBYZwM4zXT0x03IRnGRjNAHzp/wAE+/Fn/CW/sg/DqX7Ott/Z1k+jNsk8xZDaSvbmQHA4fy9wGOM45r6Or5F/4JpPPofwL8ReA7pYXvPAfi/VvD093bOzRXTrN5zSJuVSBmcrgj+HPfFfXVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUvbuDTrSe5uZkt7WFGklmkYKkaAZZmJ4AABJJrlPAfxm8BfFG4urfwd410DxVPaIslxHo2pw3TQqxIVmCMSASCAT6UAdtSHpXktz+1l8FbO4lhuPi34JhlidkkifX7UMjA4II38EEGvULS7hvrWG5tpUngmQSRyxsGV1IBBBHUEEHNAHxD/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAUh6UtIeRQB8lfsU2d/wCDvi1+0z4LuoYpY7Pxy2vR6hDIcS/2jCJhEUIyDGix5PQljjpk/W1fLPwtt7rwn+3n8ZtHhuRPpviPQNJ8SzJJFiSK4XdZhVcH7myInBGct1GOfqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4jfDvSPij4Zbw/ryzS6VLc21xPbxuAtwIZklEMgIIeJygV0Iwykg9a8c1O2tfi7+0J4QuPBlvFbab8PL67bXPEtugSKeWS3aFtJhZcGUhmjlm52RmKNTufhPY/iR4RvvHXgrVtA07xFqHhS5v4/I/tfShGbmBCRv8surBWK7lDYyucjBANeefDL4D+KvhnrGhwWXxSvpfBOlQGBfCaaBptvbuNrAfvY4RIvzEOcHLMDk8mgDO/aSjj1//hHPhXoltDb6r47mmtr67igQtaaPEobUJsjlSyOsCtjG+4XkHBrL8dftyfAf4DeMpPhz4i8VNoWq6MkFvJaDTLuaO3RokaMGRI2UgIyc5PvzXrdn8MrO1+Lup+P3vrm5v7vR7fRY7Wba0VrHHNJK7RHGVMhkTeOh8pD2GLep/C7wdrWq3Op3/hPQ73Uboqbi8uNNgkmmKqFUu7IS2FAAyeAAKAPjv/gmPrWkeJPFf7R2saBqH9qaJqXjeW9srzymjE0MhldH2sARkMOCAa+8a+Gf+Cbzxt8Qf2nRBaW9jAnj64jjtrSMRxRqrzKFVRwAABwK+5qACiiigD85P2wf2pvDP7L/AO3d4M8RT6NqN/MPCsllrn2CURma3mnJtyAW2yGLZK20hfvD5vT798G+K9N8e+E9G8S6NObrR9Ys4b+znKFDJDKgdGKsARlWHB5FfLf/AAUe/Zn0r4u/B6+8bafothc+OfB0Q1S0ubiIH7VaQnzJ7WXLKHjKBmCtnBBAxvOfoP4GeP8Aw/8AFL4ReFPFPhVYoNA1LT4ntbeCNY1tgBtaHYpKoY2VkKjgFSO1AHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC/8AwTW/5H/9p/8A7KFdf+jZ6+6a+Fv+Ca3/ACP/AO0//wBlCuv/AEbPX3TQAUUUUAV7i3ju7eSCVFkikUo6MMqykYII9CK+Qv2Pbi7+A3xZ8e/s7as8p0vT5H8SeDJp9wD6VO+ZIFJY8QyNjHXLOT1wPsWvlr9uP4N6t4h8LaX8V/A0ktt8S/hwzavpgt0H/Ewt1Ia4s5cYdkZFchAeSWXB38AH1LRXCfBn4ueHvjl8NtB8Z+G7yG607VLdJSkcgdraUqDJBJjo6MdrA9x7iu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAC0h6UA5oPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAqORFlQowDKwwQRkEVJRQB8T+DLiz/AGIP2m18ByBLL4T/ABTu3vPDyxxsE0rWd0cb2YUOQsUgZWDbQAWQdASPtcHNeYftGfAzRf2ivhNrXgnWd8K3arLaX0WBLZ3KHdFMjEHBDAA45Klh3rzf9jD40eIvFmh6v8NfiPbnT/ix4CMNlrEJyy3duy/6NeJJkiQSIASc9ecDcKAPpiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBP2qLyNIPAWn69qNxpHw71PX/ALL4qvYZmt41tTazmCOadcNDDJdC3RmBUHcFLAMc+91znjyx1HUvBus2uk6bpOs6lNaulvY66zLYzuRwkxVHOw98KfpQB87/AAkn8D+DP2jtN8KfCfX4NQ8M6p4Zv9T1vTbLWH1K2huYLi1jtplZ5JPLkZZp1ZVb5gqFl+VTWz8UP+CgvwS+DHxC1nwX4v8AE11pWv6U0a3EK6VczJ+8iWVdrxowPyuufc10PwU+BupeFPFFx4z8Vx+HbPxBLY/2fZ6J4Tsjb6XpULSeZN5Zf5pZpWWISTbY9ywRDYNmT6jdeB/Dt5rD6tcaFpk+quAr3r2UTTsMAYLldxGAB16CgD4s/wCCYWv6P4s8TftFa74fuZL7RNV8bSX1lcSRNG0kMvmyIxUgFchhwQD619518Of8E4rn7V8Rf2nn8qKDPxAuVWOFAiKA8wAAHTgV9x0AFFFFABRRRQAV8m/ti/BfWNO1jRvj78N0SD4geCY3uL7T4VaMeI9OG0y2kzR/MxCIdmdw6jHQj6yrO1rSbbxBpF9pl8jSWV7A9tOiuyFo3UqwDKQRwTyCCKAPnH9ln/goB8O/2r/EV/4d8P2mraHrtpaLefZNZSFPtCZAk8kpI2/YSM5AOCDjrj6fr88vBfwb8L/8E/f2uYdQtfDbJ8MfHlvHpWneIrmSW4k0LUGc4si3zHy5SEw7jd23kK2f0MBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzvjjx34d+Gvh+fXvFGtWWgaNCyJJfX8wiiRnYKoLHuSQBQB0VIeleYeC/wBpj4VfEbxHbaD4Y+IGga7rVyrtDYWN8kk0gRSzlVHJwoJPsK9PPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAooooAKKKKAOL+LPwp8N/G3wHqfhDxdpq6jot+gDxk7ZInBykkbjlHU4IYdCO4yK+Vv2eP2iPFXwK+I0XwD+PlyY9Tz5fhDxpcuTBrttu2xxSSkAeeAVXJwSflb5tpf7drzL48/s9eCv2kPBZ8MeN9MN9YpMLi3uIX8q5tZR/HFIBlTjIPUEHBBoA9MBzS18Q6d8Yvin+xTqNroHxhtrvx98JxKtvp/wARdMgea50y2U7VOqRqpJPzRjeOTg4Ln5a+svh98TfCnxX8PQ674P8AEGn+IdJl+7dafcCQA/3WA5Rh3VgCDkEUAdZRSdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqne3dvZRo1zNHAkkiRKZXChnYhVUZ6kkgAdyauVxnxU8DaL8Q/BV9pWvTyWFnGUvYtTt5/Im0+eFhLFdRy/wADxOgcMePl5yMigDxHwlL4p+FH7Ren/wDCxW0bxPqXxDuLzTtE1nSlmik0mG3ha6WyMMjMqwskbMXjwzSKDJvypSn8Z/2vviX8MviZrPhnQf2cPGHjvSbExCDxBpckgt7vdEjsUAt3HysxQ/MeVPTpW7+z/oek/FfUrX4iXPxJ1b4rjQLu907RrrUNPtbG3s5xmG5niS3ijEjOvyLI2cIzbcByT9HHGKAPg3/gmDq11rviT9ojU73QLjwpe3/jR7qfRLty8tjI/mu0LkgEspJB4HToK+9K+Hv+Cc4uh8S/2oftnm+f/wALBut3nZ3/AOsnxnPtivuGgAooooAKKKKACiiigAooooAhlhSeNkkUOjAqykZBB6g182eLf2BvhtqniK48SeDpNZ+FfiSaWKZtQ8FXzWKFkbIJt+YTkZH3Mck4yTn6ZooA+T7P4e/tX/DmS0t9C+Ivgn4m6aIXhK+MtPn064hwwMbmW23tM5XIYttHse3yJ+0H+3F+1f4F+N+gaJJ4ITwpeWsNvnw/aW39pW2ryP8AKzrKuSyO2Qqq25MYJ3A1+tdJgUAfK9r+2F8QPDtzLZeOf2aviLp19sjlgbwmkGv28iMDndNGyKjAj7nzHByccZdqf7eEGjWFxf6l