This topic contains a solution. Click here to go to the answer

Author Question: Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the ... (Read 308 times)

Haya94

  • Hero Member
  • *****
  • Posts: 558
Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the indifference curve that yields a utility level of 9. Calculate the MUL, MUS, and MRS of L for S on that indifference curve when S = 3.


Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by Haya94 on Jun 18, 2019

johnharpe

  • Sr. Member
  • ****
  • Posts: 338
Lorsum iprem. Lorsus sur ipci. Lorsem sur iprem. Lorsum sur ipdi, lorsem sur ipci. Lorsum sur iprium, valum sur ipci et, vala sur ipci. Lorsem sur ipci, lorsa sur iprem. Valus sur ipdi. Lorsus sur iprium nunc, valem sur iprium. Valem sur ipdi. Lorsa sur iprium. Lorsum sur iprium. Valem sur ipdi. Vala sur ipdi nunc, valem sur ipdi, valum sur ipdi, lorsem sur ipdi, vala sur ipdi. Valem sur iprem nunc, lorsa sur iprium. Valum sur ipdi et, lorsus sur ipci. Valem sur iprem. Valem sur ipci. Lorsa sur iprium. Lorsem sur ipci, valus sur iprem. Lorsem sur iprem nunc, valus sur iprium.
Answer Preview
Only 50% of students answer this correctly



