Author Question: When monitoring the reaction between benzene and 2-chloro-2-methylpropane using FeBr3 as the ... (Read 80 times)

lunatika

  • Hero Member
  • *****
  • Posts: 548
When monitoring the reaction between benzene and 2-chloro-2-methylpropane using FeBr3 as the catalyst, researchers observed the formation of a new alkyl halide. Draw the structure of this compound and show how it was formed using an arrow-pushing mechanism.

Question 2

In the introduction to this experiment, the text states that small amounts of HCl are present in samples of tert-butyl chloride. Write an arrow-pushing mechanism that explains the source of the HCl.

Question 3

The reaction of the ketone with Pd/C at elevated temperatures shown below led to no reaction. Explain this result.
 

Question 4

Pulegone, a cyclic monoterpene, can be isolated from the essential oil of pennyroyal, a member of the mint family. Reaction of pulegone with Pd/C at 180C, followed by the same work-up used in the reaction of carvone with Pd/C, generated two products in equal quantities. One product was isolated from the aqueous layer. The 1 H NMR of this material is shown below. The other product was isolated from the hexane layer by evaporating the hexane. The EIMS of this compound showed a molecular ion at m/z = 154. The IR spectrum had a sharp band at 1736 cm-1. In the 13C1 H NMR spectrum there was a peak at 198 ppm. Identify the compound isolated from each phase and explain how you reached your conclusions (Chapter 8). Write a balanced equation for the reaction of pulegone and Pd/C.
  See the scheme below.
Question 5