8CPjTp2n2yGW4vLnwmqxQxj7zufP4UDkn0FfU20elGBQB8x/8PIvgF/0Neqf+Evqn/yNWt4W/b9+AHi2a9ig+JWl6XLZ7TJHryS6Ux3ZxtFykZfpztzjIz1FfQ233P51yeufCzwb4o1JtQ1nwloerXzqqtdX2mwTysAMAF3QkgDpzQB55p37a3wJ1WWCO2+K/hZ5Z7hLaONtRRWZ26cNg4/2j8vvXoH/AAt/wKD/AMjn4e/8Gtv/APF1i+IP2cPhZ4n0i60vUvh54ansrpNksa6XDGWGQeGRQw5A6EVwv/Dv79nn/olOgf8AfEn/AMXQB7ZoPinR/FFvJPo2q2WqwxP5byWNwk6o2M4JQkA4IOPetbcPf8q+WdY/4JtfBC/1GW607R9W8MJKqh7XQNZuLOAsowG2KxG7HU+1ULj/AIJt/DyzjW48O+J/HXhjW4JY5rTV7LxHPJNbMrZJRZMpkjK8g4zxQB9bZHqKAQelfMf/AAxRqnb9oz41Af8AYxQf/I1VrX9mb44+F5bq08LftQa0miPKZYIvFHhq01m9jyqhg1y7IWGQSAFUDOMdSQD6mor5auvhR+1R4bkt9Q0b46+GfG06S4k0fxN4Qj06zljKsCTLas0u4HaQBgHuccGz5P7ZH/P18D/+/Osf/FUAfTlFfK9n8Vv2qtCSSx1b4F+FvFN7BM6f2vonjBNPtLlN3yMkE6PInH95sn0HSlm/aX+OHha8tZfFn7NGr/2ROXjMnhHxDbazdI4XK7oQkYCHBBYsMe54oA+p6K+ZR+2T4iP/ADbj8X//AAU2v/yRVXTf+Chnw2Ntt1rSPG3hzVo5HiutLvPC17JNbSK5UozRI6E8Z+ViOaAPqSivm3TP+Cg/wQvdUjsL7xTceGJJYnmjl8SaVdaZFIFKhgsk8aqzfMOAc1v/APDcfwC/6K34U/8ABitAHudFea6f+0b8K9T0+zv4PiN4W+z3cSzwNLrFvGXjbo21nBHfqAeDSa9+0X8NNA8G+IPFMvjbRr7RdBtxdajNpd7HetBGW2qSkJZssxCgY5PFAHpdFeZ/Av8AaF8DftHeF7rxB4D1dtW061uTZz+ZA8MkUoUNhkcAjIYEHoa9MoAKKKKACiiigAooooAKKKKACq1zbx3dvLDNGssUilHR1DKykYIIPUEVZpCMigDwr9k+NYtI+JcaKERfiDr6qoGAoF1gAD0xXE/GH9kH4i/Ej4qax4t0X9onxl4J067eFrbQNLDm1tQkSIQF89VO5lZz8o5bnPWvovwp4I0bwTFqcej2htE1LUbjVroeY7+Zczvvlf5icZbnAwB2AroD0oA+D/8AgmLpNzoPij9orTLvX7jxTeWXjR7afWrtSst9Inmq0zgk4ZiCTyea+8a+Fv8Agmt/yP8A+0//ANlCuv8A0bPX3TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPUZpaKAG7V9B+VG0e/wCdOooAydY8M6R4hWIappdnqaxklBeW6TBCepG4HH4VjXnwo8F31tNbT+EtDlgmRo5I202HDKwwQfl6EEiuvooA8LH7DfwCAH/FpPCn/guWuO+IX/BN34FePNKurO28KHwjPPa/ZTdeGbh7LjeHBaIExykFf+WitwfXBH1LRQB4L+yL+yXoX7I3gK98OaNrN/rs2o3Qvb28vVSNWmCBP3caj5F2qOCzHOTnsPeqKKACiiigAooooAKKKKACiiigAooooAKQjNLRQB+dnhb9mX9rD4NeOvifffDTWvh5ZaR4u8SXOthtVeaW4VWllMa48kqvyyDI55HB656n/hF/2/P+hr+Fn/fl/wD5Hr7qooA/Mj4pfGD9tH4P+Pfh54S1zxP8P5dV8c3z6dpbWdmXiSRWjUmYmJSq5lXlQ3fivTh4X/b8Iz/wlnwt/wC/L/8AyPX0L8Zv2b9K+M3xI+FvjHUNVvdPu/AWpSala21siFLpmMR2yFhkDMK9PU/WvYwNoAoA/Mf42fGL9tL4CXfgy38R+Jfh/PJ4r1iPRLD+zrIyBJ3KhTJuiXanzDkZPtXqB8Mft+ZP/FW/Cw84z5L/APyPX0J+0