matiaslunam

  • Newbie
  • *
  • Posts: 1
<br />
<img src="data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFyAXgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvhT8SD8TtI1q//ALO/s3+zdf1TRPL8/wA3zPsd3Jb+bnauN/l7tvO3OMnGa7g9K+cf2aPiL4U0PSPGWk6j4l0aw1VvH3iRRY3OoQxzkvq0+wbGYNlsjAxzkUAfR9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZzXm/wC0F4v1/wACfCDxHr3hpbZdSsYVla4udhW0g3qJ7gI7osrRRGSRYy6h2QLnmvE/g98XdT1T4u+HdB8N/EXxD8TtL1K3uJ9Xj8YeH00ZtOt40BjuLZxaWxlYyOiNEEk4cMWi2/OAfWtcVd/B3wHfa22s3Pgnw7cau04uW1CTSbdp2lDBhIZCm7dkA7s5yK4f4j+M/F2h/tE/CbRLbUrSw8H65Lfw3NnFAJLm9misZ5sO7DEcaFIioTLOS2Sqrhu61b4ueB9B1i70rU/Gfh/TtTtCouLK71WCKaEsoZd6M4K5UgjI5BBoA81/Zn/acn/aE8U/FTSX8NLoMPgjX5NDS4F99oN6UeVTIV8tfL/1YOMt97rxz77Xwx/wTbEB+IH7Tclre22o2svj24liurOUSQyozzMrIw4YEEcivuegAor5h+On/BQT4Xfs+fF7Svh/4jlv31G4jEl/c2sIaHTQ4Bh80kgneDn5c7Ry2M19K2t1FeW8U8MqzQSqHjkRgyupGQQRwQRzmgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeU/tJeBNW+IHwvex0W0g1PUbHVdN1mPTLmQRpfLZ3sNy1vuYFVMixFAWG3LDOBk15umpeI/wBof4tfDfVIvh34r+H+meCNVuNXvb7xhb29u9yJLOa2S3tlimlLkmXcxJVVVOrFgK+nqQKB0AFAHivxg8Fa34j+NnwM1jTdPkutL0DWdSudSuVZQttHJpdxCjMCcnMjqvAPJrL+IX7DHwR+K3xC1Hxt4s8ER614k1HYt1czX10qSbI1jU+WsoQEKijIA6ete/0h6UAfCH/BMnR9J8PeLf2jtI0HTxpei6f44ls7OyWRpBBDG0yIgZskgBR1Oa+8K+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AfBX7dn7MXw+8Q/G34MeO9Q0mS71fxJ430rw5rEEk7G2vbTy5mw8fZsRIuVIBXIIOc191WNrDp9lBa28MdvbQxrHFDEgVI0Awqqo4AAAAA9K+W/wDgolb6npvwp8GeNNKu4ba98GeNtJ1mOOeLzFmLSm2C9Rjm5DfRSODzX1cvSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkPSgD4X/AOCa3/I//tP/APZQrr/0bPX3TXwt/wAE1v8Akf8A9p//ALKFdf8Ao2evumgD5h/4KOTLbfso+ILmT5ILfVNHnmfBISNdSt2ZjjsACT9K+kdOvrfVLC3vLOZLm0uI1mhmibcsiMNysCOoIIP415B+2p/yaX8X/wDsWL//ANEmu7+Dv/JJ/Bf/AGBbL/0njoA7GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/wDgmt/yP/7T/wD2UK6/9Gz19018Lf8ABNb/AJH/APaf/wCyhXX/AKNnr7poA86/aD8K2Pjj4HePdC1W6msdNvtEvIri4gcK8aeUxLAkEdu46Zrkf2I9WvNb/ZM+Fd5f3k1/dyaDb757hy7vgFRljycAAfhXqPj3RLjxH4J1/SbRLeS6vtPuLWJLvPks7xMih8AnblhnHOM14X/wTv8AEQ1z9knwRamDyJtESfRJsOHWSS2meNnUjqrYyKAPpaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/8Agmt/yP8A+0//ANlCuv8A0bPX3TXwt/wTW/5H/wDaf/7KFdf+jZ6+6aAGn+or5N/4JkSK/wCy7bBWVyuv6sGAIO0/bHOD6HBB/EV9aV8j/sHWkGneK/2k7a1hjt7eL4nakqQwoERBsj4AHAFAH1xRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC//AATW/wCR/wD2n/8AsoV1/wCjZ6+6a+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