Author Question: What type of process has occurred in the following glycolysis step? 1.tautomerization ... (Read 48 times)

mikaylakyoung

  • Hero Member
  • *****
  • Posts: 531
What type of process has occurred in the following glycolysis step?
   
Question 2

xYKVKgcqB3bkAGBWqXKgcmB8HBBB4+j5Ezv/OH5nU2+VphcHrIkTmDHdbgbQZik7Qa01E/XTb9aemUXIb6ZN1SxCe4BWFpf7Ltb02sa8J7pVBwidm1t2PVVzy3uiLTXPyoHKgcqByoHpwQGRZgMbfgU51+jz9OibZi1MW9oYYJYAELOGzeYoARz9JcJmVk30zDKoqdycMio0ju1EAAAgAElEQVRAazZgf73GfEcToFUF2l97u7arcqByoHJgajiQvqW5JICfqZHoqeH/rpRi7blpTt+iEzUTtEE2FABu1g5O9adQZjRAw/xUpNbr0jP1T+VA5UDlQOVA5cBucCB9TB387wYTp+hVQMwxXaguLJkuPVHrUTlQOVA5UDlQOVA5UDkwwoEK0KooVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqBypAqzJQOVA5UDlQOVA5UDlQOTDNOFAB2jTrkFqdyoHKgcqByoHKgcqByoEK0KoMVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqB7orCyoHZhIH+vv7Y3BwsDS5q6srHJUqByoHKgcqByoHphsHZjRAGxoaCsfAwEDpF47b70r7Hweee+65ePTRR2PdunXb+3jWrFmxdOnSOP744+O4447b/xpdW1Q5UDmw1ziQ/iXP/Ez1L3utO/bJgmc0QNNjQJmoCqoKtE/K8JiVZhDXrl0bf/7zn+OKK66Il19+ORYuXBidnZ3R19cXixcvjs997nPx9a9/PQ499NAx86oPKwcqByoHxsOBBGIJzrxT/ct4OFfTNDkw4wFac8qrt7d3+/RXk0n1et/kAIP45JNPFnB25ZVXxl133RVHH310iZj19PTEAw88EHfffXe8/fbbpYHnnXdenHDCCdHR0bFvNrjWunKgcmDacAA441+2bt1a6mRAmMsrpk0la0WmNQdmNEDr7u6OQw45JE488cR45ZVX4thjjy3RlWndY7Vy4+YAg/jggw/Gb3/727j99ttL337hC1+IH//4xzF79uy4+OKL42c/+1l5BpwvX768gLcK0MbN4pqwcqByoA0H2BA25qCDDiqDPksrVq5cGYsWLWqTut6qHGjPgRkN0ObOnRtnnnlmLFiwIN56663inEVYKu0fHDCCff311+OZZ54pDRI1O+aYY+I973lP+Q2Yz5kzp0x1PvHEEzusT9s/OFBbUTlQObA3OGAJhfWt/MsBBxwQmzdvLtF7QYBKlQPj5cCMB2gf+chHwlFp/+MAI7lixYo466yzSiTt5JNPLr+zpXZwSlOpcqByoHJgMjkgggagVf8ymVydeXnNaIC2N7pbVKdOoU0N50XM3ve+98W//uu/xmuvvRYHHnhgAGnI2hBrz3KDyPz588uUxNTUrJZSOVA5UDmw5zgw3f3MdK/fnuuZieU84wGa6a/HH388Nm7cWKIpFpZbyJkgSnj6lFNOKWvVkrUWfZoSswDd9ZFHHhknnXRSAQCZpnkGAp599tlSzptvvhkHH3xwmWY7/PDDm8km5dpah4ceeqjsVtSG1ggRIGJqz6clRiPTvdq3evXqsDbLWj0K5WhHdkWaNrTGYmdkytG6sDVr1pSk+R2yVFjTzj55Ib/Wuu8s79bn3tc3jibp6zvuuCP+8pe/xIYNG0I/nH/++YUvu1tms5x6XTlQOTBzOcCPsKFPPfVUvPHGG8WnsHN8DLJGzbpX057NHeR8hPeef/752LZtW3kmDb/Rjkyfvvjii2Uph0GngShbzK5Ntj2zVpu/fOmll4qfZL/TN/hskV3xlpFYKpS2vVlnvhAv+EN5oCOOOKK8I+LYSvLmj/DjhRdeKP7IunHtG40frXnsy79nHECjHBaPo/Xr18fVV18dl112WfkUAwFDhAIBOIDXd77znfj85