This topic contains a solution. Click here to go to the answer

Author Question: How does the body determine how much iron to absorb, and how is this iron then circulated and/or ... (Read 65 times)

ENagel

  • Hero Member
  • *****
  • Posts: 540
How does the body determine how much iron to absorb, and how is this iron then circulated and/or stored in the body?

Question 2

What are the general functions of the essential trace minerals?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Hdosisshsbshs

  • Sr. Member
  • ****
  • Posts: 315
Answer to Question 1

Absorption of iron increases during iron deficiency and decreases during periods of iron excess. The iron-regulating mechanisms involve altering the production of the iron transport proteins in the brush border cell membranes as well as of the ferritin in the enterocytes.
During iron deficiency, the body increases production of the iron transport proteins while decreasing production of ferritin. In this way, iron transport into the enterocyte is increased, and there is less ferritin to bind the iron within the cell. Together, these actions increase movement of iron from the intestinal lumen through the enterocyte, and ultimately into the circulation.
If the body has adequate or excess iron, production of iron transport proteins decreases and production of ferritin increases. This causes less iron to be transported into the enterocyte, and that which is transported is more likely to be retained in the cell. These iron-rich enterocytes are eventually sloughed off into the intestinal lumen and eliminated in the feces. (The presence of iron in the feces can cause stools to be black in colora classic sign of iron overload.) In this way, enterocytes lining the small intestine serve as important regulators of iron status, helping prevent both iron deficiency and toxicity.

Answer to Question 2

Trace minerals tend to act as cofactors and prosthetic groups and provide scaffolding for many of the hard tissues in your body.
 Some trace minerals are cofactors of metalloenzymes. (Binding of the mineral cofactor to the enzyme activates it, allowing it to bind to its substrate and carry out its function.)
 Other trace minerals are components of larger nonenzymatic prosthetic groups (nonprotein components of proteins). Hemoglobin is an example.
 Some trace minerals provide structure to mineralized tissues. Fluoride, which provides strength to bones and teeth, is an example.





 

Did you know?

Symptoms of kidney problems include a loss of appetite, back pain (which may be sudden and intense), chills, abdominal pain, fluid retention, nausea, the urge to urinate, vomiting, and fever.

Did you know?

The tallest man ever known was Robert Wadlow, an American, who reached the height of 8 feet 11 inches. He died at age 26 years from an infection caused by the immense weight of his body (491 pounds) and the stress on his leg bones and muscles.

Did you know?

The Romans did not use numerals to indicate fractions but instead used words to indicate parts of a whole.

Did you know?

Although not all of the following muscle groups are commonly used, intramuscular injections may be given into the abdominals, biceps, calves, deltoids, gluteals, laterals, pectorals, quadriceps, trapezoids, and triceps.

Did you know?

As many as 28% of hospitalized patients requiring mechanical ventilators to help them breathe (for more than 48 hours) will develop ventilator-associated pneumonia. Current therapy involves intravenous antibiotics, but new antibiotics that can be inhaled (and more directly treat the infection) are being developed.

For a complete list of videos, visit our video library