This topic contains a solution. Click here to go to the answer

Author Question: What will result from applying positive pressure below the critical opening pressure to alveoli that ... (Read 26 times)

student77

  • Hero Member
  • *****
  • Posts: 567
What will result from applying positive pressure below the critical opening pressure to alveoli that are collapsed?
 
  A. The patient's hypoxemia may be corrected.
  B. The collapsed alveoli become overdistended.
  C. The lung's pressure-volume relationship changes sharply.
  D. Ventilation fails to enter these alveoli.

Question 2

Calculate a patient's alveolar ventilation (A) when the respiratory rate (f) is 12 breaths/minute, the tidal volume (VT) is 600 ml, and the dead space volume (VD) is 150 ml.
 
  A. 7,200 ml/minute
  B. 5,400 ml/minute
  C. 4,000 ml/minute
  D. 1,800 ml/minute



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

cclemon1

  • Sr. Member
  • ****
  • Posts: 312
Answer to Question 1

ANS: D
A. Incorrect response: Perfusion will continue past collapsed alveoli.
B. Incorrect response: The collapsed alveoli do not inflate at all when the critical opening pressure is not achieved.
C. Incorrect response: The lung's pressure-volume curve remains flat because volume does not change as no gas enters these alveoli.
D. Correct response: Because the critical opening pressure is not reached, these alveoli fail to open, and ventilation continues to be absent while perfusion persists. Consequently, the patient's hypoxemia remains uncorrected.

Answer to Question 2

ANS: B
A. Incorrect response: See explanation B.
B. Correct response: This patient's alveolar ventilation (A) is calculated as follows:
STEP 1: Determine the dead space ventilation (D).
D = f(VD)
= (12 breaths/minute)(150 ml)
= 1,800 ml/minute
STEP 2: Find the minute ventilation (E).
E = f(VT)
= (12 breaths/minute)(600 ml)
= 7,200 ml/minute
STEP 3: Calculate the alveolar ventilation (A).
A = E  D
= 7,200 ml/minute  1,800 ml/minute
= 5,400 ml/minute
Alternatively,
12 breaths/minute (600 ml 150 ml) = 5,400 ml/minute

C. Incorrect response: See explanation B.
D. Incorrect response: See explanation B.




student77

  • Member
  • Posts: 567
Reply 2 on: Jul 16, 2018
Wow, this really help


amandalm

  • Member
  • Posts: 306
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Hippocrates noted that blood separates into four differently colored liquids when removed from the body and examined: a pure red liquid mixed with white liquid material with a yellow-colored froth at the top and a black substance that settles underneath; he named these the four humors (for blood, phlegm, yellow bile, and black bile).

Did you know?

Most strokes are caused when blood clots move to a blood vessel in the brain and block blood flow to that area. Thrombolytic therapy can be used to dissolve the clot quickly. If given within 3 hours of the first stroke symptoms, this therapy can help limit stroke damage and disability.

Did you know?

A good example of polar molecules can be understood when trying to make a cake. If water and oil are required, they will not mix together. If you put them into a measuring cup, the oil will rise to the top while the water remains on the bottom.

Did you know?

Hip fractures are the most serious consequences of osteoporosis. The incidence of hip fractures increases with each decade among patients in their 60s to patients in their 90s for both women and men of all populations. Men and women older than 80 years of age show the highest incidence of hip fractures.

Did you know?

When blood is deoxygenated and flowing back to the heart through the veins, it is dark reddish-blue in color. Blood in the arteries that is oxygenated and flowing out to the body is bright red. Whereas arterial blood comes out in spurts, venous blood flows.

For a complete list of videos, visit our video library