AIelfKP7LGlzeEv2pP2pfDdtevNoaa7pmuRwzRoXS6v7Rprg7wASuVRVU5wF9SSfq49K+VvhRdXXhL9v8A+Omg3lnlPFeg6J4ls7uOUEJDbxmyZHXGQzSbyPZPcUAfVVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/8ABNb/AJH/APaf/wCyhXX/AKNnr7pr4W/4Jrf8j/8AtP8A/ZQrr/0bPX3TQAV8rT38Og/8FJ4Vvlntk174aCz02V4XMdzPBqEk00auBt3JGQxyf4h3Iz9U18x/GH/k+r9nv/sDeJv/AETb0AfTlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/wDBNb/kf/2n/wDsoV1/6Nnr7pr4W/4Jrf8AI/8A7T//AGUK6/8ARs9fdNABXy1+1xplsnxl/Zp1tIvL1aHxt/Z8d2mVkFvNaytLHkHlWMaZB/u/WvqWvlz9ve0m0/wL4A8W2V7PZax4a8baRdWTxqjIzTTi2cOrKcjy5n6Y5xQB9Qp0H0p1NXp+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPhf/AIJrf8j/APtP/wDZQrr/ANGz19018Lf8E1v+R/8A2n/+yhXX/o2evumgAr5u/wCCg2kzXv7Kvi7UrW6W0vPD7Wuv27SR+YjyWlxHKqMMjhiuOtfSNePftaeDbrx9+zT8StBs7mK0nu9Duds06lkG1N5BA55CEZ7E5welAHpXhfUZdW8O6ZfTKizXVrFcOsYIUM6BjjJPGSe9a9eafs3eMJ/iD8Afh34kubdLW41TQbK6khiJKIzQrkAnnFel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHwv/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAVzHxF0K88UeAfEmj6fJBFf6hptzaW8l3nylkkiZFL7QTtBYZwM4zXT0x03IRnGRjNAHzp/wAE+/Fn/CW/sg/DqX7Ott/Z1k+jNsk8xZDaSvbmQHA4fy9wGOM45r6Or5F/4JpPPofwL8ReA7pYXvPAfi/VvD093bOzRXTrN5zSJuVSBmcrgj+HPfFfXVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUvbuDTrSe5uZkt7WFGklmkYKkaAZZmJ4AABJJrlPAfxm8BfFG4urfwd410DxVPaIslxHo2pw3TQqxIVmCMSASCAT6UAdtSHpXktz+1l8FbO4lhuPi34JhlidkkifX7UMjA4II38EEGvULS7hvrWG5tpUngmQSRyxsGV1IBBBHUEEHNAHxD/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAUh6UtIeRQB8lfsU2d/wCDvi1+0z4LuoYpY7Pxy2vR6hDIcS/2jCJhEUIyDGix5PQljjpk/W1fLPwtt7rwn+3n8ZtHhuRPpviPQNJ8SzJJFiSK4XdZhVcH7myInBGct1GOfqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4jfDvSPij4Zbw/ryzS6VLc21xPbxuAtwIZklEMgIIeJygV0Iwykg9a8c1O2tfi7+0J4QuPBlvFbab8PL67bXPEtugSKeWS3aFtJhZcGUhmjlm52RmKNTufhPY/iR4RvvHXgrVtA07xFqHhS5v4/I/tfShGbmBCRv8surBWK7lDYyucjBANeefDL4D+KvhnrGhwWXxSvpfBOlQGBfCaaBptvbuNrAfvY4RIvzEOcHLMDk8mgDO/aSjj1//hHPhXoltDb6r47mmtr67igQtaaPEobUJsjlSyOsCtjG+4XkHBrL8dftyfAf4DeMpPhz4i8VNoWq6MkFvJaDTLuaO3RokaMGRI2UgIyc5PvzXrdn8MrO1+Lup+P3vrm5v7vR7fRY7Wba0VrHHNJK7RHGVMhkTeOh8pD2GLep/C7wdrWq3Op3/hPQ73Uboqbi8uNNgkmmKqFUu7IS2FAAyeAAKAPjv/gmPrWkeJPFf7R2saBqH9qaJqXjeW9srzymjE0MhldH2sARkMOCAa+8a+Gf+Cbzxt8Qf2nRBaW9jAnj64jjtrSMRxRqrzKFVRwAABwK+5qACiiigD85P2wf2pvDP7L/AO3d4M8RT6NqN/MPCsllrn2CURma3mnJtyAW2yGLZK20hfvD5vT798G+K9N8e+E9G8S6NObrR9Ys4b+znKFDJDKgdGKsARlWHB5FfLf/AAUe/Zn0r4u/B