This topic contains a solution. Click here to go to the answer

Author Question: How does the body determine how much iron to absorb, and how is this iron then circulated and/or ... (Read 56 times)

ENagel

  • Hero Member
  • *****
  • Posts: 540
How does the body determine how much iron to absorb, and how is this iron then circulated and/or stored in the body?

Question 2

What are the general functions of the essential trace minerals?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Hdosisshsbshs

  • Sr. Member
  • ****
  • Posts: 315
Answer to Question 1

Absorption of iron increases during iron deficiency and decreases during periods of iron excess. The iron-regulating mechanisms involve altering the production of the iron transport proteins in the brush border cell membranes as well as of the ferritin in the enterocytes.
During iron deficiency, the body increases production of the iron transport proteins while decreasing production of ferritin. In this way, iron transport into the enterocyte is increased, and there is less ferritin to bind the iron within the cell. Together, these actions increase movement of iron from the intestinal lumen through the enterocyte, and ultimately into the circulation.
If the body has adequate or excess iron, production of iron transport proteins decreases and production of ferritin increases. This causes less iron to be transported into the enterocyte, and that which is transported is more likely to be retained in the cell. These iron-rich enterocytes are eventually sloughed off into the intestinal lumen and eliminated in the feces. (The presence of iron in the feces can cause stools to be black in colora classic sign of iron overload.) In this way, enterocytes lining the small intestine serve as important regulators of iron status, helping prevent both iron deficiency and toxicity.

Answer to Question 2

Trace minerals tend to act as cofactors and prosthetic groups and provide scaffolding for many of the hard tissues in your body.
 Some trace minerals are cofactors of metalloenzymes. (Binding of the mineral cofactor to the enzyme activates it, allowing it to bind to its substrate and carry out its function.)
 Other trace minerals are components of larger nonenzymatic prosthetic groups (nonprotein components of proteins). Hemoglobin is an example.
 Some trace minerals provide structure to mineralized tissues. Fluoride, which provides strength to bones and teeth, is an example.





 

Did you know?

Chronic marijuana use can damage the white blood cells and reduce the immune system's ability to respond to disease by as much as 40%. Without a strong immune system, the body is vulnerable to all kinds of degenerative and infectious diseases.

Did you know?

After 5 years of being diagnosed with rheumatoid arthritis, one every three patients will no longer be able to work.

Did you know?

Vital signs (blood pressure, temperature, pulse rate, respiration rate) should be taken before any drug administration. Patients should be informed not to use tobacco or caffeine at least 30 minutes before their appointment.

Did you know?

Your skin wrinkles if you stay in the bathtub a long time because the outermost layer of skin (which consists of dead keratin) swells when it absorbs water. It is tightly attached to the skin below it, so it compensates for the increased area by wrinkling. This happens to the hands and feet because they have the thickest layer of dead keratin cells.

Did you know?

Persons who overdose with cardiac glycosides have a better chance of overall survival if they can survive the first 24 hours after the overdose.

For a complete list of videos, visit our video library