This topic contains a solution. Click here to go to the answer

Author Question: You and one of your peers might have observed the following situation in Part I of this experiment. ... (Read 73 times)

jman1234

  • Hero Member
  • *****
  • Posts: 560
You and one of your peers might have observed the following situation in Part I of this experiment. Student As sample melted at 89-92 C. Student Bs sample melted at 96- 98 C. Because Student As and Student Bs samples were within  4 C of each other, they prepared a mixed melting point sample. Each student recorded the following results: each sample began to melt at 89 C and melting seemed to stop around 92 C. The temperature increased with continued heating. The solid began to melt again at a temperature of 96 C. By 98 C, all solid in the melting point capillary was gone. Explain what happened.

Question 2

The melting point/composition diagram for compounds A and B is shown below. If a mixture of A and B had a final melting range temperature of C, what are the approximate mole fractions of A and B in the mixture?

Question 3

/pSefPLJIBTJ02Xw67MSAtnTzQrGeZmAXy96LzOFbd4g8O2332phsPjv7Nmz6dJLL3XdsNWrV2t+0K2trdpwOGLUuo48YwaxWIzOP/984l7XqVOn0l//+ldXQ/5lNMSFH7hMHJaOI3Lsueee1NLS4kIuSFIl4NdnJQSyWov4DAJ5EPDrRZ9HEXFoBRHghRS4Z42jFfBqeiyOeeNhaV52uhQb+7f++Mc/1rL6/PPPaYMNNihFtshDIXDFFVfQNddco+1h9wN+URk2bJhyhD8/8kjIAw88QDzhkN2GePvjH/9I55xzjj8L5COr/fqshED2USODqd4i4NeL3lsUYY0XCLA4Tl0UhNs3h13jWMWl3GbNmkXsG3rxxRdTXV1dKbOu6Lx4+WUWi3/+8581DtyDzH7o+n3Oz3DYv5393NXtiCOO0NxGeMVIbO4S0NtQKSb8OlkSCGQnaSKtiiLg14u+oioJhc2JwPXXX081NTXasby0NH9mf9Pvf//7OZ3v5EEclmvMmDFaktyTvdtuuzmZPNKyIfDdd99Zeom5B5kX2AjC1t7ebkTd2GabbTRRvP7662MiaAkr16/PSgjkEjYSZBUsAn696INVCyiNEwR22GEHbclgXmKaw3qVezvyyCPpb3/7G02aNElz99CvtXLbFcT8WRyffPLJRog/jg/8f//3f4EpKi+dzj3hLIqxkl55qlW/ftGDXB7+yBUESk7Arxd9yUEhQ88T2H777emf//ynZueqVavKvlgHD/ezWH/55ZfhJ+pi61HF8Zprrqn5G7OLS5C2Sy65hG644QatSH6M4RyEuvDrsxI9yEFofShDWQj49aIvCyxk6mkCTz/9NHHIK97YvaGqqorY1UKfMFcO41mwc6g59hFta2ujrbbaqhxmBDZPnoTJky//85//EIvju+66i2bOnBm48n766ae0ySabGOXiiYe8MA2HE8RWGgJ+fVZCIJemfSCXABLw60UfwKpAkRwgUF1dTRzeS91YQHEUi3JtPDTOQ+Qch3fx4sWBmDBWLpZqvl9//bW2+AsvDMNbIpEIpDjWy8wxnO2WTeeRCv0+rh+Lv84T0BnDxcJ5tkgRBDxJwK8XvSdhwihPEODetldeeUWLIvH//t//02zi73vssUdZ7FNdLc466ywjwkJZjAlIpsuXLyf28X7ttde0EvFoAS8KEvSNe8ybmpq0lfRuueUWrbgXXXSR4X4R9PKXs3x+fVaiB7mcrQZ5+5qAXy96X0OH8SUj8MMf/pA++ugj4ri4HB+5XBu7WrCPNG/cE/jzn/+8XKb4Pt+Ojg46/PDD6f3339cmrTU0NGjffV+wPAughxLkSaC8MA02dwn49VkJgexuu0DqASbg14s+wFWCojlIYNy4ccS9jV4I+XXUUUdRY2MjjR07lpYsWUIbb7yxgyWtjKQee+wx4+WCfXIff/xxLUpIZZTeWkp+yWIee++9N7300kvWH/HNcQJ+fVZCIDveFJBgpRDw60VfKfWDcuZP4OGHH6YXX3yRnnzySXr77be1BHiC3MSJE/NPzMEzODwX9yJ//PHHWqrwHc0P7lNPPWWZlLZ06VLixTMqaWOXEl4ym8vO7Zw3jvd93XXXVRKGspTVr89KCOSyNBdkGgQCfr3og8AeZXCeAEeJYPGgbnvttZcWak3dV67P7BN99NFHa9mzywe7fmAbmsCDDz5IM2bM0JYO33DDDenvf/97xYnjyy67jGbPnm2BxYvgfPDBBzRy5EjLfnxxnoBfn5UQyM63BaRYIQT8etFXSPWgmHkQeOihh2jatGnaGfvuuy8dd9xxWo+tHvotj6RcPfS3v/0tXXvttVpYMl5I5LDDDnM1P78nrrumcDk4rBn3nK633np+L1Ze9nMYu0033dQ45+677yYegTj11FMRwcKg4u4Hvz4rIZDdbRdIPcAE/HrRB7hKULQCCeyzzz5aTzH7HXMkCy9vxx57LPHkMo7XzBOsOBQdNisBXgDkggsuoDlz5mg/8MtPfX09rbXWWtYDK+AbR6xgFrx98cUX2hLqFVBsTxXRr89KCGRPNSMY4ycCfr3o/cQYtpaGgB6xotxxj3Mp7Zdffkm77767tjT2T37yE3rhhRfKvvJfLnaX6hgWgccffzwtWrRIy3LdddfVlljmxUAqcePFT+655x4aNmwYffXVVxX5klDuevfrsxICudwtB/n7loBfL3rfAofhrhG4+eab6cILL9TSP+KII7ThZ54Ut9NOO7mWZzEJt7e3a7GZWSxvt912mlguJr2gnPvcc8/RQQcdpBVn+PDhdNttt2krIgalfIWUg9vKjjvuqJ3K92yesLh69Wq45xQCs8Bz/PqshEAusMJxGgj49aJHzYGAHQEWVCwc1I19WPUFQ9T9XvjMk8/YV5q3yy+/XAtH5wW7ymXDggULaPr06Ub2zz77rLYCobGjgj/ovcgqAp6UyhFaKs0nW2VQqs9+fVZCIJeqhSCfwBHw60UfuIpAgRwjwD2OLKxef/11I6LFG2+8QbvuuqtjeTiZ0GabbUZdXV3aZCuegMaCvtK2b775Ruv9/9Of/mQUnSNV7LLLLsZ3fCB65plntJUYP/vsM23ZcmaCMG+laRl+fVZCIJemfSCXABLw60UfwKpAkVwgMHr0aPr888/pyiuvpN///vcu5FB8kkIIOuGEE7T4tiNGjNBEEIemq5SNV8TjSYv8EsNbNBqlWCxG66yzTqUgKKickydP1kQyVtIrCF/eJ/n1WQmBnHdV4wQQGCDg14se9QcCuRDQe2fLvdT0ULZyDyqHo3v++eeJY9u+/PLLtM022wx1mu9/Z5eK0047jXp7e7VYvnPnztVeFnxfsBIU4MQTT6T777+feJInLyCCzV0Cfn1WQiC72y6QeoAJ+PWiD3CVoGhFEnjzzTe1njUWD7pwYMHp9V7ZFStWEIeqe/fddzUCHR0dtPXWWxdJw5unp7pU7LzzzsT+2Ntuu603DfaIVR999BElk0nt38KFCzWrzjrrLM3twiMmBtYMvz4rIZAD2yRRMLcJ+PWid5sL0vcngcMPP5yeeOIJi/E8+/8f//iHZZ9Xv/AqgDzxSt++/vprYreLIG38IsBuAZ2dnVqx4FKRW+2yb/3ZZ59tOZhX0GOOG220kWU/vjhPwK/PSghk59sCUqwQAn696CukelDMPAg8+uijNHXqVO0M7nn9zW9+Q1VVVbT++uvnkUr5D/3rX/+qxQBmS7g8PHHve9/7XvkNc8ACriMWxLwyHJfp3nvvJXYVwJadQE9Pj7aojH7UNddcQxzVYsKECfou/HWZgF+flRDILjcMJJ9CYNUKWvZpb8rODF9l2Kl1h4+gdeSb/sh1hmU4qHy7/XrRl48YcvYqAY55/M9//lNbwplDvelt26v