This topic contains a solution. Click here to go to the answer

Author Question: The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and ... (Read 58 times)

oliviahorn72

  • Hero Member
  • *****
  • Posts: 579
The disintegration energy for gamma decay of a nucleus is typically on the order of 10-100 keV and can even be on the order of MeV. Which of the following statements best describes why the energies are so much larger than from atoms?
  a. Energy levels within the nucleus are spaced farther apart than atomic levels.
  b. The spins of the paired protons and neutrons within the nucleus are aligned within energy levels.
  c. The higher energies of the gamma rays are higher in probability of emission because they must tunnel through classically forbidden regions.
  d. All nuclei are only metastable, increasing binding energy exponentially when the nucleus is in an excited state.
  e. The Coulomb attraction within the nucleus places it lower in energy, therefore greater excitation energies are necessary.

Question 2

Alpha decay occurs in some radioactive nuclides with A > 150. The probability of an alpha particle being emitted depends on the energy of the alpha particle. Why is this so?
 
a. Wave functions for the alpha particle must decrease to zero when the strong force potential goes to zero.
  b. Alpha particles must pass through classically forbidden regions with high potential barriers.
  c. The Coulomb potential for the alpha particle depends on the energy of the alpha particle.
  d. To emit the alpha particle, the nucleus must be hit by a gamma ray that has energy inversely proportional to the probability it will strike the nucleus.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

s.meritte

  • Sr. Member
  • ****
  • Posts: 306
Answer to Question 1

Energy levels within the nucleus are spaced farther apart because of the stronger nuclear reactions. Atoms experience excited states as well when they absorb a photon, but the Coulomb interaction is far less potent than the strong nuclear reaction. This is why gamma rays that excite nuclear energy levels are so much greater.
a.

Answer to Question 2

b.
Many of the alpha particles emitted in nuclear decay do not have the classically defined energy to surmount the potential barrier of the strong nuclear force. Higher energy particles, however, do have higher probabilities of getting out due to the decreasing potential over distances. They have less of the classically forbidden region to pass through.




oliviahorn72

  • Member
  • Posts: 579
Reply 2 on: Jul 28, 2018
Gracias!


31809pancho

  • Member
  • Posts: 317
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

A seasonal flu vaccine is the best way to reduce the chances you will get seasonal influenza and spread it to others.

Did you know?

Children with strabismus (crossed eyes) can be treated. They are not able to outgrow this condition on their own, but with help, it can be more easily corrected at a younger age. It is important for infants to have eye examinations as early as possible in their development and then another at age 2 years.

Did you know?

Long-term mental and physical effects from substance abuse include: paranoia, psychosis, immune deficiencies, and organ damage.

Did you know?

Barbituric acid, the base material of barbiturates, was first synthesized in 1863 by Adolph von Bayer. His company later went on to synthesize aspirin for the first time, and Bayer aspirin is still a popular brand today.

Did you know?

There can actually be a 25-hour time difference between certain locations in the world. The International Date Line passes between the islands of Samoa and American Samoa. It is not a straight line, but "zig-zags" around various island chains. Therefore, Samoa and nearby islands have one date, while American Samoa and nearby islands are one day behind. Daylight saving time is used in some islands, but not in others—further shifting the hours out of sync with natural time.

For a complete list of videos, visit our video library