F+zZpH7Qd/4BudU1W90tvCGvQ67braBGFw8ZB8t9w4B2jkc9a9kAxQB8Lf8Iv8At+f9DX8LP+/L/wDyPR/wi/7fn/Q1/Cz/AL8v/wDI9fdVIelAH5oaD8Uf21/EXxw8UfCq28TfD1PEnh2wg1O6llsyLV4ptmwRuIixb94MgqOh5Pf0b/hF/wBvz/oa/hZ/35f/AOR6+gfB/wCzXpvg/wDaV8b/ABjg1u+n1HxVp8FhcaVKkf2eIRLCqurY3ZxCOM4+Y9eMe00AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9ea+Pfit+2r8Ofin8P/AGq+J/h4+teN5LiLTZLa03wRmFVZ/OJiDKMMMEK2ea/STWNZsPD2mXOo6pfW+m6fbIZJ7u8mWKKJR1ZnYgKPcmvCvHHwn8DfG34p/D/AOM9n47t2g+HzXR8zTLq2nspAygyCaXJCbV5PPAOeOtAHjY8Mft+EA/8JZ8Lf+/L/wDyPSf8Iv8At+f9DX8LP+/L/wDyPX1bY/HL4cajdQWdl4+8L3d1O6xQwW+s2zvI5OFVVEmSSeABXe0AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9L/wAIv+35x/xVvws/78v/API9fdNeK/8ADWHgn+2fs/ka/wD2B9s+w/8ACYf2NP8A2D5u/wAv/j+x5ezzf3fmZ2buN3egD4z+Cnxe/bS+PUvjFPDPin4ep/wi+tS6HetfWZjEk8edzRbYW3JxwTg+1emf8Iv+32Qf+Kt+FvT/AJ4v/wDI9eqeDvA3gH9gvwj8QPFGteK7oaV4k8QPq8zXsal1nmOBBCkY3SHqccnAJ4AJr6WoAzPDw1EaDp39rtA2rfZo/tbW2fKM2weYUz/Duzj2xXk/j/45eJbbx5feCvhx4LtvHHiDSLWC91s6hq40u1sI7jf9nUSGKQySP5cjbVXCquS2SAfa6+cfjHbfC3V/ilJb6/4x1b4Y+MIdPjLatY6m2if2raMx2xi4bCXIifsCWiL9g5yAet/C/wAb33jvw213q3hzUPCmtWtw9lqGlX43eVOmNxilACzwsGVklThgeQrBlHZ141+zF4x1Lxh4N15bnVZPEekaTr11pWh+IpgC+r2ESx7LhpAAsxEjSxGVAA/k55JJPstABRRRQAUUUUAFFFFABRRRQAUUUUAeAfGzXfE+iftBfAuGy8Rz2nhvVdYurG60W3jCLdOunXkpeeTJLquyLZGAAGDMxY7Nnvw5FeRfFz4ea14w+KPwc1vTYI5rDwzrt3f6i8koUxwvp9zApUHlj5kiDA9c9Aa9dHSgD5b/AGqfB9xoKSa9o1x8WNT1rWbgW6QeEtZ1OSw0sCMA3MlrbODsULny4xukc443Fh7H8CYtLh+EnhgaL4r1Lxxp32XdH4g1e7a5u7wlmLtK7chw25ShAKbdmBtxXL+Itc+LXgTxnrzab4Ub4meHtTmjutMW31G106XSAIkjktZBMR5iM6GVZAS37x1IAVd3S/Af4d3/AML/AIY6boWrXNvd6r9ovdQvHtAwhWe7u5rqSOPdyURpygY4LBQSBnAAPRa5T4nXeuWHw38V3PhiNpfEkOlXcmmRpGJGa6ELmEBTwxLheDweldXRQB+dvirVPhD4N+DmkeMvAXirTD8dhLpjm6GtGTWbi+muoI7yO7gZyx3eZMskcqBVwAwTaMfogpz+deBeIvgZ4k+KHjuV/FkXhXR/BFrqaXi2eiWzzahrqRy+ZGl7NIiLHHuSMyRKsokxjeoHPvwGKAFooooA4P4jfCfSfilf+GW16We60vRb5r99Fba1lqEnlskYuY2B8xY2YSKOgdFJzivJ/hLpGheM/jV4h8Q+BtFsrL4WJokvh+9ltreOGw8Qagtwp82GJRtnjgjE8JnIAYysql1Ukei/H34ZeJfi34JXw54e8XQ+EIri5RtSkl05rwX1qAd9qds0TIkhwHKsGKblBG4mnfCvwR4+8GzC28R+L/D+taDBaLbWWmaH4YOki2KlQmG+1SjYqAqECjtzxggHlHxT+Gfg3xl8X/Bnw38O+EtCsUs5ofFHiS+sNMgilt7S3lDWluHVVZGnuFU5VgwSB+CrGvqMDArhPAXwxi8FeJ/HXiCS/bVNS8U6ol808seHt7eO3jiitQ247kQrK69ADM3HUnvKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3biO1mdl3qqElfXjpXwZ/whmv8A/DEP/Ccf8Jjff8IR/wAI/wD8JF/wrTyYv7L/ALO/4+P7K+1bftnl+X+63edjts8v91X33Xjn/DJ/w7/tn7X9g1T7B9t/tD/hH/7avP7F87zPNz/Z/m/Z8eb+82+Xt3/NjNAGJ+2pZ2l9+yh8QLiW0hZ4NFlltyyBjCxULlDj5TtYrkY4JHevfR0rn/HfgnSPiR4Q1bwz4gtmvNF1SBra6gWVoy8Z6jcpBHTqDXQ0AFYXiTwdoPjGKGPXdE07WoYWLxJqNpHcKjEYJUODgkcZFbtFAFSys4dNtIbW2hjt7aBFjihiQIkaAYCqo4AAGABVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" /><br />
See the above figure. Along that indifference curve, when:<br />
S = 3, L = 27. MU<span style="vertical-align: sub;">L</span> = 0.5 ∗ (S/L)<span style="vertical-align: super;">0.5</span> = 1/6.<br />
MU<span style="vertical-align: sub;">S</span> = 0.5 ∗ (L/S)<span style="vertical-align: super;">0.5</span> = 1.5.<br />
MRS of L for S = -MU<span style="vertical-align: sub;">S</span>/MU<span style="vertical-align: sub;">L</span> = -9.<br />
Joe is willing to give up 9 lobsters to get another soda.



 

Did you know?

Human kidneys will clean about 1 million gallons of blood in an average lifetime.

Did you know?

Approximately 25% of all reported medication errors result from some kind of name confusion.

Did you know?

Coca-Cola originally used coca leaves and caffeine from the African kola nut. It was advertised as a therapeutic agent and "pickerupper." Eventually, its formulation was changed, and the coca leaves were removed because of the effects of regulation on cocaine-related products.

Did you know?

The Romans did not use numerals to indicate fractions but instead used words to indicate parts of a whole.

Did you know?

Signs of depression include feeling sad most of the time for 2 weeks or longer; loss of interest in things normally enjoyed; lack of energy; sleep and appetite disturbances; weight changes; feelings of hopelessness, helplessness, or worthlessness; an inability to make decisions; and thoughts of death and suicide.

For a complete list of videos, visit our video library