2ZrOLh9E5lrO+8bLCfi4P9xqfe+65NH/+fK0c7BbAYe0g8PQazv734osvphtvvFE7iCOejB8/PvsJ+NVxAvr1x5Nq/bRBIPuptgJg6xtzJtNu5y3OvyShMEWnHUVV00+g/bcfm//5Lpzh14veBRRI0ucEJk6cSG+//bbmx/viiy/6vDRE119/vRbCiwvyy1/+kjgEmn69+qlw3Gt85pln0ieffKL5VN999910wAEH+KkIZbf1sssuo9mzZ2ujITyh0Y/toOwQizRAZw6BXCRInB5sAkvmzqDQWfOLKmS4up7m33gijS9zp7JfL/qi4OPkQBK49dZb6fzzz9fKxiuxcWg37lXedNNNfVveM844g+68807Nfvbb5UmHflluObXX+JxzztFEPy8bjS0/Ajwywm2ZN3YZeuihh7Ted6+uEplf6fxxtF+flehB9kf7CoyVTghkDUaohtpfuI62H1k+NH696MtHDDl7lcB3331Hw4alv3GyMPvjH//oVbOHtEsV/nwwT8rafPPNhzyvXAdwPcyZM4cuuOACzQT2B0evcfG1wb3uHAZQ3fbcc09qbm6mtdZaS92Nzy4Q8OuzEgLZhcaAJDMTcEwgcxahOup+62Iql8OFXy/6zLWDXyqZAIszFmNPPvkkLVq0iL788ksNxzvvvEM77LCDb9Eceuih9NRTTxn2L1++XIuXbOzwyIfHHnuMLr30UiNqCEfkWLJkCaHX2JkK4jZQX19PTU1N9O9//1tLlCfssT83NncJ+PVZCYHsbrtA6ikEMgnkULSWTtt6bVqlHf8Nff5JD30kwza1NTZSW0oa6tdofTvNPXFg+EzdX4rPfr3oS8EGefifwHrrrUccKu2qq66i3/3ud74u0B133KFFgOBCsL81LzvMi4p4YXv66ae1hU50W4488kiqq6sjuADoRJz/u/vuu2vLqWMlPefZ2qXo12clBLJdbWKfawTsBXIVtfXPo4npI7zSjlX0/vMP0BkHzCL7qX1Rau+fS9vbnutaMbSE/XrRu0sFqQeFQCgU0now4/G4NlHM7+Xi5ZgPOeQQYv/esWPHaj21/LdcGy/uwe4U6qRIjkPNPd7Y3CVQU1Oj+XQffPDBxC8o2Nwl4NdnJQSyu+0CqacQsBfIEWrpXUh7ZvMnXv48HTXuAGpMSY+/1iS76LrDSx+6x68XvQ1C7AIBjcB///tf4tX0uMeVBRxv7GrBvclB2Fgk84p7vBodi2OObjF9+vSSFY1D6DU0NGgvHCtXrtTyZV9Y7qGfMmVKyeyoxIx4NOStt97SJunddNNNGgJ2uUAsafdbg1+flRDI7rcN5KAQyCSQW6VAnpRNIMs03l9wPm0z/VYltcGPVfXUN+9EWif9F1f3+PWidxUKEvctgcMOO0zzP1YLwLF2dX9Ndb+fP7Pg5ygdt9xyi1GM9vZ2I9KBsdPBDx9++CHxhEcO26Zu/CJy+umnq7vw2QUCLIh58ZvUze8xslPL49Xvfn1WQiB7tUUF1K5iBDKtWkIzRoRofhqb8rhZ+PWiT8OHHRVPgGf46/F1t9tuO/rZz35Gp556KvFS00HdXnrpJdp3332N4vHSwxzVYJdddjH2FfOBV7zjRSrY3/njjz8mPQYsv4jU1tbSHnvsUUzyODdHAhz7eIMNNtCO3nDDDemYY47Reo0nT56cYwo4rFgCfn1WQiAXW/M4Py8CRQlkWkl/OWoUzUrzswhRY2crTd28DI7IeZUeB4OANwn8+Mc/1nxyeeIaR3molI0jd3CsZF6dTt222WYbLeIBT+bSH+7q73afOa1XX31Vmwz4wQcfUF9fnyGKOQ7vjBkz6IQTTqAtt9zS7nTsc4kAu6/wCwnXI9dRrvXpkjlI1kcEIJB9VFlBMLU4gUxkfz5RrLWHzp00OgiIUAYQKDkBfanp/fbbLy1ebMmNKUOG7A/Mrg7c0/vCCy8YFowbN07rUa6qqtIWTeGYuaNHD9xn+EVi1apV2hLd9913H/3rX/+iL774wjiXXzq4B57P/fnPf27sx4fSErjooovoD3/4g7ZIiO73XVoLkJtfCUAg+7XmfGq3vcCNUC4+yFxk+/MhkH3aHGC2RwgsXLiQfvGLX2jWHHjggdrEtVmzZlVkDF7u/b399tu1pbc5JnR/f39OtcQuGhwlY9ddd6VIJEIcBQRb+QnwxMjhw4drhvAIydlnn629DG222WblNw4WeJoABLKnqyd4xtkL3GAI5GxDd7r/oVqj+R7P5wbpnCCVxY91o7ZJHnpOXUmP6+faa68lDomlb3qdqeem/qZ/V//aHc+/6+mpx+qfvXxOIpEgXkCFYxbzctxrr702bbHFFrrpaX+9XJZy2laq+md/b15qXN24V59fDDMtP14q20qRTynyYLaF5KPWiec+y4sDGwiUjEBbvErIiyDlX0S09uZmgv35JKSLRW4JuHhUernMctplm+14GY7I7pQUbmb6nJaM75r3ObYnyJ3ZbHPqnGx5LF261DabbOfI0F15n2N7gtyZLR+/nSN7QG3Lk1oOGQZLnHzyyULG4RXyQWec09XVpR0qZ/wb+1LP5e/ZmPG5dlu2c+yO532lOOftt9/OO59S2FWq8ste17zLz+0kXwbZjneyzTC3K664QkybNk3IlxnDzttuu41/st2y2WZ7gtzp1XO8alcmjl7Zjx5k2XKwlY5AkHuQS0cROYGAuwT4Wb/xxhtrE/Yefvhhw/3C3VyROgiUhgC7wvCS0xzRYsGCBaXJFLn4jgAEsu+qzN8GFyuQ35h7FO12VmMahFiLnKS358DkmbQfsQMEQCBvAvpKeojVmzc6nOBxApdeeqm2nPfhhx9OyWTS49bCvHIRgEAuF/kKzbc4gZwpzFuYkl1P0uHjEeatQpsViu0QAY6HzCvMTZ06VYvKwMm+99579KMf/cihHJAMCJSHwD/+8Q/69ttvNWH817/+VTOCF4z5/e9/Xx6DkKvnCUAge76KgmVgUQJ51bt0/ogdKH0tvWrq6L+FtoY+DlZjQWlKSmDMmDHU09NjyTMcDmsLXVh24gsI+IwAR66Q/sYWq3lyJYfmC8oy6pbC4YsjBCCQHcGIRHIlUIxAXiaXmt7CbqnpaCP1z51KpdbH7Lt23nnn0bx58wirMuXaAnCcFwm8/vrrxIti8MZ/R40apYXD0kO/edFm2AQCuRDg5aS/973vaYfyXw5jyD7IanSWXNLBMYUT4BEoXoznwgsvLDyRMpwJgVwG6JWcZSaB3NK7kPYcmYXM8udpxrgDbJaZLl8M5GuuuYbkzGjikE8zZ87MYjx+AgFvE9hrr73olVdeofHjx5OMRuBtY2EdCORBgBdxOemkkzSRzMtOr7vuunmcjUOdIMAvJtOnT6cHHnjAieRKlgYEcslQIyMmkEkgt/YtpEnrpDJaTatWrqC3Ft9P0ch51Jb6M38P1VH3WxfTWLvfXN4HgewyYCRfMgIsGnhp5GOPPZZ0/8ySZY6MQMBFApdddhnNnj1bGxVRVzp0MUsknUIAAjkFCL6CgB0Be4Esda70dRyjnvDZZ7S4zVYSq0dRnYxecXGZoldAIFuqAl98TEDvZeMiXHzxxXTAAQcQz/DXh6Z9XDSYXuEEZHx0Wmedgd6XffbZR2vf+++/P2200UYVTqZ0xYdALh1r5ORjApkEciFFCtUkqfW6w0vue6zbCoGsk8BfvxPg2f28Gpy68UPt7rvvJrl4iLobn0HAdwR4lcNly5ZZ7I5GozR37lzLPnxxhwAEsjtckWrACDglkMM1DdR43TTK5rbsNjoIZLcJI/1SEuju7tZ6jXlZ3jvvvJN4+WneeD+HfsMGAn4lwG356KOP1vyPn3jiCZKrjmpFueeee/ACWIJKhUAuAWRk4X8CxQvkCCWabqKZk7cuOwwI5LJXAQxwicDKlStpwoQJxH8bGxu1uMguZYVkQaCkBDiqxS677EJLliyBz32JyEMglwg0svE3gSV/mUGhWfNzL0QoRJHQXrTb7nvTvvvtT/tM2prS5vLlnpqjR0IgO4oTiXmMwN57700tLS3aMDQPR2MDgaAQuP7667Uwb4ceeihxjzI2dwlAILvLF6mDgOcIQCB7rkpgUJEE3n//fVq6dCmxIOa/vL399tu00047FZkyTgeB8hL4+OOPNXehc889l3jFSN4uuugiuuGGG8prWAXkDoFcAZWMIoKASgACWaWBz34noMdCVsuxww470DvvvKPuwmcQ8B0BFsGXXHKJxe6RI0fShx9+SBtuuKFlP744TwAC2XmmSBEEPE0AAtnT1QPj8iDAvcQTJ07UzuAlpzfYYAO6+uqr6cQTT8wjFRwKAt4jIISgNddc0zCMfetPOeUUrX2r+40D8MFxAhDIjiNFgiDgbQIQyN6uH1iXO4GDDz6YnnnmGW2W/1dffZX7iTgSBDxO4N5779UEMZuJiCzlqSwI5PJwR64gUDYCEMhlQ4+MHSaw2WabaUtMs68x9yZjA4GgEJgxYwbNnz9fi/O9atWqoBTLV+WAQPZVdcFYECieAARy8QyRgjcIXHfddXT55ZdrxrC/5jHHHENbbbWVN4yDFSBQBIE2uSLrzjvvrKXAsZCvvfZa2nbbbS1uF0Ukj1NzIACBnAMkHAICQSIAgRyk2qzssnBsWPY9/vzzzy0g/vCHP9CFF15o2YcvIOA3AgceeCA1NzdbzD7ooINo8eLFln344g4BCGR3uCJVEPAsAQhkz1YNDCuAAIvj3//+9/TWW29Ra2sr9fb2aqnwJCdsIOBnAv39/RSLxaipqYm4R5lDvvH25ptvGr3Lfi6f122HQPZ6DcE+EHCYAASyw0CRnKcIjBs3jpYvX05PP/008SQ+bCAQFAKRSIQeeeQRmjlzJiUSiaAUy7PlgED2bNXAMBBwhwAEsjtckao3CGyxxRa0bNkyuuyyyzS/TW9YBStAoHgCp556qiaMd911V3rjjTeKTxApZCUAgZwVD34EgeARgEAOXp1Weom++OILbQW9K6+8kh599FENx3PPPUcHHHBApaNB+X1OgMMXfvrppxSPx+nGG2/USsNC+a677vJ5ybxvPgSy9+sIFoKAowQgkB3FicTKTGDWrFn0l7/8xWLF+PHjtfBvlp34AgI+I3DffffRSSedZLF6+PDh9O9//5vYlQibuwQgkN3li9RBwHMEIJA9VyUwqEACPMOfZ/rztv7669O+++5L4XA4bXneApPHaSBQNgI8+XT06NFG/tzOeQl1nrS31lprGfvxwT0CEMjusUXKIOBJAhDInqwWGFUAgUMOOUSb4c+nrl69mviBhg0EgkCAJ+GxKwVv77//PuJ7l6FSIZDLAB1ZgkA5CUAgl5M+8naSALtSfPLJJzRp0iQtxJuTaSMtECgngeOOO44efPBBGjFiBH399dflNKVi84ZArtiqR8ErlQAEcqXWfPDKffHFFxsTl3hFPZ6kh+Hn4NVzJZbo5Zdfpn322UcrOq8O2d7ejrZd4oYAgVxi4MgOBMpNAAK53DWA/J0iwAsppAri9dZbj6666ir6zW9+41Q2SAcEykKAfY7fffddI+9hw4YR9yzzpFT+jM1dAhDI7vJF6iDgOQIQyJ6rEhhUBAEWyb/85S+1JXk7OzuJv/PGq45tuummRaSMU0Gg/ARuvfVWmjt3rtae9VUi+Xs0Gi2/cQG3AAI54BWM4oFAKgEI5FQi+B4kAuussw598803dPPNN9P5558fpKKhLBVOYMcdd9RcLTiixbPPPlvhNNwvPgSy+4yRAwh4igAEsqeqA8Y4TIBXGXvzzTfpiiuuoNraWodTR3IgUD4C7GN/9dVX0+67706vvvpq+QypkJwhkCukolFMENAJQCDrJPA3aAQWLFhA06dP14r1wAMPaP6aQSsjylOZBNgXeeedd6Zvv/2WjjzySHrssccqE0QJSw2BXELYyAoEvEAAAtkLtQAbnCLAQiESidD//vc/I0mewMShsXjVMWwg4FcC7FO//fbbay5Da6yxBgkhtKK0tbXRxIkT/Vos39gNgeybqoKhIOAMAQhkZzgilfIT+OCDD2jrrbfWDOFoFptssgltsMEGtGjRIuIYydhAwK8EUiO0sP8xT9KbN28eHXTQQX4tlq/shkD2VXXBWBAongAEcvEMkYI3COy333704osvasYgaoU36gRWOEMgHo9r0Vk4tYaGBpo2bZozCSOVnAlAIOeMCgeCQDAIQCAHox5RCqItt9ySeBj6iCOOoMcffxxIQCAwBGbNmqXFOx49ejT19PQEplx+KggEsp9qC7aCgAMEIJAdgIgkPEGA4x9zTxtvHPaKw19hA4EgEHjhhRdo//3314pywQUX0E033RSEYvmqDBDIvqouGAsCxROAQC6eIVLwBoH//Oc/lsVAOAbyiBEjaOHChXTAAQd4w0hYAQIFEFi9erVlkin3JPPEU75/Y5XIAoAWcAoEcgHQcAoI+JkABLKfaw+2pxL497//rfW0ffLJJ9psf/13HpZmUYENBPxKgEO6HXbYYfTSSy8RR7HgBXB448gtHOoNm7sEIJDd5YvUQcBzBCCQPVclMMghAhwrlmf7czisOXPm0K9//WuHUkYyIFBeAl999ZUWmYUjWfDoyHPPPVdegyogdwjkCqhkFBEEVAIQyCoNfA4agUmTJtHf//53rKQXtIpFeeh3v/udtjrkHnvsQa+88gqIuEwAAtllwEgeBLxGAALZazUCe5wi0NLSQnvvvbeW3P3330/HH3+8U0kjHRAoKwF2Jdp88821BXF+9rOf0aOPPlpWeyohcwjkSqhllBEEFAIQyAoMfPQ9Ae4tPvjgg+mLL76wrKanrzrm+wKiABVLYMWKFfSTn/yEli1bRt99953Bobu7m8aOHWt8xwd3CEAgu8MVqYKAZwlAIHu2amBYngR4cZAJEyZoZ6255pq08cYbaxP27rjjDho1alSeqeFwEPAOARbEvGS6vo0ZM4Z22mknmjt3rrb8tL4ff90jAIHsHlukDAKeJACB7MlqgVEFEDj00EPpqaee0s7kCXrbbbddAangFBDwHoF77rmHZs6cqRmGCaflqR8I5PJwR64gUDYCEMhlQ4+MHSbAPpkffvihFgpr0aJFDqeO5ECgfAROOeUUuvfee2nDDTckdrXAVnoCEMilZ44cQaCsBCCQy4ofmTtI4OSTT6Z58+ZpKb799tvaELSDySMpECgbgaamJjrkkEO0/P/4xz/SOeecUzZbKjVjCORKrXmUu2IJQCBXbNUHruBLly6lrbbayigXr6LHfshPPvkk/ehHPzL24wMI+I3AqlWrtFUhdbu5bfNKkeyDPH36dH03/rpIAALZRbhIGgS8SAAC2Yu1ApsKJdDW1kY//elPtWHo/v5+LRmesMfD0pioVyhVnOcFAhyZZZ999qEPPviAWDDrGy8SgqXUdRru/YVAdo8tUgYBTxKAQPZktcAoBwg8++yzFA6HtZQ4ksXpp5/uQKpIAgTKT+A///kPbbnllppQ5rCGTz/9dPmNCrgFEMgBr2AUDwRSCUAgpxLB9yAR4FXGXnvtNW3FsSuuuCJIRUNZKpyAfu/ec889iRfFweYuAQhkd/kidRDwHAH9JptIJIwwQp4zEgaBQAEEurq6aLPNNtPObG9vR7zYAhjiFG8S+Oqrr7SV9D777DO69NJLafbs2d40NEBWQSAHqDJRFBDIhQAEci6UcIxfCDz++OPai96XX35p8dPESnp+qUHYmYkAr6A3efJk+uSTT6ivr884rKenh0aPHm18xwd3CEAgu8MVqYKAZwlAIHu2amBYngS4N42X3GUxvMYaa9C6665LO+64Iz388MNGT3KeSeJwEPAEAW7TvHqeHgOZo1iMHz9ei2LBPsjY3CcAgew+Y+QAAp4iAIHsqeqAMUUQmDZtGj300EPakrzcy/b973+/iNRwKgh4h8AjjzxCkUhEM2jx4sV00EEHece4CrEEArlCKhrFBAGdAASyTgJ//U6Ae415O+mkk2j+/Pl+Lw7sBwGDwIwZM7Q2PXz4cPr222+N/fhQOgIQyKVjjZxAwBMEIJA9UQ0wwgECv/3tb+naa6/VUuKV9LbddltiQYENBPxOgEdE2KWCN3YZ4lX1Ro4c6fdi+cp+CGRfVReMBYHiCUAgF88QKXiDwH//+1/NB1m1ZueddyZeSGGDDTZQd+MzCPiOgD5Cohu+ySabELte7L777vou/HWRAASyi3CRNAh4kQAEshdrBTYVSqC+vp6qqqqIH2bfffedlsywYcPo888/p/XWW6/QZHEeCJSdwHvvvUfbbbcd8cqQ//vf/wx7WltbadKkScZ3fHCHAASyO1yRKgh4lgAEsmerBoYVQWD16tV022230Xnnnael8vzzz9N+++1XRIo4FQS8Q+CJJ56gqVOnav7IM2fOJI5jj81dAhDI7vJF6iDgOQIQyJ6rEhjkIAE9skU8HqczzzzTwZSRFAiUl8CCBQto+vTpdPjhh1MymSyvMRWQOwRyBVQyiggCKgEIZJUGPgeJwL333kunnHKKVqRnn32WDjzwwCAVD2WpYAJvvfUW8RLT33zzDZ188sl0zz33VDCN0hQdArk0nJELCHiGAASyZ6oChjhAoKGhgY499lj6wQ9+QB999JGWIvsg88pj/BcbCPiVwD//+U9tufRx48ZRd3e3UYx3331X8002duCDKwQgkF3BikRBwLsEIJC9WzewLD8Cvb29RrQKDu/GE5l22GEHLYrFRhttlF9iOBoEPEZAjWLBYo3b9N/+9jf6yU9+4jFLg2kOBHIw6xWlAoGMBCCQM6LBDz4jcOGFF9LNN9+sWb18+XKspOez+oO5mQksXbqUttpqK+2Axx9/nI444ojMB+MXVwhAILuCFYmCgHcJQCB7t25gWX4E9B62X/3qV/SnP/0pv5NxNAh4mAD7Gc+bN49GjBhBX3/9tYctDa5pEMjBrVuUDARsCUAg22LBTh8SOPvss7XQbvwg+/TTT2nMmDE+LAVMBoF0AnoMZP7l1VdfxeIg6Yhc3wOB7DpiZAAC3iIAgeyt+oA1hRPo6uqizTbbzEhgrbXWonA4rPlp8uIK2EDAzwT0ERIuA7ftLbbYghYvXmwsQe3nsvnBdghkP9QSbAQBBwlAIDsIE0mVnUBdXR1deumlNHLkSFq5cqVmz7rrrku8DDUPT2MDAb8SeOWVV2ivvfZKM7+9vV2LbpH2A3Y4SgAC2VGcSAwEvE8AAtn7dQQL8yMghCDubZs9ezZddtll2sktLS1a3Nj8UsLRIOA9Aty+n3vuOTrkkEO05dTPOOMMuv32271naMAsgkAOWIWiOCAwFAEI5KEI4Xc/E9BX0mMBwUICGwgEhcBDDz1E3L6xkl5pahQCuTSckQsIeIYABLJnqgKGOEigv7+fHn30UW0pXo6H/OSTT9JPf/pTB3NAUiBQPgJvvvkmHXDAAZob0UknnUTz588vnzEVkjMEcoVUNIoJAjoBCGSdBP4GgcBLL71EkUiEVq1aRV9++aVWJHa34JX01l577SAUEWWoUAIcmYWXl+Z2/dlnnxkUXnvtNSwWYtBw7wMEsntskTIIeJIABLInqwVGFUCARXHqRDyOavH0009jKd4CeOIUbxFQo1iwZeuvvz7dc889dPTRR3vL0IBaA4Ec0IpFsUAgEwEI5ExksN9vBNRJeX//+99pwoQJNHbsWL8VA/aCQBoBXhly3Lhx2v4///nP2kp6P/zhD9OOww73CEAgu8cWKYOAJwlAIHuyWmBUAQSi0SjdcccdNGfOHPr1r39dQAo4BQS8SeDBBx+k4447jqZMmaLF9famlcG2CgI52PWL0oFAGgEI5DQk2OFTAh0dHfT6669rQiJ1ONqnRYLZIKAR+OKLL6ihoYF4Ql6qGxEQlYYABHJpOCMXEPAMAQhkz1QFDAEBEAABEPAoAQhkj1YMzAIBtwhAILtFFumCAAiAAAgEhQAEclBqEuUAgRwJ6AJ5+vTptMkmm+R4Fg4DgfITCIVCdPrpp+dlCFwv8sKFg8tIgFfMy3e79tpricPBYXOeAE+OPOaYY+iBBx5wPnEXU1xDNqT8W5KLBiFpEPALgZtuuoluu+02+uCDD/xiMuwEAY3AxIkTqa2tLS8aEMh54cLBZSTAC9zk216HDRumLT9dRrMDm/V6661HZ555JvEz008bBLKfagu2eorAihUriP9hAwG/EeAH1sYbb+w3s2EvCLhGYOnSpYT+Qtfw0siRI30XOhIC2b32gJRBAARAAARAAARAAAR8SAAC2YeVBpNBAARAAARAAARAAATcIwCB7B5bpAwCIAACIAACIAACIOBDAhDIPqw0mAwCIAACIAACIAACIOAeAQhk99giZRAAARAAARAAARAAAR8SgED2YaXBZBAAARAAARAAARAAAfcIQCC7xxYpgwAIgAAIgAAIgAAI+JAABLIPKw0mgwAIgAAIgAAIgAAIuEcAAtk9tkgZBEAABEAABEAABEDAhwQgkH1YaTAZBEAABEAABEAABEDAPQIQyO6xRcogAAIgAAIgAAIgAAI+JACB7MNKg8kgAAIgAAIgAAIgAALuEYBAdo8tUgYBEAABEAABEAABEPAhAQhkH1YaTAYBEAABEAABEAABEHCPAASye2yRMgiAAAiAAAiAAAiAgA8JQCD7sNJgMgiAAAiAAAiAAAiAgHsEIJDdY4uUQQAEQAAEQAAEQAAEfEgAAtmHlQaTQQAEQAAEQAAEQAAE3CMAgeweW6QMAiAAAiAAAiAAAiDgQwIQyD6sNJgMAiAAAiAAAiAAAiDgHgEIZPfYImUQAAEQAAEQAAEQAAEfEoBA9mGlwWQQAAEQAAEQAAEQAAH3CEAgu8cWKYMACIAACIAACIAACPiQQDAE8qoVtKyrh2jERrT5+NGuVsOKZW/Q86+9S19+S7TW+hvRVjvtSZO2djfPQgq0asXH9GlvP9HwUa4zKcQ+4xyuu097ta/DR21M40evY/yEDyAAAiAAAiAAAiBQDgKBEMgr35hDo3Y7T+OXaO+lmduPdIXlkvvOpNBJt1vSrkq007yZ21v2lfrL6hVL6OZL76dD/nAdTRos+htzJtNu5y0mCsWo561zyXsSfoDS81fvTAdc2TbwJZyg3mdmkju1V+paQX4gAAIgAAIgAAJ+JRAMgbxkLo0KnaXVQay1h86d5IIcXLWEZowI0XyjpkPyUxvF23rpzInlk3Sr3l9AI7aZLm2JUGvvQkUgHyUFcqO3BbJkeqZkar5yhKihs5WmbT7MoFzuDx8/cwNNOb+exux1CTXOPbFA8b6a3n1+Id07v5Fa/tUlizSKJvxoN5py3FF09OSJhD5zrmU3GK2kNxY9RPPqF9JbXQOjFKMm7ExTps+gE6dOKrAuy90ikT8IgAAIgEBJCIgAbL1tcSFhaf+kQHanRL0tIjKYR1WsRfRruQz8706GuaVqlj0iWnvNc7qaE6KmpkbEGloHbTV/88qn7qZao970+gvXNXvFPCG6m0R4sM4pHBcFtaz+ThGLDLRNvYyWv5GY6PJOictjiRuMelpFdSgL91C1aCmoQsuDCLmCAAiAAAiUlgCVNjt3cjNFIgm3BHJ/e8IQc4n28gtjnaRpV5Vo845ZunlZ/vaKhC4cw9Wipio0yFeWoy/LaSX6qb+rWVTp4pj/SoGsvH/kaEW/SNbo5WKxFhI18XqRiFUbbUkTy9WNnn2JybGgRRzmBqNuEQur4lhyjyVEIl4j5LiPyT5Uh5eTImoOp4IACIBAkAk442Kx6n2ae+NdtIx+TGdWT6EPH7qDbrq3npZ+Jh//NIYmn1ZNF0Wn0ng5lrzkkTl0xa13Df4mJcOR59NVNTNp61QvhdXL6ZkHE5R4cBG1DSREY7bci4469VSaNXVPy/DoyqwuFivplQUJ+r/b7qI2zR5pkZbOmRSVw6xDDm/Lsv3lxvvovZ5Wmn2rdFmQWyRaS/ts1kcb7H4aHT3hHxS/v4V+MOVkCn3aQL+5egF9JsscOvI4uvyi02j70cNo1cdL6OEFCyn5zGKzLGO2pB/tNZmOO/kEmrz9WC1dy3+y/M8vvJ/mz19ILUr5Tz7rHDr+cB6WX0XPzJ1DT7/xEs2+ne0KUbT2JNqs7xva/bSLaIdlD9DcF9+jEeMOoYvOnGwtZx5syajbbemcmuPpowdvpJq6BbRYy1GWc/JRFD1nBu2f70TFjxfRzhOmSCcVyTPWSnfs+TSNk24MvNUkO+m6wzfXPpfjv/efmUPbHDzg0z7gSCOtCMelf/SZlnY3lG2rlz1Cw7eQ4w7aVkVNXQmaPH7AfWTVskV0/BZTaKBFETV09NG0rYdsjUNl6bvf3WC06t25NGKHswZZRKmlZy7tOXrw64o36PyNdqNbB7/GWnulS1bqzcd3GHM2ePWKd2nhvHup8Zl3qKu3l0aNmkA7Tp5CJ5xwNE0cW2j743vsfXT3/CT9S6bJ26gJe9Gxs06AC5FGww33IS1hy38rl9xHv7oiqe2LXH8bTXNpLo4lUw99caNtL3/3eXq44WFKLn6LBls2Tdh5N5p+/Mk0dc/yPaM8hJ3c4O6Oy10B1BxR/72thvuBNMHsoVE/R2pFvDZi/xtFRbvSa9jXmcyeXqhGqJ4UGXuQe9pETbZh1nCtJV9bFn2t5jC7Wh75OVT3jIhbeqqsZU/IQnUm6zKU2Ty2NtlpybpfDu3r7hy2PMN1orO/V8QylK1Ojh23xgZZh2MW14B82Ypc6layiOc5Xt0WrzK41HfIru/+NrPHNsVmCxwXv/R1tohaoyfb7PnVeh0L6EFu0etA8qlt6k6zvLvZbBvyJSHt90rY4Qajjgazh746me7A0qNyj1cO984ms73Z3VdizemshmyD3S3ZXVnkvapDubcPmV7QDnDDfciOUV+biCrPJ7dGUu2y9sI+59t2j2ioCRvPKLvrhapiorOS27aseOe5y0RLdc3k0HCdcbGQItIyHE0R6fuaFM3JuI3QC4vaWFzEE3FRrYjLqvr2AXP72y0XeqiqVjS1tou2lkbL8SSHR3XJYS+Qu0WdKiClQE+2ton21iYpgkxxSpHEkEPnnfIc1Y80WlcvGhsbZHrvmW4C+s0pXCUiWr7Svp5mi7iuiTeI1nZZFpleXVS5+CxDvSl26+VvbhBRpTzRhg7R09kqYkZZQqKuvlE0Nsg8uvqEIUBVYVcAW5FWt2FRl6gXDQ31ipiUPPPy0e0UNTovpR6bak0m9WV4qrbGzPz5hlhdW2PeIFWOOVxYQr6WmC9PEdFi558hH2rGdROqFdbXpJwy8flB7jBSBXJts36XMFH1KXMWKuXFpL8raXEvCVXViPr6hKjW3Zy06zEkGjvz8NOSL89G+9XOj4jaeELE66LmdcP7pQtRZeoIN9yHzHZsfuoTjdXmCz3fuypJILvRtpvrrM+CcLRWJOrrRV11SidfVX2Ftm2pY924p0hnQy+5JbogkKssYqBP8d2V49Qiqd6AFQGpP6g