This topic contains a solution. Click here to go to the answer

Author Question: Referring once again to Easterbrook's quote (Problem 2- 28), explain why he would assert that the ... (Read 64 times)

saraeharris

  • Hero Member
  • *****
  • Posts: 546
Referring once again to Easterbrook's quote (Problem 2- 28), explain why he would assert that the next two generations of growth are inevitable.
 
  What will be an ideal response?

Question 2

In 1972, a utility owned a nuclear plant that was online 70 of the year, the oil burning plant was only out for unscheduled maintenance 10 of the time, and the gas-fired turbines were online 15 of the time.
 
  The nuclear plant is rated at 1000 MW, the oil plant at 940 MW, and the turbine at 200 MW. a. What is the total cost of running these three plants for the utility?
  b. How much would the utility have to charge per kWh to make a profit?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

lcapri7

  • Sr. Member
  • ****
  • Posts: 350
Answer to Question 1

The inevitability comes because in growing populations, the numbers of young
females is proportionally greater than in stable populations. A young-weighted population
will produce more children than one with the same proportion of people at each age range.
Thus, population increase is assured by the age structure of the population.
Easterbrook does recognize that events from Nature (or human stupidity leading to nuclear
war) can cause a change in the inevitability of the growth, unlike Simon and like Asimov,
Bartlett, and Kendall (see Questions 2-13, 2-21, and 2-22 above).

Answer to Question 2

A year has 8760 hours (that's why it is the last number on the time axis).
a. If the nuclear plant was online for 70 of 8760 hours, it was available 6132 hours. The
oil-burning plant was available 90 of the time, 7884 hours. The gas turbine was online
1314 hours. Reading from the graph, the nuclear plant cost about 40.40/kW, the oil
burning plant about 33/kW, and the gas turbine, about 25/kW.
The nuclear plant cost 1000 MW x 40.40/kW = 40.4 million to generate 6,132,000
MWh of electricity; the oil-fired plant cost 940 MW x 33/kW = 31.0 million to
generate 7,410,960 MWh, and the gas turbine cost 200 MW x 25/kW = 5.0 million to
generate 282,800 MWh.
b. The total cost is 40.4 million + 31.0 million + 5.0 million = 76.4 million. The total
electricity generated is 6,132,000 MWh + 7,410,960 MWh + 282,800 MWh = 13,805,760
MWh. The cost of generating the electricity was then 76.4 million/13,805,760 MWh =
76.4/13,805,760 Wh = 76.4/13,806 kWh = 0.0055/kWh. Anything over this amount
makes a profit. At the normal cost, the utility has a profit of over 0.07/kWh.




saraeharris

  • Member
  • Posts: 546
Reply 2 on: Jul 28, 2018
YES! Correct, THANKS for helping me on my review


meganmoser117

  • Member
  • Posts: 303
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

The most common childhood diseases include croup, chickenpox, ear infections, flu, pneumonia, ringworm, respiratory syncytial virus, scabies, head lice, and asthma.

Did you know?

About one in five American adults and teenagers have had a genital herpes infection—and most of them don't know it. People with genital herpes have at least twice the risk of becoming infected with HIV if exposed to it than those people who do not have genital herpes.

Did you know?

Human kidneys will clean about 1 million gallons of blood in an average lifetime.

Did you know?

Signs and symptoms of a drug overdose include losing consciousness, fever or sweating, breathing problems, abnormal pulse, and changes in skin color.

Did you know?

Long-term mental and physical effects from substance abuse include: paranoia, psychosis, immune deficiencies, and organ damage.

For a complete list of videos, visit our video library