6+8bafothc+OfB0Q1S0ubiIH7VaQnzJ7WXLKHjKBmCtnBBAxvOfoP4GeP8Aw/8AFL4ReFPFPhVYoNA1LT4ntbeCNY1tgBtaHYpKoY2VkKjgFSO1AHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC/8AwTW/5H/9p/8A7KFdf+jZ6+6a+Fv+Ca3/ACP/AO0//wBlCuv/AEbPX3TQAUUUUAV7i3ju7eSCVFkikUo6MMqykYII9CK+Qv2Pbi7+A3xZ8e/s7as8p0vT5H8SeDJp9wD6VO+ZIFJY8QyNjHXLOT1wPsWvlr9uP4N6t4h8LaX8V/A0ktt8S/hwzavpgt0H/Ewt1Ia4s5cYdkZFchAeSWXB38AH1LRXCfBn4ueHvjl8NtB8Z+G7yG607VLdJSkcgdraUqDJBJjo6MdrA9x7iu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAC0h6UA5oPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAqORFlQowDKwwQRkEVJRQB8T+DLiz/AGIP2m18ByBLL4T/ABTu3vPDyxxsE0rWd0cb2YUOQsUgZWDbQAWQdASPtcHNeYftGfAzRf2ivhNrXgnWd8K3arLaX0WBLZ3KHdFMjEHBDAA45Klh3rzf9jD40eIvFmh6v8NfiPbnT/ix4CMNlrEJyy3duy/6NeJJkiQSIASc9ecDcKAPpiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBP2qLyNIPAWn69qNxpHw71PX/ALL4qvYZmt41tTazmCOadcNDDJdC3RmBUHcFLAMc+91znjyx1HUvBus2uk6bpOs6lNaulvY66zLYzuRwkxVHOw98KfpQB87/AAkn8D+DP2jtN8KfCfX4NQ8M6p4Zv9T1vTbLWH1K2huYLi1jtplZ5JPLkZZp1ZVb5gqFl+VTWz8UP+CgvwS+DHxC1nwX4v8AE11pWv6U0a3EK6VczJ+8iWVdrxowPyuufc10PwU+BupeFPFFx4z8Vx+HbPxBLY/2fZ6J4Tsjb6XpULSeZN5Zf5pZpWWISTbY9ywRDYNmT6jdeB/Dt5rD6tcaFpk+quAr3r2UTTsMAYLldxGAB16CgD4s/wCCYWv6P4s8TftFa74fuZL7RNV8bSX1lcSRNG0kMvmyIxUgFchhwQD619518Of8E4rn7V8Rf2nn8qKDPxAuVWOFAiKA8wAAHTgV9x0AFFFFABRRRQAV8m/ti/BfWNO1jRvj78N0SD4geCY3uL7T4VaMeI9OG0y2kzR/MxCIdmdw6jHQj6yrO1rSbbxBpF9pl8jSWV7A9tOiuyFo3UqwDKQRwTyCCKAPnH9ln/goB8O/2r/EV/4d8P2mraHrtpaLefZNZSFPtCZAk8kpI2/YSM5AOCDjrj6fr88vBfwb8L/8E/f2uYdQtfDbJ8MfHlvHpWneIrmSW4k0LUGc4si3zHy5SEw7jd23kK2f0MBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzvjjx34d+Gvh+fXvFGtWWgaNCyJJfX8wiiRnYKoLHuSQBQB0VIeleYeC/wBpj4VfEbxHbaD4Y+IGga7rVyrtDYWN8kk0gRSzlVHJwoJPsK9PPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAooooAKKKKAOL+LPwp8N/G3wHqfhDxdpq6jot+gDxk7ZInBykkbjlHU4IYdCO4yK+Vv2eP2iPFXwK+I0XwD+PlyY9Tz5fhDxpcuTBrttu2xxSSkAeeAVXJwSflb5tpf7drzL48/s9eCv2kPBZ8MeN9MN9YpMLi3uIX8q5tZR/HFIBlTjIPUEHBBoA9MBzS18Q6d8Yvin+xTqNroHxhtrvx98JxKtvp/wARdMgea50y2U7VOqRqpJPzRjeOTg4Ln5a+svh98TfCnxX8PQ674P8AEGn+IdJl+7dafcCQA/3WA5Rh3VgCDkEUAdZRSdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqne3dvZRo1zNHAkkiRKZXChnYhVUZ6kkgAdyauVxnxU8DaL8Q/BV9pWvTyWFnGUvYtTt5/Im0+eFhLFdRy/wADxOgcMePl5yMigDxHwlL4p+FH7Ren/wDCxW0bxPqXxDuLzTtE1nSlmik0mG3ha6WyMMjMqwskbMXjwzSKDJvypSn8Z/2vviX8MviZrPhnQf2cPGHjvSbExCDxBpckgt7vdEjsUAt3HysxQ/MeVPTpW7+z