z8fwAOiENdff3385je/KcL2mc98Jv7lX/5lVICmPLsFf/7zn4fvcZ122mnxn/7TfyoKVDKcpD+Ax6233loWxa9ataooZypJtokhuOCCC8q6u6ZRaFYBX6655ppyyJMhwbfMQ1rXDjwyjfjVr341vva1rxWD08yreY1vd955Z+EbgISAP5R5AcR4PW/evKLk5eEk/tEOuzl/8YtfxHXXXReibDYO/OAHP4j3v//924H5li1bSj/rO210kA8A1zuVKgcqByoHmhxgw4Ayx6ZNmwpo+tvf/lZ8DLvP1rHHCdBsGOBfvvjFL5ZP/VgLjUT7//GPf8S1115b/MsnPvGJ+OY3v9kWkCgToGNXL7/88gLq2LFvfOMbBdhNJkDziaKbb745rrrqqrj33nsLWGITs91stsHwZz/72WJT263nZk8BLX73hhtuKO21e57/aAfQ8ErQ4e9//3v86U9/KmDt4x//ePE1FaA1pW8/udbZwAEED8n/9a9/LaBmtOYZxXDOlOvcc8/dvgvH+5QC2akjr9HIqMEIx05CowEK/KUvfWm05Lt0X/lAox2LKcjtMnrkkUe2R8UAk3ZKxLgYJQEy4yF5UiTKSjmNiFoJ0LvxxhvjoosuKsDo1VdfbU2y/beoJFDIcPnsxWQR0HXLLbcUcOazG/pVP3z729+Oj370o9vBIiPy2GOPFbkwctMuh1GbRb/teDZZdaz5VA5UDuybHGADRYXMYLCJZgnYUIPm0YgfYW9sVvrYxz5WNhTwF2Z2+AvgS1RKEGA0Yi+Vdc8995RIk3qcc845xc+M9s5E74ucAY2CGcCSmYd2pN0G4oAoX9A6q8L3aRP/cttttxVwx57mp45a85TeM3zit83A4McnP/nJ1qT75e8ZF0Hz0dJLL720ADOKAHhB4kYBSRw3pSFIhEM0KQHI2WefXa6bURTpd0bSZDTL9Xje2Vme+Rzou+mmm+KXv/xlGXUJiytryZIlJdqjbdoKJHkGpJi6dP/CCy8s07fN+jR5oQw8MtrL0VI+x5P/v727f7azqu4Avu5LbkIS0pIEyAstOiOCTTFQXnR0qkjoD1VG6IyoYMRCdap/kcP4g5VRrOBUrEqjTqf2h7ba1sYgQQww+BJUIIA35OXmvp3O5zlZNztPzrm5yb25mHv2mnnOc87z7L2ftdez91rfvfba+3g2WXm+Z7gH9PCEZX0BPkrqK1/5SjP6wofn4Q8Qk0dHdB2IotSUqXwjQYBvsSNB5QLUZOR94u2uu+5qPJkCedUxyXONFikQe6VRnkaH2oMYtgrQUlL1XCVQJZASoP8M6L7xjW80g1D6jO4o7Qu9R9fRw+5zGHAS0IHu0UXu56BQ2aVuzme1z9Kkvl1I+nb+fr/xRRcaXLObBv/4po/ZBPXDL33NVgKLdD1Z0KN33nnnGVOt+JMfv8pfiG6Xho7OvP34XWnXT1mllVazPvXRuJ5//vlm3zNJjFrsJM8LptNoMBpCupmNGowIuGOBCcBG/JbpTp0oY7TO1inczw6k/IU0yj5VOO0ygKSDAz86kTogbvFdu3Y1ygGPAIpp1vSucVEDmeoLUF199dVz5eK1rM/OnTub0RBgoiwdD//KNMqzSz8ZAVbqpsOaphQDoaNyiz/88MPNyIv80S233BJc21ziOjW+gSHTjrxr+/btm5tKNCW7GE8anoEt3kXgDO/KfPDBBxs+8FyS95SrP8kllaX6A56VqgSqBKoE2hKgF+lj05lmTNCOHTuamRd6jh5CzjxSdKfBsu+8UgaB9KDQE6EUwA86m72gq+m0tC/0+lLZF7yxffaMpMfpb7aP/jabQD/iOXW2NGynwTB+8MGTVm4vkrYw+c10TWV7fKQ9ko4sziaPHkVctJdOt0wXbTXOzrhGZCQgNosnJOmmm25qNi5NoACwaOBGNoIR5du7d2/T6Lh3ATkuVmCtBGjZ2LLc8uxe2Qg1sBIAlWkX+p0y0BESeJjT1/F1ajFuH/vYx+Luu++Obdu2NSCJF0u8g3ymQrmKdSa/8QawqFt27pI/AfumAQE1IyWgSx5lCugns+yYPGkbN25sVk9aPGBBgGlNcQs6N5lZWSmmQswa0KM8YI8LG7jbs2fPXCf3PLyIUVCXVFoLkRO+uOKBvUcffbTxLqofr6EYQHLqRd6POlM+eEtZyHsuz+9Vdr1WJVAlsLIkQM/QXwb++/fvn5v