66s2ba7i2KcU3s0fUR80bQW3TQI+HnUDuaTF7S0I1qTfoPpFUxJiMRGHeazJ86u+oN276ccNJVvGjlTclnrw3sPWJnt5+0dFglkW31Uy+X7mpmQKqM2mKsjS7LQK3VntB6O/QfaOtPsh2ArkQtlaBLOvWMrGpRyQMgW6WwSyj/afe1pjBMqq/GMlD1bYSqmmyP9nFvW3xgZtfqKpOtHSxUGg3BUC+All9scj48tAr4oZAyZ2fiwhKm7RLjFQBLP13jBfpgcL1Wu4hPNoS/E0+dBQBFYk1K/fVPtFUpzz0ow3Kb9nJNCv3UKpKWDj3dTQqnQMhkdSup+zpBe3X/s5G4z5HVCWaFAapI3nSxarg4ncl0yc7V45AdqFtyxFcc65CSCRarS/Zve0NStsmwSPFlbe5wF1CLNU1k2t9OS6QI6lDlkovWbg2NUKBKTAHBLL8bgiuqP2kM0VUh6SA5i1dIKvis0q02nWK9LUYjTycw/B2eh5azkoPsjWKBP/a09Eqe3TrRSxWbzMZqF+Yw8vmubpIk565otnm2d3eUCui1dJdpT4p+H5r2mWmwXmnC+TC2KoCWcZ85qQtm5GPtFeNomE5yPJFrZtUUdijTK7KNT1L4sV96e8W7R3KzVDtIStGIFdlGqXoEw1RfTSjDOUtjlbxZ6sC2UlG/R3mCAX3YMpJoI0t1tGjgQdgNMc2W3xRy5qCvGcaLltypCLdkUKOWhmjeanXZAbLVZcoKf6MPgPlcHVEpk71iVOOCfJH8/7uoouVHmnHGF0c6ECqGIHsQttWXd+qUvXMYIPtbDQ7stROniC3Z0vZXODO6ZfkmrEUJPsXxwWynPRizVF5CKaJZ+nckBjsQdMFstGjJnsy7N/LzHNo0FfVFIn60JLaM0ciEq0W0WhU+Se/Gz138ncnBHIkW5QD6Yvc1iKS0i0jEasTNdEq5Q2VBZIujmTvlv6CkDU9E7FZdj2Ngd8M4WoIO4VJHmxVgWzX097TovcGW/M3LUz5pITLI+l73tjcIpqbm7V/La3NopYFzeA/diMp66a03byjWCi+25F4W8ZitCV0X+wc+WVMyYc/uMqoU1QrbUlvU+bfyuGtjthkuteZ7ZCEnCQ7ZGPqUkI02r04awn0dMjrukW0tUt3MPub+ZD5+PcAd9yHrDxkHsZzLCyqIqZbQKUIZDfaduvgSOKAq0qKnhmsAHW0M2yMHFtrJ8jf3ODuRbdEFwRySrenIjLSb86m2B34zQzPFKrV3RVSm5l5Dg2KSFMkmgJZF97mA9EUXmn7QtaJbKk58vf0PLS9hsDPJKDaZI9vWn5pD279Ya2IWEPY2llj7jPt0tMY+C1dIBfGVhXIdjfdTPmbFlo/qf6hQ3JR/JOtqZTom9J2M9VvRkuUSTOhmtSRE/Mso56MlyTzt8B/co2RHJ2JmxP1MrWzaFx1NQgubbON6ffH9LKa1zGJXEbUjEnA8l7WMKine7o6RGtLi2iR/1rbOzN0cKTnHcg9KfeOlKfiYJGV+728/m3nKWSBo77UVDd2iHbFPdHuXp0lKd/+5EbbZhj9fb2ip7s744udyrq63B05Zag9V7iX4JrJF5XHBLL5RpzZB1URyIO+nerNfeDGoBwjb+CJZJNIJpNpjZgK6QAAIoNJREFU/5qamkRTk9zf3D7kzTw9D0at5GMjaNVeFu0hHYpo7hGxRINokb0qjUaMXF3cKjdMx3uQC2PrrEA2RfoAj5AIhdL/qYLGrtc630Ze8PEpF6x9X0KG1JVz018MzXPMG43eBszfAv/JJUbqw4vbUm19s+ju7RN9vd2ipcGcm8C/VSUy9+4Hhb/ZxuS9MMN8i752c45FtvaqMzHTjIrmdhn9xejJVDsiqkRDm+KypJ9cCX+Vts3+2fb3jsJdrPo6GsyOF/ms4A56s04yvwgFDb1aZqfa9pCMLKOg7INsX7tDpuPjA1zh7vI1UwhujwlkRSDa+srJIkr/QmPotGrgxpMuXhXhmikdORWls61VG/7rlhPqhtrS8+AzlHzSBLJSFrlARLwl3fOvPW14XXV8r7GNatDdPODSEArXaH5/pl3S11oZxjQasGGXYk8mJjZsnRTIfcpEx1B1MuNkIMsKe+VcREO9YA2OQ7WUwd+Vc7OtDthsTJCqbIHsGCO1DUsBHLfxfe1VxCC7+Xho3Z8cG1d+hxn3AukrrN4jLKkoc0WGFsiKK5hkrL7Q2n2uG5xMbckv6F9cdh8yogDJnmd9ropZz5UokJ1q20M1zC7FX1+2/RyiYA2Voh9/N9uag9xdvWYKo+wxgdwv1FBfdTYhmtQhej00nCkSzRuDKT5J2DnRdzebrg+huqFjodrlMZRANtw8pLhStOtATckHkiH0leF1NfJFTVoM137RoPsoDz7sTLs4RJPZCIwGbAi7wtg6KZDVWe/xVF9103T5EqSG+gsbDwD1kJJ8VkRu3i4WysWe+VzlpaWAIdaSMHAzEzcYqb07WUIwqfeZso5SuMl3MO32hB5NJySa7Mf6ZQgZM2RbLgLZ9H3VBXJYxJOtMrRlj+hqbxI1xqQ//j3LQ7QE5S9LFq65DwnLM1J9Rhj3fPnSUikuFs637WytpVvEjecvt+uwaOoeunMtW4p+/c0V7i5eM4Vy9phAlsWQsfXUXoi6xrYBcdnfI1rqzZmjPLFNj9BkikTlxqBEu+D0qhPNokdry32iozlhRLDg5X9zif1pm8dQPcjGQ0L2IDd3DPaY9ovujuaUB4jif6Y+4KXddclB94++bpGM6Q86eXHWDPTA9rbGDV6R2nrR2tYuuvv6zeE2QyAXxlZ9cNrddE0uQ/SA9qmi1753XG3ELUocyrINgyuiIbPIVa1WPqsiX/bYK+8uykFdolaffZ7xGOXwoH10gZHZHvkayeL7bYzeKPeMoPEdLI8pnJT7TGpZlbaei0A2Xv61HuSIDGGWmqB0p1LcLsp2DaeaVarvOfJU6yZbn4FutjkpWrbvlNE1M63gt2mdh1lmp9q2nnLK3/5OS3tm3VCfwV0p5cxAfnWFu0vXTDEV4JhA1sMIpYkopZco/cZruiiov7UrK2GpYln9XKes+qQ+FNX8O23iQ6pp8OdsQ7sqWHXWppmHaT8LqNTOGTUUjJYv+9tqDxR++7T+i+lqX2Y6tN1meKr+TsUXbTBNXhzBaMApduXLlgVyxrqVtprsswtk1R9brWuVsfq5X/WxIymoy/GirlyweQtk+TqkBu9vsCtAlxIntSpT1BaVStA+u8BIaa/6JF47aupoRn3A45ga9wJlOD6NSbe5qNHQ16c68mE/QsfpqzP9h04zzSJ/71DuHdmeMXm5WMlnqbkwi+yVT3F9bVVWJzWfUf7GOJT1zrft9Bz7u1osi5dVujhmQq5wd+OaSa/OvPY4JJD1FcHkW1Xqw0a+eenLPWcN85YSb7C7rdGycpwuKEORGpFst0pRU6Sl+xz2yuE+dcU+PR2SE+bisnc2Z92lx5uUItT0azQFcsh2tSjZkysnBdmJ4midjGOsXHipD5Cedll+owfaFNPh6rhInRPQkhiYsR+ODAT851noxgxnm5Bu+bAVhm+iTd3KptbXZi5UknrDVluiOaSdW4+9FvLF6IEKiWIC6at25PVZuWCzCeS+3l7Rq/3rs7Qn1Y2HovUpE3XkBB1l8Yb0hWTystS3BxfDyJa72istr1U7N60+GejfuA9kiOHrW6A2hpux1blnMUVVDR6v3kPzjWJRY+MKpyVr3Dvk/SvlRd3GzGDtUjqGMt871BeNLD2geh0pCyxx+w3po0+DHSNmmzafF+nP3GBhdqNtq4R6WutTnt8RudhZmsOkekpFfHaFuwvXTLGV4YxALtYKnA8CXiSQk0CWDznjRSZsDdUkJ4xFlYdXKJoQHT1STMv4sAlFHBP3kHux/KWwqWBGmbmrfvwsGmoSTaKzu3cgikWj9YU1UgExTNUVNDPFOFZXY1P9WjM1ATVWrN1y3tp5ikAODbqEZUovcPvVF7WM7lP5uVipo5h2YthuXy4vO35m70bb1nl0t5juixrbcK2oYK8KHYv21xXuLlwzFqML+AKBXAA0nFIhBFLeaK3jFjqD7L1APUYPu9mrk/ogM0ck9DQr629hjLJx77X0zqfyNr7L8FiVEITMsnxrit+q3tLUpajrc1j2WBXU+oqmelr6X8v8iBwWY9LPC8Zf592H+jqbRV1tnVyZNWb7rzoysIoet+9ItTyurk4kmoL96u1G2+b215t635adG5Vwr8j12nOHu/PXTK7lyXQcBHImMtgPAtI9yJhEJ10k7AfWpJuNMbNZLo9uc1BfZwY3H7kEcqq7UKVCz5/RUNyle1MypkzGVV9QwqK2oSVDfQaxBmRoKmM4nl2lrG4WHAPZcANLDQHZ3zfoPiRHPuTkX2NTe3ukIEtNU862VpaNt3d1MdIK6Idi3IfkShX23LOwUiM3xe1uRFnO9e9PLrRtJZqC9rJRmzkkqX+5FWt5Edxl1