1t0hACCCCAAAJ+EZg6dar07NnTL8NhHDEIqCCkvvwtUKCA+Wy2CMWApsFTCEIaFMmPQ7SC0JkzZ2TM2DFGEBpg2zC3bdsmQ958Q4a8QRCyDZWGEEAAAQR8IzBt2jTp0aOHb8bDQHIXYItQ7kY6PoMgpGPVfDBmKwidPn1axr0/ztaLn27dulWGvjVU3nj9DR8sKUNAAAEEEEDAXoGPPpomN99MELJX1dnWrCCkTp0dMv5ji5Cz3m61ThBySzqf9WMFoVOnTsn4CeOlf7/+ti3hli1bzCA05I0htrVJQwgggAACCPhBQO1e9fEnH8vNN93sh+EwhhgFrCDEyRJiBNPkaQQhTQrlt2FaQejkyZPywcQPpF/ffrYNcfPmzfL2O2+zRcg2URpCAAEEvBNQJ8CpXr26dwPwWc/q2NrPP/9cunfv7rORMZycBAhCOeno+xhBSN/aeTpyKwgdP35cJhkXhut7d1/bxrNx40Z597135fXXXretTRpCAAEEEPBGwHq/8KZ3//Wqjq2dPv1LueEGgpD/qpP9iAhC2dvo/AhBSOfqeTh2643t2LFjMmXqFLn7rrttG82GDRtEtf/aq6/Z1iYNIYAAAgh4I2C9X3jTu/96VcfWzpg5Q67vdr3/BseIshUgCGVLo/UDBCGty+fd4EcY1w4aMGCgpKenyzTjoM+7+txl22DWr18vI0aOkFdfeTXuNv/xj2fliSf+LCdOnJASJUrE3Q4zIoAAAggkJkAQyuinjq2dOWsmQSgji+9/U0HIOj5IDZaTJfi+ZDENkCAUExNPyixgvbH9+uuv8sUXn8udd/bK/JS4f1+3bp2MHDUyoSDUt19fGTlipKSlpUmrVq3iHgszIoAAAggkJmC9XyTWSv6ZWx1bO2vWLLn+erYI6VRVgpBO1Yp9rASh2K14ZoSA9cZ26NAhSZ0zW2695baIRxO7u3btWlmzdo307tU77ob69e8r7707TBYvXizt27ePux1mRAABBBBITMB6v1i9+mtp1KhxYo3lg7nVsbUqCHGyBL2KuTRtaYYBs0UoA4e2vxCEtC2dtwMfMXK4caa4/nLw4EFZvmK5dLfxoM81a9bIgYMHpFPHTnEv5IAB98jQoW/J/Pnz5dprr427HWZEAAEEEEhMwApC7w17T+4ddG9ijeWDudUu5bNnz5Ybb7wxHyxNcBaBIJQ/a00Qyp91dXypxowZLXfccaccOHBA1m9YL9deY1/YWPX1Kjl69Ki0TWkb93IMGDBAhgwZIqmpqbJv/z7efOOWZEYEEEAgMQGCUEY/tUv53Hlz5cbuBKGMMv7+jSDk7/rEOzqCULxyAZ9v/Pjx5rdZKgjt3LlTOnToYJuIerFRF5xr2aJl3G0OGjRQXjXOOjdj5leidt+7d9B9cbfFjAgggAACeReYOXOmdOnSxTwL6KCBg4QtQr8ZqvekRYsWsWtc3lcpT+ewglCBpAJyLnSOkyV4Wg37OicI2WcZqJYmGhdRvcbYCqSC0I8//mjrCQmsF5tE9r+9975B8uILL8lnn39mnjlOvQlzQwABBBBwT0Cd/XPAPQPCAcjaMuTeCPzZk3rfXLFiubHbdldJTk725yAZVRYB67OJ9UAin1GsNvjpvQBByPsaaDmCyVMmS7u27WT//v2iDvxs2rSpbcuhXmzUNy7NmjWLu81777tXnv/X8/K5cUY7darSgcapvrkFW2CKsc7ecsutwUZg6RFwUcAKPtaWoPeGvcvWecN/7969snbdWmnTuo0UK1bMxYrQVSICBKFE9Pw7L0HIv7Xx9cg+Mq4d1KxZczMIqW+0GjRoYNt4rRebRL5tuX/wffLsM/+Qr76aLieMU5WyRci28mjb0MiRI6Vv3758A6ttBRm4bgJWALICkfqpthAVKFBAt0Wxdbzff/+9bN++3TiDXiO54IILbG2bxpwTsD6bWD0k8hnFaoOf3gsQhLyvgZYj+PSzT6Vhg4ay/8B+Ob/k+VK7dm3blsN6sUnkRWbw4Pvl739/WmbMmCEnTxGEbCuOxg198eUXUqd2Hbn00ks1XgqGjoA+AlYQsn6OHj3auObcnVKkSBF9FsKBkX733Xeyb98+qVGjhpQrV86BHmjSCYFly5bJ2XNnJblAsnkcc/PmzZ3ohjZdFiAIuQyeX7r7cvqXcnnNy+XgjwelfLnytn64tCMIjR07Vjp37iwzZ6ogdIqzxuWXFS/O5VAn31i61LgGRJIkdBKOOLtnNgQCKWAFoH+/+47cf99gUa/Lt9xyixQvXjyQHtZCb9261TwzatmyZaVy5crWZH76XMD6bGINM5Eva602+Om9AEHI+xpoOQJ1NqCqVavKz4d/looXV5RLLrnEtuWwXmwSeZH56OOPpHHjxrJj+w45fea0dOncxbbx0ZB+Anv27DFPmqGue5XIsWf6LTkjRsA7ASsIWT/VSXa6dr0u8LuDqYuGX3jhhXLS2G37sssu865A9JwnAfXZJEl9m2bcQsZ/iXxGyVPHPNlRAYKQo7z5t/E5c+bIRRddZJ4ooUKFCrYGobS0NPNFprlxDFJS0m8vOnmRPHv2rLklqFat2uaue+fOnZNWLVvlpQmem88E1Dp19dVXy8qVK82f+WzxWBwEfClgBSDrJAmTJk2Sjh07SpkyZXw5XrcGtX79enNL0A8//CBXXHGFW93STwICKrSuW7fO3NW+RPES5hdr6j0lns8oCQyDWR0QIAg5gBqEJhcuXChFixWVM2fOyEVlLpKaNWvatthLli6RYkWLmccdxXNGHXXV7q+Ni7JedFFZOfzLYfXVjbRo0cK28dGQfgJpy9JEBeuNGzdKnTp19FsARoyAJgLqPUGdrfOmG28KnzbbCkJTp041L7WwfPly80yjF198sSZLZe8wd+zYIZUqVTI/WDdp0sTexmnNEQF1yvMjR46Ye8KoDjZs2GB+7gn6bp6OYLvcKEHIZfD80p0KK+qbEHXsRcnzSkr9+vVtWzTVdpnSZcwtTvF8c6guVrd7925zPMdPHBe2CNlWGm0bWv3Naml0ZSPj2h0rbD3Vu7YgDBwBhwTUF1FTp02VPr37yKhRo2TAgAEyYuRwuaf/APn000/NXZY3b94sak+CevXqOTQKfze7ZcsWufzyy0W91yVy4XB/L2X+Gp1aZ9VeMNZnErW7tdr7pEqVKvlrQQO4NAShABbdjkU2g9B/95VVp89Wm4jtuqndmNTxR6dPn45rlzt1jYb0Y+ny048/mVd/VmGNNxu7qqNnO2pXFLULijphgjrTD7sz6FlHRu1/gZ9++klmp86WG66/QaZMnSJ333W3fPjhh3LzzTfLrFmzzC2y6oxpBZILmFtp/b9E9o9w1apVorYELVq0UFob1xLi5n+BlatWSpPGTcLvHepzxeYtm6W2sQs+N70FCEJ618+z0VsnNFAvBupDpZ0HDS5estg8Nbe6zkLDhg3zvIzqjDzqQNRt27eZu8UlG2+4V18d/8VZ8zwAZvCVgLrg77fffmsGIPVttfpmT51IgxsCCNgvoI57WbFyhbRu1Vrmzpsrt916m3HM5kzzg7/aNbV06dLy66+/Bvpgc/Vln/pCJs04+L55c3bbtn8ttL/FaLtVW3W0vzdadFOAIOSmdj7pS4Uf9e1IweSCUqhwIfNNzc4tLosWLzLfRFepb2CaXJVnNbX7k/qgq8KaunCf2s2uVq1aeW6HGfKHwPz586RNm5TwRRznL5gvKcbvbBXKH/VlKfwloLa+7t+/39yqv8X4xlz97W3YuEFKlyot6qyN5cuXl33795nvH0E8g6N6/5w/f760a9dOFi9ebB4z5a8KMprMAqpmKvRkPtZ4sfFZRQVZtVcMN30FCEL61s6TkavjbdQWm8aNGsuFpS6QbVu3S4kSJWTT5o3G7metwh824xmc2t9WfXNfqlQpqV69urnbQJ06dcP75MbSpjqziwpA7dq2k/Ub1kulipXk8OHD5tntOEg+FkH9n6MO1lbfOJevUE4WLlwk1S6pZh6PYC2Z2uVy3rx5ct5550lK2zZy/NgJKViwoPUwPxFAIA4B9eVY4UKF5Wj6UfNni5bNjcsXfCeX1qguR349KiXPPy/8+4yvZhrvFUnGsaUN5OvVX0vnTp3j6FG/WdTxq+rU2eqYWrVlTB2Av33HdklJaSOnT53Rb4Hy8YhV+Dl27Jj5OWfRwsXSqFEjKVy4cIYlPnHihKjjT1X9Dv30s/mewhdsGYi0+CVQQUiLimgwyP37Dpgv4pFDVS/olSpXjJwU9/3INwS1gubltvrrb8ytP4UKFcowmzpuqOolHNSYASWf/3L0SHqOV7BXwbtosWBf4T6frwIsngcCKvyoi4Sqv69oXzCoL9PUYyoUVK5SKRyOPBiqJ11m/uJFeRQpmvEDticDo9OoArm9j6iZThkXbS9xXrAvEhwVT6OJkZ87nRh2kpGsjRMYe3tzI/F5u4T0jgACCCCAAAIIIIAAArEKuJEPCEKxVoPnIYAAAggggAACCCCAgCsCBCFXmOkEAQQQQAABBBBAAAEE/CRAEPJTNRgLAggggAACCCCAAAIIuCJAEHKFmU4QQAABBBBAAAEEEEDATwIEIT9Vg7EggAACCCCAAAIIIICAKwIEIVeY6QQBBBBAAAEEEEAAAQT8JEAQ8lM1GAsCCCCAAAIIIIAAAgi4IkAQcoWZThBAAAEEEEAAAQQQQMBPAgQhP1WDsSCAAAIIIIAAAggggIArAgQhV5jpBAEEEEAAAQQQQAABBPwkQBDyUzUYCwIIIIAAAggggAACCLgiEKgg5IoonSCAAAIIIIAAAggggIAWAqdPnXF0nEkh4+ZoDzE07kbii2EYCT1F92XQffyqeLovg+7jpwYJvYTYNrPu65Hu4+fvwLZVOaGGdF+PGH9C5bdlZmpgC2NCjbhRA4JQQiX638xuFOt/vdl/T/fxKxHdl0H38VMD+/8u42lR9/VI9/HzdxDPWmv/PLqvR4zf/nUiry1Sg7yK2f98N2pAELKpbm4Uy6ahRm1G9/GrhdJ9GXQfPzWI+qfl+kTd1yPdx8/fgeurfNQOdV+PGH/Usro6kRq4yh21MzdqQBCKSp/3iW4UK++jin0O3cevllT3ZdB9/NQg9r83J5+p+3qk+/j5O3By7Y69bd3XI8Yfe62deiY1cEo29nbdqAFBKPZ65PhMN4qV4wASfFD38avF130ZdB8/NUjwj9Cm2XVfj3QfP38HNq3ICTaj+3rE+BNcAWyYnRrYgJhgE27UgCCUYJGs2d0oltWXEz91H78y0X0ZdB8/NXDiLzPvbeq+Huk+fv4O8r7OOjGH7usR43dirchbm9Qgb15OPNuNGhCEnKichm26sbJpyOLqkKmBq9xRO6MGUVlcnUgNXOWO2hk1iMri6kRq4Cp31M6oQVQWVye6UQOCkKsl9W9nbqxs/l16f4yMGnhfB2pADbwX8H4E/B1QA+8FvB8BfwfBqAFByPs6+2IE/MF7XwZqQA28F/B+BPwdUAPvBbwfAX8H1MB7Ae9H4Mrfgbqgqhe3gwcPhh5++HehatUvCRUslBw6/4KSoWuuvSY0d+4cL4YTuD6VeW7/5i+YHzgXLxZ4woQJoRYtmpv1KFK0sHl/0qRJXgwlkH1eXLFCtn8LHTt1DKSJlwutXpcaN2lk1sTLcQSt7w0bNoT63NU7VLbcRaa9+rvo2+/u0K5du4JG4dnynjx5MvTPf/0zvP6r94OGVzYwp505c8azcQW1Y+szEp+F3F0D1Lqu/g5q1b7cfC0qXaaU+dq0fft2RwbiyRaho0ePytXNmsqOHTvk3kH3SuvWbWTvvr0yZMgbsmfPHpk6Zapcd10376NoPh6BEUKzXbrJUybLoUOHZNvW7VKlSpVsn8cDiQv87W9/FeMPXq644gq5//7BUqRwERk1aqQsTVtq/D28KYONadycFVDfONWsWVO6dO6SpaPLjOkPPfhQlulMcE7gvvvvlZEjR5odnD51xrmOaDks8O2330rbdilStGhRefjhR+SyGpfJ5i2b5aWXXpSSJUvKiuUrpWLFiuHnc8d+gXPnzknnLp1lwYL50q3b9XLzTTeL8YFQPv7kY/nqq+lyww3dZdrUafZ3TItRBb755hu58abu5mfS1NQ5ktImJerzmGi/wB133iFTp06R22+/Xa7r2k127topr732qhQuXFgWLVws1atXt7dTR+JVLo3++91/mynvySf/kuGZW7ZsMae3bNkiw3R+cU9AJe6ixYqEbrn1Fvc6DWhPmzZtMq1rXn5Z6MiRI2EF44uCUPkK5cx/Z8+eDU/njv0C6ttu9a3fgIH32N84LeZZYPTo0WY9ihUvav7McwPMEJfAnb3uML0z75ExbNgwc/rf//63uNplptgF3n//fdP6/sH3ZZmp63VdzcfmzZ+X5TEm2CugtoKqPTSML8hMc/X+wBYhe41zam3GjK9M98zvyaoGqha9et+Z0+xxPSZxzZXgTM+/8Ly5QCoQRd6OHTtmTq97RZ3Iydx3UeCBBwabNeAF13n0xx9/zLRWHzYy34xvo0KqBidOnMj8EL/bKLBq1SqzBk8//XcbW6WpeATWrVsXKnn+eaFHHnk4dFnNGmZd4mmHefIu8MknH4fUB/HMNxWM1IePQfcOzPwQv9ss8Pobr4euv+H60Ndff52l5Weefcasw9ixY7M8xgR7BVQN+t/TL/TesPdCd9x5u+lOELLXOKfWlL16zVm2fFmWp9Wrf0WoxHnFQyor2HnzJAipfZHVN35qofbt22cuj/rm+w9/eNQE+Otfn7JzGWkrRoH9+/ebH0SaXn1VjHPwtEQEmjdvZq7v//nPf0Lp6emhefPmhtS3IXv37k2kWebNg8Ds2bPMGrzw4gshFUgHD74/9LvfPRQaP3586Pjx43loiacmIvDrr7+a+4OrvQHUcRIEoUQ07Zv3oYceNP8+Jk6caF+jtJRnAfWapD4cTps2Nc/zMkP8AmqrhHInCMVvmNc5VS5Q5qdPn84y69197zIfixaSsjw5DxM8CUJqfMb+f6FSpS80d/9R33a0bZtiLqBKg+qNkJv7Ak899aRZg2jfDLo/mvzfo9r97cJSF4TUltHIA/YLFykUMo6TYGuQC6uA+oZVveiq3UHV1og6dWubNVHT1IGaGzdudGEUwe7CODbC3N1BHaRvHZhPEPJunVi9enVI7bauThSi/ibUF5OqRty8Edi9e3eoXPmy5nuE2m2am3sCBCH3rK2ezitZInRpjerWrxl+qj031Huz3SeT8iwIqW9brW+b1IKpf1fUqxvavHlzhgXnF3cE1Dey6oNI5SqVCKLukJvrvNoPWX34njJlcujHH38MqWO07rq7j/lY7z69XBpJcLt59713Q5fXqhka+tbQcPBUW+esXVEaNKwf9Zup4IrZv+RD3hxiru/GAeHhxglCYQrX76jd5NR6r76oVF8QqNehH374wfVx0GEopI4jrXHZpSH14ZCtEu6vEQQh981VFlDrfLTb0888bb5XjBkzJtrDcU/zJAipXYHqN6hnHoymvvlWf+zqW/FKlSua+/+xGT7uesY94xtD3jBXsH89/6+422DGvAmoP3i1Vejnn3/OMKP69lWdMlU9rk4gws0bAeMMTmYN1C6L3JwRULs4FC9RLPSXv/w5QwcEoQwcnvyiTmE7fPhwczd29XoUbVcVTwYWkE5nzpxhvj9UrHRxKDV1dkCW2l+LSRByvx6BCULWGVAmT56cQVkdo6LeANXxQ9YuEhmewC+OCJw6dSp0SbWq5m4QaqsEN3cE1Buc2jUu2u2JJ/6f+SGc3RSj6bgzzdoqxAHKznmr1x11jYiXXn4p9Oprr4b/WdeyUdNGjBjh3ABoOVcBdRYt9eFk1qyZuT6XJyQuoALon/70eEhdQ0gdr+vUtVMSH2n+b4Eg5H6Nq15SxfwsGq1nay8ydWyvnTdPtgipYyCqVK0cdTnUvsnqRZcPgFF5HJmoNjMqc3XGOG7uCVhbHKJt9fnzn58wa2L3vrDuLZ0ePandsrL7oK0u+Kz+Lj777FM9FkbDUSrf3P6pL8e4OSugtnoa1y6L2olTu6NE7SzgE9UXkZ06dzL/JtTeMmo3XW7eCRCE3LdXZ+1T7wlqz7HMt2u7Xms+pjaa2HnzJAipb8LV7hCHDx/OsizW9Qwi9xfP8iQm2CagdsNS+4OrY1XU2fy4uSegTs+p/uAfe+yPWTptclVjc//8aC8GWZ7MhLgF1FnKVA3Wr1+foQ31Qqt2W7yobJkQByhnoLH1F/Xtd7R/ah9xVRfrMVs7pbEsAtUvrWZ+CxvtPbl9+3ZmLYyLrmaZjwn2CahryaktQOqL4syXFrGvF1rKiwBBKC9a9jz37XfeNl9v1OnkI2/qPVnlBnW2XbtvngSh115/zVxQdVaaFStXhNSps9Upg5/753Pm9KuaNjGn2b2wtJdV4PPPPzPNVQrn5q6AOjvilY0amm98L7/yckidsOLgwYPmxT3Vh8A//vH/3B1QAHtTm9itLdTjxo0LqQ97aiucOoWnmq5Oo83NfQGOEXLX/M2hb4bfk9esWWO+/6oTJFinbb79jtvdHVAAe3vwwQfMGqgvwVQQivaPk0m5u2IQhNz1Vr2pLwTUWePUyVrU3hjqc5Ja760vZD799BPbB+VJEFJLofb9VvuGqw98kf969Oxhfhi0fUlpMKqAddpy9v+OyuP4RBV8rF0hrL8DtW+4uqaW+jacm/MCat2/ulnTDFcSVweHs0uc8/bZ9UAQyk7GuenqhDmZ35PVxQvVa5HdFzB0bin0bVkdL2q9B2T3k+MV3a0vQchdb6s3tXeSdcIo629BvTY5taU0SXUsHt2