This topic contains a solution. Click here to go to the answer

Author Question: What will result from applying positive pressure below the critical opening pressure to alveoli that ... (Read 55 times)

student77

  • Hero Member
  • *****
  • Posts: 567
What will result from applying positive pressure below the critical opening pressure to alveoli that are collapsed?
 
  A. The patient's hypoxemia may be corrected.
  B. The collapsed alveoli become overdistended.
  C. The lung's pressure-volume relationship changes sharply.
  D. Ventilation fails to enter these alveoli.

Question 2

Calculate a patient's alveolar ventilation (A) when the respiratory rate (f) is 12 breaths/minute, the tidal volume (VT) is 600 ml, and the dead space volume (VD) is 150 ml.
 
  A. 7,200 ml/minute
  B. 5,400 ml/minute
  C. 4,000 ml/minute
  D. 1,800 ml/minute



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

cclemon1

  • Sr. Member
  • ****
  • Posts: 312
Answer to Question 1

ANS: D
A. Incorrect response: Perfusion will continue past collapsed alveoli.
B. Incorrect response: The collapsed alveoli do not inflate at all when the critical opening pressure is not achieved.
C. Incorrect response: The lung's pressure-volume curve remains flat because volume does not change as no gas enters these alveoli.
D. Correct response: Because the critical opening pressure is not reached, these alveoli fail to open, and ventilation continues to be absent while perfusion persists. Consequently, the patient's hypoxemia remains uncorrected.

Answer to Question 2

ANS: B
A. Incorrect response: See explanation B.
B. Correct response: This patient's alveolar ventilation (A) is calculated as follows:
STEP 1: Determine the dead space ventilation (D).
D = f(VD)
= (12 breaths/minute)(150 ml)
= 1,800 ml/minute
STEP 2: Find the minute ventilation (E).
E = f(VT)
= (12 breaths/minute)(600 ml)
= 7,200 ml/minute
STEP 3: Calculate the alveolar ventilation (A).
A = E  D
= 7,200 ml/minute  1,800 ml/minute
= 5,400 ml/minute
Alternatively,
12 breaths/minute (600 ml 150 ml) = 5,400 ml/minute

C. Incorrect response: See explanation B.
D. Incorrect response: See explanation B.




student77

  • Member
  • Posts: 567
Reply 2 on: Jul 16, 2018
Wow, this really help


strudel15

  • Member
  • Posts: 324
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

Interferon was scarce and expensive until 1980, when the interferon gene was inserted into bacteria using recombinant DNA technology, allowing for mass cultivation and purification from bacterial cultures.

Did you know?

Cyanide works by making the human body unable to use oxygen.

Did you know?

The eye muscles are the most active muscles in the whole body. The external muscles that move the eyes are the strongest muscles in the human body for the job they have to do. They are 100 times more powerful than they need to be.

Did you know?

People with high total cholesterol have about two times the risk for heart disease as people with ideal levels.

Did you know?

As the western states of America were settled, pioneers often had to drink rancid water from ponds and other sources. This often resulted in chronic diarrhea, causing many cases of dehydration and death that could have been avoided if clean water had been available.

For a complete list of videos, visit our video library