rbucXJ/UddMsUWyOR8C2QYKdoGA8wRk9JJOudpVe7v2r7PLvj/a+Xz9lKIbjPos3Ds6uypIGJt1b3U7GYiq0ytXC+OIPoY4lkK3Wo0VKU9Xh/XDKeEwVT9EnrgUa5Rh3qQvfndnysIh4ToplytwK9h9KDv3TCTNiVOVE8WCWTjdto35O/J60EaborWitqZGVMt/NSn/qqujok6uYliJW6HcZev2jVsiBHIltmyUGQRAoMII9Ij6qNqLbvNZupykvrapk/dSJxLzRFp1oqnhuqILC+1vWCS7lJ7nSqOeOlRvYTNQB3YuVtm520NU/cIrJYrFAAkn27ZccdaYU2JzjdjUX9D9vO1bG+8tjLsmkI0J+OmTUwtzuctsZTG/QCAXQw/nggAIgIBvCPSK5vhAxJtUMVsdS6aJYy6WGaUmUzi3zJF6wtE60dJl43PkG17OGJq/+1Au3NNtU8OK2onu9DOCtMehtq1OzLYRw6nXDX+vbqjMHuSB1pM/dxbIfnFLXIMLKSsZGwiAAAiAQAUQWL1yOS3r+oz6uazDR9DGEzan0esUWfDVK+njZV3Uy4kOH05jNppAY4tOtEibPHX6alq+bBl91qdRpxGjNqbNx4/2lIVBMMaVth0EMC6XwR3u5b9mIJBdbjhIHgRAAARAAARAAARAwF8EIJD9VV+wFgRAAARAAARAAARAwGUCEMguA0byIAACIAACIAACIAAC/iIAgeyv+oK1IAACIAACIAACIAACLhOAQHYZMJIHARAAARAAARAAARDwFwEIZH/VF6wFARAAARAAARAAARBwmQAEssuAkTwIgAAIgAAIgAAIgIC/CEAg+6u+YC0IgAAIgAAIgAAIgIDLBCCQXQaM5EEABEAABEAABEAABPxFAALZX/UFa0EABEAABEAABEAABFwmAIHsMmAkDwIgAAIgAAIgAAIg4C8CEMj+qi9YCwIgAAIgAAIgAAIg4DIBCGSXASN5EAABEAABEAABEAABfxGAQPZXfcFaEAABEAABEAABEAABlwlAILsMGMmDAAiAAAiAAAiAAAj4iwAEsr/qC9aCAAiAAAiAAAiAAAi4TAAC2WXASB4EQAAEQAAEQMBdAqtXvEsL591Ljc+8Q129vTRq1ATacfIUOuGEo2ni2HUKynzlsjfooXvn0cLFb1GvlsIo2jk8hWacfCJN2nxkQWkG+6RldMNRs6h+KdH58xtp5sTCGLlRl4Vwh0AuhBrOAQEQAAEQAAEQ8ASBZc/cQFscfElGW2LNXXTu/uMz/m73wxv3nU+7nXSr3U/avupEK90yc1LG3yvxh+dvmEwHXLJYK3qstYfOnTQ6bwxu1GXeRgyeAIFcKDmcBwIgAAIgAAIgUFYCqz9eRLtNmEJtg1aEqmrokinb0msPzqJbG3XTQtTY2UpTNx+m78j6d8Urc2ijvc4zjglFauj8Y7elj5K30JXz9ZyIaqXwviJP4W0kGqgPq+n5ObPogPPmG6UqRCC7UZeGQQV8gEAuABpOCTKB1fTu8wvpXjk81PKvLlnQUTThR7vRlOOOoqMnT6TCBurcSDNodeACo9XL6fmFD9PDjUl6q2tggJTksGt4ynQ6+cSpVIkjpKUYuly55D761RVJrYFGrr+Npm1f2DBrcFq4C21bg7OSXllwH909P0n/ki4FvI2asBcdO+uEIu5VWjI++m81LTpf3p9vHRCtkVgzLTh3fxqQwavomRuOp4MvGVTJ0Qbqnztt8LdsRVxJfzlqFM3ST5M9xXOVnuIlsmc5pPcsh+PU+8yZVNEtfOX7NOdXR9N5/OIQChG1DdRF/gLZjbrMVs85/CaCsPX1iM6ODtHZ1eN6aXo6W0VjQ72or68XDY1J0drhfp6FFKqvp0t0dnaWhEnu9vWJLrYp07+uLtHT25d7ck4f2d8pYhES8rKx/xeJia5883QjzXxt8PrxLjDqaasX4Uz1OLg/1tTpdTKO2tfZVGffrnUezXm37nT7+tpEVOEuH5Lpx1TSHhfatoavu0VUhzLcp5h/uE50lPFWWrIq7mkWEb29hWpt7s/doi6sc4qIlt4cLOtvF9V6mlQzRJpVojWXNHPI1n+H9IqW+lohJfHAfSWlPeZ97btRl0VCpSLP98Tpva0x48afaHevtbbVR418dBFVlWgvO4P+njZRF62xXKitsfBgo40JzzyieluGFC0a13BUNLR2l5hrv0jWhJT6DYmaeL1IxKqVffJGUN0o+nO2zI00c87cJwe6wEjeaK3iOCxq4wlRn6gTkZSbeL2L9wsvVUB/V9J8kMkHmhyGli/5CVFteSEMicbO3Ft3evn6RGO1eg2RyPshmZ6oj/e40LaZRm+rqNJFifY3orXveF3K80neq4KukdVnfyTWattW2hJVxj28JpnDS7FFINeK9CdRr0gY102OotvWMp/vTH2eR6pFjcEl/2vflbosEnEwBHJb3LgAXLshy54R601p4EEQb3NPkOdSt30dDYNlj6QI5MjA/pCHBHJf6o1df7O3/xtrTr815cKkkGP6OxuNNkRUJZq6TKHQ15k0eynkA6khx64ZN9IspGxePscNRk21gy+HLASjCdFtVqVE0SMaa8zfKZIIvIgQ8pUuqQhXOQytvOT1iaa6wXsFi61og/Jbfi2nK1mrXEMD17Rr9+P8TCvL0W60bS5Is9K+qUq2b6V0fR2NysthSCSV+5hyWGA+tsVN8ZuprfUq+iCcQURbgagCWAq9lOdQb1vCbOdeer5aC+H+N6mJBnrvQ6KuoUW7j3YoLyOZ6iOTYe7UZabcctsPgZwbJ/nW3mKIpKpYy+BDxPLkzTUlR48zL36rQO5qToiamhoRa2gt+IHnqKGcmCKQwzWNokO6WnRI15iBf+2itaVJxKsV8ULVoqNEiFtipkiobVIfOQMUupvN4elMPRWpvNxIMzUPv393npEcUjV6iTMNf3aIGq3njUVcVLQHvZutFEOX3U0DwsxgP9CBkO9D0u/tWbXf+bYtU+9XO2qqRJtN2zVGD2Ubrwu4i4sqqhIZOqv62usNQZvrvbuzsWbgnMH2XB1vFG0d7aJJuhRoo5yD+6sSbWqVV9znHsmkW2mDan3ke+2r5zpZl8VUCgRyjvT62823xkR7iVRbDraZdsmbpXfMsrdcEciReKYbS7/s4dOHacMi5eXdPt2i9/aI+FB+auoIgvR1G3qgzo00iy6oxxJwgZEcfjZ9EmPCfnynT9RX6aMWwR8idX/oUtajMbQaFlUR8yU334ekxxpoEea40LalNV1NZi99Rve+ng7R3Nwi2to7RI8iXooojGdPNUWVfBnOVFbl3p2rQOYCdzamuNcZL9UD945wxmeYZ3G5bphZH/m7WJjnOl+XhRbcGYHc1yHitTWiprZedPb2iGb29QuHRCjE/8KiOtYougYbb1tjTPktJKpqEqLD7inW3y3f1uq0m+1AOiERjkRFrLEl7aFn9qLaVYp0JG+IiSrDHj2d1tyGVmXZErW1oqba7GGMRGtFnSxvPNkhutsaRa3sqU00yx7QhloRHixzVU1ctPcMKNa+rjZRH6u1liUcEdGamGhqT++t1CpTlr9Z2h2VDxu1/Ilk26Ddcmg0XidqorpdIRGtrZO21IqkdAHobJI9yNLG2nhTejnzYCuMuk2Irv4+zSmfyyhnq2p1W1UdE825TlRUBXKWoa52ZZimJC4sil0Ujmfw2e5VREAOosqNNAu9yr16nluM+vtFr7wPdXfb3VgkDOljaE4kqynZKEW5qsF88NjdHwesUu+huQ1Dm6VRfTyrGztEuzJXo2IFskttu1UZ6WoYfEvv6eqQo28tokX+a23vTL/fm1UVuE/tCd3vOiSaMk22UeoiV4Hc39Usqo1OE/1lOuVvqFo0B9yFJd8Gk8u9JlOabtVlpvxy2e+MQFZ7bVLesvTJbBSplSJaF3MpDS1lmDPV59NIQ087JCekKReDenO33JDl5LUaY8gvNU/5PVw79PCqvLisE37MdEJ1zyg9j+Z+3d6EHLvtTJpD8/r+1L+1KRMH+uVwpdELppdZ/StnKHf294pYhrLVtfQI40Yatvog58uWJ4RktWXQrrjMc8hNvVHF7SdUcBqmD6nVbWTI9As9QLGLffrsZVWfaIjqdZyDXW6kWWj5vHpemRi1xpX7UAX4IKsPLaeHLs05EPLaiMQ1cabmZ7kfe7UdumGXS23bZBsVze0totboudfvTfy3SjS0Zeh4caOsZUzT5JGl00Kpi5wEsuxxNl+guV3Xyk6gbtEnO4i6O1pEnTH6NMA6g2dHGamUL2uzPjK/jGeyzjzXwbrMlFmO+50RyEoDHBB/Een7mhTNybiNuJIzymNxEU/ELW9oVfXtAyZbend4tnWtaGptF20tjZbjKVRnTE6wF8iqL+JAI0+2ton21iZRqzZw+YC0F0QmwU55jhr+K1pXLxobG0Sy9T1lNitfLPJfuGpwpry0L2U2fU28Qb7hy7LI9Oqi5jAkl8UMsJRit17+5gYRVQRxtEEOn8mQczGjLNJRvr5RhqCTecjueqOxyR5Ro3wFsFX9hgfqNizqEjLEnQx1V1ulu0JwuTP1vJoc1bTCtUnR1S1D0cnQbl3yX2en7HlqbRbxGkW8yAlDmUbNlFSL/6i8BGR2/RDC7CnLQSC7kWbxJfVWCmVg1JUS6iyTYPQWqOKsMe4FUjg5OwzdqfhyR0Tz4DuymV/+D8niSuqhs11p272Ka9Dg80btOEn5XNdkPlU8RMZRU8y2Zra/tAy6zag2uQjkjgbFtUK+9KV3/ch6MDpLSBjaJS3jytth1kf+1755rnN1WWwNuCCQqyyxBvsU312isEiqYYQUAak33A5leC5c25QywaxHNkxTlNUO3gDsBHJPi9lzG5ITwqxCq08klZnAuQzj93eYjv5xY2aEdbYrT94b2PpkPN9+0dGgD/+Q0G01K0z62hozy803ps7k4OQAebNLs9sicAfCz/R36L7RVh9ko7EpArkQtqqo5Z4Ja0dxj0gYAt0sg1nGlE9pL1LZbvJR5aUhJR2nvyo9BqGa5oypG0wpB4HsRpoZLfPpDyVm1N1iRrvhlz2+v1TC5tbQpTnSQ6ImaYox8zrJ/yEZmPpwpW2rbl76vTMsXf1aZWdMj+hqbxI1FreALC9EAQHdpowGxTIEJFb1QS7uQ8boq7xH1GeawatPSuWXkhw62QKCe8hiFHPtu1GXQxo8xAGOC+RI6tC5vFHo4dHCtaniwxSYAwJZfjcEV9R+0pkiqkODDzj1AhgY0lPFp7xJ2E1e6zNj8uZy0aTnwWRN+8lGNPV0DCwqEovV24i9fmHOcjYFl9lI7N+i2qWfc7RauqvUyx5YWS7TLjMNtsxoqIZALoytKpDtJoUY+diUn+2wbHkJZPlmXmfjP21J0KEvil36i5pdyoWW1bE07Yzy8z43uGfg0dVkxkrXRkKi9ebISoZzgrJbbbcZF0rIsS50Jj0tCs+U2OBmfpUskM2Qls5d/+rzhgVyRIaj1GtE/9ttGe0MepQFtdMnU4xjNfyg+iKnE7P+VRln82s2dU1Oo6fWTAL7rZhr3/m6LB6z4wI57S1OvfGmimdFYOoC2ZgNnXF4XWnAg/61pkjUb8jWN+1ItFpEo1Hln/yu+G5lu4HpiNPz4F8UW+RQjOHKoJ9k/JW+yG0tIindMhIxnlhXZQnab4prZQgta3pGwnkJ5ELYqgLZrqfdfFBaBbppofJJaQvpYd46pOtJs2iI11jYlGT4SrWrLvUlzrS/2YgXm2dZnUrTNCUYn9zgnkZGvogaE3kGet1C1Q1ZrtW0BHy/w3xo2b90awXMZxhaug/onR48qpTacdeaQ2xa30MdqgCutG3rcy2quyWm2KKO2ubybEs53VdfLbGmU17U9IKoMcDrc4hhb14vJOyeeVq6PYNhDbkHOaNW0S2onL8qu3znH7hRl8WSd0Egp3jsKDeK9IvVFJgDv8m338EholCt7q6QWkTzHJ4UwqI0Xbwqx3ADHupfDsG+0/Ngu5R8jJ5aq71tssd3yPyN3lflBpghPWvqatmtos1oqEY6hbFVBbJdgze5WPNPtVP7rraFLCFy+tobFJFst3yobeqF71T8Bbk3wP5FR6kbWV8Ze+J0K9xIU087KH9dZyRdsgw3poH7QKQumeJuFRSYmcthjkpxB0KG1p3HYgpq2Di+t4WUuRGZ7nVpI4uZzQ3GLy61bXX4vyZTDExl1Db4vZtdStzzkHSJsLZvjoFsLoWc8iyRk+56e3sH/vWZw8xqFBaKxIy5TmbDlBO2lftKtnkr5jmV8cnQHfK+YKcXdAp9OvfePsWNtoi61BN2+K/HBLIZTzNUk8k/0CpKWY6bIk2vFOUYWVGJZJNIJpNp/5qamkRTk9wvQ7RZfZTTKafnwcco+dgIKzVmpfbgCMnQbtI9IpZoEC3tHUq8X11cKiLM8R7kwti6JpCzhHmTK4ookx9zEKPp1ZXfHtW3O2OM4y5RqwuBjMco2bqRppJ8ID66yqhbxA13rQFxXNMwOBE4EPByL4TTQ5epAjmTKFb35+LGlnuJfHCkS21bjcBSm4NADtUkFQHiA24FmKjO9SEKiXhzh+jt6xUdcrEsQxxLHVDd2GlJXW3H4TolqpKsu2p5vNF+IzWiqa1TpqlHsTDnQfHor3VejiWLivuSm0CWOsfwlQ9bOpsKrUu3QHtMICsCUYqQNPcqptDfYTbeqsTQPciZ0pG3jc62Vi2YerecUDfUlr9AVsrCF21LemnMeL+6QFaXhK2xXYyiu3nA9y8UrtFWUTLtsk7IMBqqIdwVezIxsWFbHoGs2GozhDtUXeX/u+qzLpeSVieS6ol1KUtRV+USXcONNHVjgvLXLUY8mVd5wPFLcktlhL2yaxlOD132dTbLOPB1IhaL2f6rjpgCIlItj6urE4kmqzixszNY+9xp26o/rT4HJ5Vbb6s5GTV91Db16CB8T7/eDXGrC13Z4ZQytm3pWEvl1Kv2POtp2PyNVfB9xa7lqC9wmXuQ1ed7agdYYXVpZ4sT+zwmkPuVGLhymUybN2Q1BIvun2qKRL0HWQhTfJKw89XqbjZdH0Lq22MGqnZ5ZO9BtvYup/VQy2Ew8y1VF8jCEvkifUJBv2gwesUGBLFpV0ioL8jpArkwtq4J5CwuFp1Js24oJY5zhuoperfaHihtApd1SC01Ion9cJEQxaRZdIF8kkAxjDJxtwyRyh4eS+Qcn3Bx1swihi4zDENns0+995oRf7KdEczfimnbIhN3tWdaCrZUlwK51p7hpsgi0e4ZGkzavaI5roRnU8RsdSyZJo6ZQV+bHgHKXiP0y3UUYsoCYaroDlXViRZ99bNgAi2oVGoUrkSKu4uZoNRGho6RwRjSxFH+dWmm7ewnjwlkWbiupDm0wRd44+DKcf09chU3MwSaOrRhikRTIAsl2gU37OpEsxhY2K5PG3oxF/9gYelSD7IxjDAw7DOQS78MNt6cEo5HeYvqbbHEjq5LDrp/9HWLZMwMG0eDQ2eW3gK5kmFrG6+N3m8TxaIwtm4JZJKrENXLSYv19fXGv0QiJqqrlPjQXG+lGhaXvedqcPhQVK7w2CP90+SyrQnF34wotWdfvg0b9WwdLuLRjsLSdPYi93RqBTPKwF36fpoTyAZ6kWvrakV1tVzpU654af0nJ+vKHs5MkZw8zS1P4wodusw4DJ0lf+PlXF6/mXuRsiQQlJ8Kbtuy66XVjBJiGf6XbFSfcnYpiDXKMG/Sp7O7M2XhELmgVPq4ZVDg2pejv7dbdMi1Btr5X0enI0tt96lpStfIrqCv322PtuR73ajLfAvhmEDWV1tLuyEqkxVShzHUHlj1t3Y1ULe8yapvbvrnumbz0rcVyJKEpScyQzrhLBEGVJjqDcsso7WXOHUIp7NRFfSyHCG5PHMGO2KKI9PQdkeNmeP9nQ1pfNg3zXhISRcL1a582bJAzli3EpDJ3uwFV7lZPittQa/HbH9LHW2gR+lRyGRXXF3CUStctuEiIQpL00It8F8KY2TPXb1OM9WhdX/KS01gaRc2dGle3yTUe3Q2TLkNs2ZLITi/Fda21fuqHfceyyQxa3vWn5dyzQEsgxychoSSlIWAQwJZjwkYSg+s3S9XWxqc3JQ+k9kUmKm/dbc1WlaO028CIekwn2xXJZ/1ZpIqYHpl8HTbNdXlhLm47J0duu94sF6UwOBmHqb9IRliJm2kQKbe1lBnK4qjcjZ9V1eL0cOY+vDpaZflN3om9ZueXNygOi5SRy5aEgNDS+HIwCp0PCHGWPXNJgRNPmzlONRgj5xN3Uo05jBVerintBYte1T0tqDXZ+rfUJgnMtaJxpbOtNNLsaOvM0N7CVentbsBe4YaLpKM8k6zFCX1Vh75M7LnnjYxNsMLqdnuqkV7zjcBbzHL35r8hy7N69t+GNrOBrVjwLxX2h1ZGfvyb9vqfTUT98zPlnAUw/+V0bJQSrcJrMEZyIeFZ7cVHy+jnj6iYcOI1h21MY0dvU5Btq5c/jF19/bJdGRCw0fRhPGjSX4qzbZ6JX3c1U39nOPwdWnjcWNpnRwzt5R/I1n+kRnKv2oVreKy9ckyjhyZU9ksaRfBtjQQS5nLalq+bBl91tevZTpCstlctpfiNjfSLM4i750NRqWok9Url9Oyrs/k/Uhuw0fQxhM2pwJvq6UwNyB5uNS2+dmyrIt6uTKHD6cxG00o+BkZENAoBgg4RsDzAtmxkiIhEAABEAABEAABEAABEMiBAARyDpBwCAiAAAiAAAiAAAiAQOUQgECunLpGSUEABEAABEAABEAABHIgAIGcAyQcAgIgAAIgAAIgAAIgUDkEIJArp65RUhAAARAAARAAARAAgRwIQCDnAAmHgAAIgAAIgAAIgAAIVA4BCOTKqWuUFARAAARAAARAAARAIAcCEMg5QMIhIAACIAACIAACIAAClUPg/wPB8ihNVRUR0gAAAABJRU5ErkJggg== />"