Mg/TF2CIk+/buleLFi0ujRo2lQoUKHo2GbhHwTsA4Tkg2bFgvBQsWlKuuasrfgQelOHDggBj76Evp0qXx98A/ssutW7eKcZYyqVu3buRk7jssEPmefP7555uvRaVKlXK4V5pXAsaHv1whKlWqJBdccEGuz+MJ9gjs2bNHjN1FpVq1auZnVHtapZVYBVauWim7du4U9VrUqlVrx2rgaRCKFYPnIYAAAggggAACCCCAAAJ2ChCE7NSkLQQQQAABBBBAAAEEENBCgCCkRZkYJAIIIOBvAePMk1EHWLZsWalfv4Hcf999cvPNPcLPGfzA/WJcsDP8u3VH7SZdo0YNua7rdfL4438yd4tQj6ndJFq0aG4+7bbbbpPx70+wZsnw0ziwX6ZNm2pOW7F8pVx55ZUZHucXBBBAAAEELAGCkCXBTwQQQACBuAVUEKpYsaJce+21GdrYs2evGNepkRMnTsiE8R/Irbfeaj5uBSH1e8mSJcPzGAfmS1pamuw09g3v2LGTfDX9K/OxyCCk9hn/4fv/SLFixcLzqTvGdVekcpVKYpzy3JxOEMrAwy8IIIAAApkECEKZQPgVAQQQQCDvAioItW/fQWbOmJll5kWLFxmPtZNatWrJurXrzcetILR50xa59NJLM8xjnDJVWrVuKcbpzGXOnLkYcwqPAAAE90lEQVTSpnWb8BYhdQIFdWD59C+nS6dOnTPMZ5zpT4wzj5onWVDPIQhl4OEXBBBAAIFMAgShTCD8igACCCCQd4GcgpBqzbg+nBjXqJH9+w6IOhNZTkFIPd84VaoY17GRf/3refnj//0xHIQeefgRGTV6lPTs2VPee3eYemr4ds+A/vLFF19I7169xbg2DkEoLMMdBBBAAIFoAgShaCpMQwABBBDIk0BuQah+g3qiThN/8MCP5nE/uQUh47o2YlxUWF5++RVR4cfaNe7xxx6XPXv3GFuK5siO7d9JcnKyOU7julvmbnHdu3eXUheWEuNadQShPFWQJyOAAALBEyAIBa/mLDECCCBgu0BOQWjKlClyZ687pHmz5rJw4SKz75yC0P79+6Vjpw5iXFFcvl612jjZQv0MQahVq1Zy4003SmrqHElpk2K2N3fuHOlyTRf54vMvjOmpBCHbK0yDCCCAQP4TIAjlv5qyRAgggIDrAioIqTPEtTaO54m8bdy4QTZt2mReDG+6ceKDli1amg9bQahLl2ukRIkS4Vl+/vln42QJS82TKwy+f7AMGfKm+VjkFqGnnvqrVLi4vHEmuvvl+edfMB///e8fkXHvj5O9e/bJU089SRAKi3IHAQQQQCA7AYJQdjJMRwABBBCIWUAFoYIFC2Y4A5yauWrVqtKqZSt52Ni9TZ0W27pZQeiCCy6QAgUKWJPN3eYaNGgofXr3lh49eoanRwah5577p/TqfacsW7ZMtm/bIaFQSKpfWk3atm0rY0aPlT/96XGCUFiOOwgggAAC2QkQhLKTYToCCCCAQMwCOe0aF60RKwhFO2tctOdnDkLqWkHqmkGrv/5GjqYflTZtWsu0qdPkhhu6E4SiATINAQQQQCCLAEEoCwkTEEAAAQTyKuB2EFLXG6pUuaI8+ugf5JRxuu13/v2O/OeHPVK0aFGCUF6Lx/MRQACBgAoQhAJaeBYbAQQQsFPA7SCkxt67Ty/zTHTqAqrNmjWT0aPGmIvErnF2Vpa2EEAAgfwrQBDKv7VlyRBAAAHXBLwIQhMnTpS77u5jLuPEDyYa1xa6xbxPEHKt7HSEAAIIaC1AENK6fAweAQQQ8IeAF0HoyJEjUrHSxea1hNRucdbZ5whC/lgnGAUCCCDgdwGCkN8rxPgQQAABDQSWLV8m55c8X+rUqRPTaL/77js5cPCAXNnwSilSpEiu86Snp8u69euk4sUVpUqVKuHnr127VpKSkqRevXrhabt375a9+/ZK/Xr1zdN2hx/gDgIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBAhCwagzS4kAAggggAACCCCAAAIRAgShCAzuIoAAAggggAACCCCAQDAECELBqDNLiQACCCCAAAIIIIAAAhECBKEIDO4igAACCCCAAAIIIIBAMAQIQsGoM0uJAAIIIIAAAggggAACEQIEoQgM7iKAAAIIIIAAAggggEAwBP4/kBO/UVXSnaAAAAAASUVORK5CYII= />"