/oek/FfUrX4iXPxJ1b4rjQLu907RrrUNPtbG3s5xmG5niS3ijEjOvyLI2cIzbcByT9HHGKAPg3/gmDq11rviT9ojU73QLjwpe3/jR7qfRLty8tjI/mu0LkgEspJB4HToK+9K+Hv+Cc4uh8S/2oftnm+f/wALBut3nZ3/AOsnxnPtivuGgAooooAKKKKACiiigAooooAhlhSeNkkUOjAqykZBB6g182eLf2BvhtqniK48SeDpNZ+FfiSaWKZtQ8FXzWKFkbIJt+YTkZH3Mck4yTn6ZooA+T7P4e/tX/DmS0t9C+Ivgn4m6aIXhK+MtPn064hwwMbmW23tM5XIYttHse3yJ+0H+3F+1f4F+N+gaJJ4ITwpeWsNvnw/aW39pW2ryP8AKzrKuSyO2Qqq25MYJ3A1+tdJgUAfK9r+2F8QPDtzLZeOf2aviLp19sjlgbwmkGv28iMDndNGyKjAj7nzHByccZdqf7eEGjWFxf6l8CPjTp2n2yGW4vLnwmqxQxj7zufP4UDkn0FfU20elGBQB8x/8PIvgF/0Neqf+Evqn/yNWt4W/b9+AHi2a9ig+JWl6XLZ7TJHryS6Ux3ZxtFykZfpztzjIz1FfQ233P51yeufCzwb4o1JtQ1nwloerXzqqtdX2mwTysAMAF3QkgDpzQB55p37a3wJ1WWCO2+K/hZ5Z7hLaONtRRWZ26cNg4/2j8vvXoH/AAt/wKD/AMjn4e/8Gtv/APF1i+IP2cPhZ4n0i60vUvh54ansrpNksa6XDGWGQeGRQw5A6EVwv/Dv79nn/olOgf8AfEn/AMXQB7ZoPinR/FFvJPo2q2WqwxP5byWNwk6o2M4JQkA4IOPetbcPf8q+WdY/4JtfBC/1GW607R9W8MJKqh7XQNZuLOAsowG2KxG7HU+1ULj/AIJt/DyzjW48O+J/HXhjW4JY5rTV7LxHPJNbMrZJRZMpkjK8g4zxQB9bZHqKAQelfMf/AAxRqnb9oz41Af8AYxQf/I1VrX9mb44+F5bq08LftQa0miPKZYIvFHhq01m9jyqhg1y7IWGQSAFUDOMdSQD6mor5auvhR+1R4bkt9Q0b46+GfG06S4k0fxN4Qj06zljKsCTLas0u4HaQBgHuccGz5P7ZH/P18D/+/Osf/FUAfTlFfK9n8Vv2qtCSSx1b4F+FvFN7BM6f2vonjBNPtLlN3yMkE6PInH95sn0HSlm/aX+OHha8tZfFn7NGr/2ROXjMnhHxDbazdI4XK7oQkYCHBBYsMe54oA+p6K+ZR+2T4iP/ADbj8X//AAU2v/yRVXTf+Chnw2Ntt1rSPG3hzVo5HiutLvPC17JNbSK5UozRI6E8Z+ViOaAPqSivm3TP+Cg/wQvdUjsL7xTceGJJYnmjl8SaVdaZFIFKhgsk8aqzfMOAc1v/APDcfwC/6K34U/8ABitAHudFea6f+0b8K9T0+zv4PiN4W+z3cSzwNLrFvGXjbo21nBHfqAeDSa9+0X8NNA8G+IPFMvjbRr7RdBtxdajNpd7HetBGW2qSkJZssxCgY5PFAHpdFeZ/Av8AaF8DftHeF7rxB4D1dtW061uTZz+ZA8MkUoUNhkcAjIYEHoa9MoAKKKKACiiigAooooAKKKKACq1zbx3dvLDNGssUilHR1DKykYIIPUEVZpCMigDwr9k+NYtI+JcaKERfiDr6qoGAoF1gAD0xXE/GH9kH4i/Ej4qax4t0X9onxl4J067eFrbQNLDm1tQkSIQF89VO5lZz8o5bnPWvovwp4I0bwTFqcej2htE1LUbjVroeY7+Zczvvlf5icZbnAwB2AroD0oA+D/8AgmLpNzoPij9orTLvX7jxTeWXjR7afWrtSst9Inmq0zgk4ZiCTyea+8a+Fv8Agmt/yP8A+0//ANlCuv8A0bPX3TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPUZpaKAG7V9B+VG0e/wCdOooAydY8M6R4hWIappdnqaxklBeW6TBCepG4HH4VjXnwo8F31tNbT+EtDlgmRo5I202HDKwwQfl6EEiuvooA8LH7DfwCAH/FpPCn/guWuO+IX/BN34FePNKurO28KHwjPPa/ZTdeGbh7LjeHBaIExykFf+WitwfXBH1LRQB4L+yL+yXoX7I3gK98OaNrN/rs2o3Qvb28vVSNWmCBP3caj5F2qOCzHOTnsPeqKKACiiigAooooAKKKKACiiigAooooAKQjNLRQB+dnhb9mX9rD4NeOvifffDTWvh5ZaR4u8SXOthtVeaW4VWllMa48kqvyyDI55HB656n/hF/2/P+hr+Fn/fl/wD5Hr7qooA/Mj4pfGD9tH4P+Pfh54S1zxP8P5dV8c3z