Question 4

Clumsy researcher that he was, later that day he spilled a little baking soda (NaHCO3) into the beaker. He figured if a little sand didnt hurt, then a little baking soda shouldnt matter either when recording his melting point. Is this a valid assumption? Explain.
Question 5

fJvKIEHfxeOIoAAAggggAACtgCBB1uDfQQQQCBYAQIPwXrHvDYCDzEnpUAEEEAAAQQQSEABAg8JeFPpEgIIxI0AgYe4uVX+DSXw4O/CUQQQQAABBBBAwBYg8GBrsI8AAggEK0DgIVjvmNdG4CHmpBSIAAIIIIAAAgkoQOAhAW8qXUIAgbgRIPAQN7fKv6EEHvxdOIoAAggggAACCNgCBB5sDfYRQACBYAUIPATrHfPaCDzEnJQCEUAAAQQQQCABBQg8JOBNpUsIIBA3AgQe4uZW+TeUwIO/C0cRQAABBBBAAAFbgMCDrcE+AgggEKwAgYdgvWNeG4GHmJNSIAIIIIAAAggkoACBhwS8qXQJAQTiRoDAQ9zcKv+GEnjwd+EoAggggAACCCBgCxB4sDXYRwABBIIVIPAQrHfMayPwEHNSCkQAAQQQQACBBBQg8JCAN5UuIYBA3AgQeIibW+XfUAIP/i4cRQABBBBAAAEEbAECD7YG+wgggECwAgQegvWOeW0EHmJOSoEIIIAAAgggkIACBB4S8KbSJQQQiBsBAg9xc6v8G0rgwd+FowgggAACCCCAgC1A4MHWYB8BBBAIVoDAQ7DeMa+NwEPMSSkQAQQQQAABBBJQgMBDAt5UuoQAAnEjQOAhbm6Vf0MJPPi7cBQBBBBAAAEEELAFCDzYGuwjgAACwQoQeAjWO+a1EXiIOSkFIoAAAggggEACChB4SMCbSpcQQCBuBAg8xM2t8m8ogQd/F44igAACCCCAAAK2AIEHW4N9BBBAIFgBAg/Bese8NgIPMSelQAQQQAABBBBIQAECDwl4U+kSAgjEjQCBh7i5Vf4NJfDg78JRBBBAAAEEEEDAFiDwYGuwjwACCAQrQOAhWO+Y10bgIeakFIgAAggggAACCShA4CEBbypdQgCBuBEg8BA3t8q/oQQe/F04igACCCCAAAII2AIEHmwN9hFAAIFgBQg8BOsd89oIPMSclAIRQAABBBBAIAEFCDwk4E2lSwggEDcCBB7i5lb5N5TAg78LRxFAAAEEEEAAAVuAwIOtwT4CCCAQrACBh2C9Y14bgYeYk1IgAggggAACCCSgAIGHBLypdAkBBOJGgMBD3Nwq/4YSePB34SgCCCCAAAIIIGALEHiwNdhHAAEEghUg8BCsd8xrI/AQc1IKRAABBBBAAIEEFCDwkIA3lS4hgEDcCBB4iJtb5d9QAg/+LhxFAAEEEEAAAQRsAQIPtgb7CCCAQLACBB6C9Y5JbR9//LGsXLlSHn30UVm9erXU1dXJ0UcfLd26dZPU1FSZNm2aXHbZZdKxY8eY1EchCCCAAAIIIIBAvAns3btXVq1aZX4vvfTSS7J7927p1KmTdOnSRS6++GK54YYbZOTIkaIBCTYEEEAAgbYVIPDQtr4xKf2zzz6Tf/3rX+aL889//rNs3LhR



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

vickybb89

  • Sr. Member
  • ****
  • Posts: 347
Answer to Question 1

The two samples were not the same compound. The two compounds were insoluble in one another and therefore the melting points of the compounds were not affected.

Answer to Question 2

At a temperature of C, you would expect the mixture to consist of approximately 60 A and 40 B or 20 A and 80 B. It is important to list both answers since there is no way to tell with the information at hand which one is correct.


Answer to Question 3



Answer to Question 4



Answer to Question 5

Even though sodium bicarbonate is not expected to dissolve in liquid X, it is expected to undergo acid-base chemistry as shown above. The presence of the carboxylate and water resulting from this reaction are expected to have some effect on the melting point of X.

Answer to Question 6

He was not worried because he knew that, if the impurity does not dissolve or react with liquid X, it will not affect the overall vapor pressure of liquid X and will not depress the melting point of X

Answer to Question 7

The benzoic acid did not dissolve in the water. It reacted with the sodium bicarbonate to form sodium benzoate that is soluble in water.




jman1234

  • Member
  • Posts: 560
Reply 2 on: Aug 23, 2018
Gracias!


Jossy

  • Member
  • Posts: 336
Reply 3 on: Yesterday
YES! Correct, THANKS for helping me on my review

 

Did you know?

Ether was used widely for surgeries but became less popular because of its flammability and its tendency to cause vomiting. In England, it was quickly replaced by chloroform, but this agent caused many deaths and lost popularity.

Did you know?

The senior population grows every year. Seniors older than 65 years of age now comprise more than 13% of the total population. However, women outlive men. In the 85-and-over age group, there are only 45 men to every 100 women.

Did you know?

Astigmatism is the most common vision problem. It may accompany nearsightedness or farsightedness. It is usually caused by an irregularly shaped cornea, but sometimes it is the result of an irregularly shaped lens. Either type can be corrected by eyeglasses, contact lenses, or refractive surgery.

Did you know?

When Gabriel Fahrenheit invented the first mercury thermometer, he called "zero degrees" the lowest temperature he was able to attain with a mixture of ice and salt. For the upper point of his scale, he used 96°, which he measured as normal human body temperature (we know it to be 98.6° today because of more accurate thermometers).

Did you know?

The first-known contraceptive was crocodile dung, used in Egypt in 2000 BC. Condoms were also reportedly used, made of animal bladders or intestines.

For a complete list of videos, visit our video library