Question 6

What feature(s) in the 1 H NMR spectra of molecules A and B could be used to distinguish between the two? Be specific in your explanation.

Question 7

In addition to TLC, how do you know a reaction occurred in the experiment?



joechoochoy

  • Sr. Member
  • ****
  • Posts: 306
Answer to Question 1



Answer to Question 2



Answer to Question 3

The driving force for the dehydrogenation reaction observed in this experiment and in question 4 is the formation of an aromatic ring. This is not possible with this starting cyclohexanone derivative. The pair of geminal methyl groups will not allow this to happen.

Answer to Question 4



Answer to Question 5


Answer to Question 6

The predicted multiplicities for the aromatic hydrogen atoms are indicated. The primary distinguishing feature between the two would be the fact that HA in compound A would be a singlet and HB in compound B would be a doublet of doublets.




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Aspirin may benefit 11 different cancers, including those of the colon, pancreas, lungs, prostate, breasts, and leukemia.

Did you know?

Most fungi that pathogenically affect humans live in soil. If a person is not healthy, has an open wound, or is immunocompromised, a fungal infection can be very aggressive.

Did you know?

The newest statin drug, rosuvastatin, has been called a superstatin because it appears to reduce LDL cholesterol to a greater degree than the other approved statin drugs.

Did you know?

Critical care patients are twice as likely to receive the wrong medication. Of these errors, 20% are life-threatening, and 42% require additional life-sustaining treatments.

Did you know?

During the twentieth century, a variant of the metric system was used in Russia and France in which the base unit of mass was the tonne. Instead of kilograms, this system used millitonnes (mt).

For a complete list of videos, visit our video library