This topic contains a solution. Click here to go to the answer

Author Question: How does the body determine how much iron to absorb, and how is this iron then circulated and/or ... (Read 91 times)

ENagel

  • Hero Member
  • *****
  • Posts: 540
How does the body determine how much iron to absorb, and how is this iron then circulated and/or stored in the body?

Question 2

What are the general functions of the essential trace minerals?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Hdosisshsbshs

  • Sr. Member
  • ****
  • Posts: 315
Answer to Question 1

Absorption of iron increases during iron deficiency and decreases during periods of iron excess. The iron-regulating mechanisms involve altering the production of the iron transport proteins in the brush border cell membranes as well as of the ferritin in the enterocytes.
During iron deficiency, the body increases production of the iron transport proteins while decreasing production of ferritin. In this way, iron transport into the enterocyte is increased, and there is less ferritin to bind the iron within the cell. Together, these actions increase movement of iron from the intestinal lumen through the enterocyte, and ultimately into the circulation.
If the body has adequate or excess iron, production of iron transport proteins decreases and production of ferritin increases. This causes less iron to be transported into the enterocyte, and that which is transported is more likely to be retained in the cell. These iron-rich enterocytes are eventually sloughed off into the intestinal lumen and eliminated in the feces. (The presence of iron in the feces can cause stools to be black in colora classic sign of iron overload.) In this way, enterocytes lining the small intestine serve as important regulators of iron status, helping prevent both iron deficiency and toxicity.

Answer to Question 2

Trace minerals tend to act as cofactors and prosthetic groups and provide scaffolding for many of the hard tissues in your body.
 Some trace minerals are cofactors of metalloenzymes. (Binding of the mineral cofactor to the enzyme activates it, allowing it to bind to its substrate and carry out its function.)
 Other trace minerals are components of larger nonenzymatic prosthetic groups (nonprotein components of proteins). Hemoglobin is an example.
 Some trace minerals provide structure to mineralized tissues. Fluoride, which provides strength to bones and teeth, is an example.





 

Did you know?

Excessive alcohol use costs the country approximately $235 billion every year.

Did you know?

Only one in 10 cancer deaths is caused by the primary tumor. The vast majority of cancer mortality is caused by cells breaking away from the main tumor and metastasizing to other parts of the body, such as the brain, bones, or liver.

Did you know?

In 2010, opiate painkllers, such as morphine, OxyContin®, and Vicodin®, were tied to almost 60% of drug overdose deaths.

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

Did you know?

There are more nerve cells in one human brain than there are stars in the Milky Way.

For a complete list of videos, visit our video library