6dpbWdmXiSRWjUmYmJSq5lXlQ3fivTh4X/b8Iz/wlnwt/wC/L/8AyPX0L8Zv2b9K+M3xI+FvjHUNVvdPu/AWpSala21siFLpmMR2yFhkDMK9PU/WvYwNoAoA/Mf42fGL9tL4CXfgy38R+Jfh/PJ4r1iPRLD+zrIyBJ3KhTJuiXanzDkZPtXqB8Mft+ZP/FW/Cw84z5L/APyPX0J+0F+zZpH7Qd/4BudU1W90tvCGvQ67braBGFw8ZB8t9w4B2jkc9a9kAxQB8Lf8Iv8At+f9DX8LP+/L/wDyPR/wi/7fn/Q1/Cz/AL8v/wDI9fdVIelAH5oaD8Uf21/EXxw8UfCq28TfD1PEnh2wg1O6llsyLV4ptmwRuIixb94MgqOh5Pf0b/hF/wBvz/oa/hZ/35f/AOR6+gfB/wCzXpvg/wDaV8b/ABjg1u+n1HxVp8FhcaVKkf2eIRLCqurY3ZxCOM4+Y9eMe00AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9ea+Pfit+2r8Ofin8P/AGq+J/h4+teN5LiLTZLa03wRmFVZ/OJiDKMMMEK2ea/STWNZsPD2mXOo6pfW+m6fbIZJ7u8mWKKJR1ZnYgKPcmvCvHHwn8DfG34p/D/AOM9n47t2g+HzXR8zTLq2nspAygyCaXJCbV5PPAOeOtAHjY8Mft+EA/8JZ8Lf+/L/wDyPSf8Iv8At+f9DX8LP+/L/wDyPX1bY/HL4cajdQWdl4+8L3d1O6xQwW+s2zvI5OFVVEmSSeABXe0AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9L/wAIv+35x/xVvws/78v/API9fdNeK/8ADWHgn+2fs/ka/wD2B9s+w/8ACYf2NP8A2D5u/wAv/j+x5ezzf3fmZ2buN3egD4z+Cnxe/bS+PUvjFPDPin4ep/wi+tS6HetfWZjEk8edzRbYW3JxwTg+1emf8Iv+32Qf+Kt+FvT/AJ4v/wDI9eqeDvA3gH9gvwj8QPFGteK7oaV4k8QPq8zXsal1nmOBBCkY3SHqccnAJ4AJr6WoAzPDw1EaDp39rtA2rfZo/tbW2fKM2weYUz/Duzj2xXk/j/45eJbbx5feCvhx4LtvHHiDSLWC91s6hq40u1sI7jf9nUSGKQySP5cjbVXCquS2SAfa6+cfjHbfC3V/ilJb6/4x1b4Y+MIdPjLatY6m2if2raMx2xi4bCXIifsCWiL9g5yAet/C/wAb33jvw213q3hzUPCmtWtw9lqGlX43eVOmNxilACzwsGVklThgeQrBlHZ141+zF4x1Lxh4N15bnVZPEekaTr11pWh+IpgC+r2ESx7LhpAAsxEjSxGVAA/k55JJPstABRRRQAUUUUAFFFFABRRRQAUUUUAeAfGzXfE+iftBfAuGy8Rz2nhvVdYurG60W3jCLdOunXkpeeTJLquyLZGAAGDMxY7Nnvw5FeRfFz4ea14w+KPwc1vTYI5rDwzrt3f6i8koUxwvp9zApUHlj5kiDA9c9Aa9dHSgD5b/AGqfB9xoKSa9o1x8WNT1rWbgW6QeEtZ1OSw0sCMA3MlrbODsULny4xukc443Fh7H8CYtLh+EnhgaL4r1Lxxp32XdH4g1e7a5u7wlmLtK7chw25ShAKbdmBtxXL+Itc+LXgTxnrzab4Ub4meHtTmjutMW31G106XSAIkjktZBMR5iM6GVZAS37x1IAVd3S/Af4d3/AML/AIY6boWrXNvd6r9ovdQvHtAwhWe7u5rqSOPdyURpygY4LBQSBnAAPRa5T4nXeuWHw38V3PhiNpfEkOlXcmmRpGJGa6ELmEBTwxLheDweldXRQB+dvirVPhD4N+DmkeMvAXirTD8dhLpjm6GtGTWbi+muoI7yO7gZyx3eZMskcqBVwAwTaMfogpz+deBeIvgZ4k+KHjuV/FkXhXR/BFrqaXi2eiWzzahrqRy+ZGl7NIiLHHuSMyRKsokxjeoHPvwGKAFooooA4P4jfCfSfilf+GW16We60vRb5r99Fba1lqEnlskYuY2B8xY2YSKOgdFJzivJ/hLpGheM/jV4h8Q+BtFsrL4WJokvh+9ltreOGw8Qagtwp82GJRtnjgjE8JnIAYysql1Ukei/H34ZeJfi34JXw54e8XQ+EIri5RtSkl05rwX1qAd9qds0TIkhwHKsGKblBG4mnfCvwR4+8GzC28R+L/D+taDBaLbWWmaH4YOki2KlQmG+1SjYqAqECjtzxggHlHxT+Gfg3xl8X/Bnw38O+EtCsUs5ofFHiS+sNMgilt7S3lDWluHVVZGnuFU5VgwSB+CrGvqMDArhPAXwxi8FeJ/HXiCS/bVNS8U6ol808seHt7eO3jiitQ247kQrK69ADM3HUnvKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3biO1mdl3qqElfXjpXwZ/whmv8A/DEP/Ccf8Jjff8IR/wAI/wD8JF/wrTyYv7L/ALO/4+P7K+1bftnl+X+63edjts8v91X33Xjn/DJ/w7/tn7X9g1T7B9t/tD/hH/7avP7F87zPNz/Z/m/Z8eb+82+Xt3/NjNAGJ+2pZ2l9+yh8QLiW0hZ4NFlltyyBjCxULlDj5TtYrkY4JHevfR0rn/HfgnSPiR4Q1bwz4gtmvNF1SBra6gWVoy8Z6jcpBHTqDXQ0AFYXiTwdoPjGKGPXdE07WoYWLxJqNpHcKjEYJUODgkcZFbtFAFSys4dNtIbW2hjt7aBFjihiQIkaAYCqo4AAGABVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" /><br />
See the above figure. Along that indifference curve, when:<br />
S = 3, L = 27. MU<span style="vertical-align: sub;">L</span> = 0.5 ∗ (S/L)<span style="vertical-align: super;">0.5</span> = 1/6.<br />
MU<span style="vertical-align: sub;">S</span> = 0.5 ∗ (L/S)<span style="vertical-align: super;">0.5</span> = 1.5.<br />
MRS of L for S = -MU<span style="vertical-align: sub;">S</span>/MU<span style="vertical-align: sub;">L</span> = -9.<br />
Joe is willing to give up 9 lobsters to get another soda.



 

Did you know?

More than 30% of American adults, and about 12% of children utilize health care approaches that were developed outside of conventional medicine.

Did you know?

Automated pill dispensing systems have alarms to alert patients when the correct dosing time has arrived. Most systems work with many varieties of medications, so patients who are taking a variety of drugs can still be in control of their dose regimen.

Did you know?

Though Candida and Aspergillus species are the most common fungal pathogens causing invasive fungal disease in the immunocompromised, infections due to previously uncommon hyaline and dematiaceous filamentous fungi are occurring more often today. Rare fungal infections, once accurately diagnosed, may require surgical debridement, immunotherapy, and newer antifungals used singly or in combination with older antifungals, on a case-by-case basis.

Did you know?

The senior population grows every year. Seniors older than 65 years of age now comprise more than 13% of the total population. However, women outlive men. In the 85-and-over age group, there are only 45 men to every 100 women.

Did you know?

It is believed that humans initially contracted crabs from gorillas about 3 million years ago from either sleeping in gorilla nests or eating the apes.

For a complete list of videos, visit our video library