+Yyduvvnm+MQnPtF43ukyadkUU6FsDn1napJtEq8mz+23396AtdTF8wESugkIcqSeKm3N+UqaLcEj+yK2zYIq+l6cnBgwtsXCKlOY6oV/+pt+l1bIDZtAf6qjcBrAE29p/xJEzsevNNJLU9Y1855v/S6WfAMD0CB83hMjgVxByEULlDhQaXyBATFQSRqqRqsjAjUlZSMqr5XfywZWXl/Md3xwJfNMAUV4QxTC7t27mw6hDsjzdXwjHgpCJwKYeL1yMYF0AFOCtOzsrhsxpeeI0nAg5YjL81t6cV34MIp08Ih9+ctfnnOLyyOAlcIyvZhThfgD5rj3yVZ5pgkAaTENAJ5Ojr92TEPDSJ8PigM4szjDCBUo5XJXjpW5yPPwnO8wFYG6OSpVCVQJVAnMJwEghMfMbMu3vvWtuY2xraZ0WKmJSr2ZfylH/9DJwA2dbjbBNfq0ffTjgc6aD+T0y9fvOn4MbHnBOCXMzABn7MCtt97a6E8zJBlrrF6+O2d9zOoAaWZtXMefPGyS32lfyjr24odezvpJi7dBooEBaIy9BgdoecnQPMDCK9SPTNEBaTqOTgZICCYH7Bh1HRNpRPMZc/fkzUa5FI3MKOxnP/tZ437WmQCcG264ofGc4RnvbbJKxugM4Z17XUwemfCEmXIE0HSI5FVa4Cjr2i4TcFOmjsjzRcHogDmq4h73DO574Aw44q2zFLtN6iC4FclPMVjxo2xTjsDguQA0ykJwKY9hTjmolzgRYI1HT73UL71+pq/Lurd5rL+rBKoEqgRKCdAzZjPMFggdMfCl32yQTefR/W2iY+hcniX2wxQgHcmrz0tFj6bOpY/nsy9mc5bSvtCHdKNtpHj3rOrPTXcNrNmJBGdlvcw40dFI/XjQ6H5lGIyzneyS+pSEd3XoRWlby/r1SrdSr53ZclZoTTU6jT7BkWm2++67LwT992scRAHImRLT2TQ6QEEHBJCUiZRrStRZZ82OJb3GCBwCBOX1pRAzEIMPpOF/5CMfaQDQfMuPdX6diByMinQg9Sjrc668GSmRScpDfuXjj0wQnnRuU6/p2ev1HF5M8XMICAbQUMq2+bHAD/I36jOK5TUFrO1JZLoTAd54lg7wk5bS9LtSlUCVQJXAQiRA19Ej9BX9D0wAZmJ72Rd6pxcBH4Ac+0Iny0cHsRV0E/2pbN8BQEH4bBVdS0dJ75mmF+WRHi2F/lIf5akPSjBp8D+f/jbAZyvlwydPGv7xWdqH5FE6YJD9zEE7W0Q2bKe84uDMyLCfrg8SDQxA0yBK5A4wAGlWEs5H8ogVcCRpMDpOlmcrDvP04g80wmzUnqlBaai8dxobWqrRgLKzwZrCFJBqFHM2ojB4DoHPJHXJTpPX8uw6nnuRuAvxb1z0OiGSPo/kDzAU19Vr5NUuV1oKDuiUn0zPR2byeKYpVXETlBu+UvGUCgPw1hbcr1QlUCVQJXAuEqA36Co6hy4FVHjje+3tVZYrPd3jSGIv2BA2xmHLDVOntqYwOwHAeJ7nAC0GyMJJgDT3lblYyvp4hnqZYTCIPZv+lo8Nshk6IGfAjce2fUm7wGbYluSxxx5rZkrw7Zr7Dt/ZW55JDgWeRGUNCi3+TV4kksoGV7Kr8Z8v6QQMPtBlGo0nSufoRYCATpUARl78tEkHM1JSpg4qjTIBFlOJVvaU5H5ZzrnUp5223YHK5+BJLBi+1SN502EEhNq6QqwXXnRgignYMbIrqQRE5fVe35O/rB/+yo7ZlpXOXMrKdAF+LYzAE74RZZHKr3yudwnk5vPKe/V7lUCVQJVAPwnQGQ46qNQf56LvsuzUe6mP/QbMOAHmsy9pM1LvlXxk2WZy6HJ6G2/SADxCS+jrtC+uO7I+vuMj9abf8xEdW9Zd+qxP5ktdziZahGffybyWaZw9V1lAq7PZkF7pyjwr6fvAADQvrWxY2RHO92UqSwNG2YAWWlbJR+bh5hVk6tCJshE6Axg2KuQ6Xipq1z/rovyyQ0lnhPOFL3yhmabMzieNaUfAzUID6XglBYJa4cNdzaOoUye1n5nXe53backhefRccWWlrNwDyMhKjITtU5ApA0elKoEqgSqB5ZIA/dXWYQt5dq98rgEoCyF6MO1LnuUzhWhbD3Fh4nHTvhj8iw+jLy3SAthSz7afhw+2LvO27+dvaUrCR8mLe+VvNoL9WwiV9VtI+os9zcAAtGxc+cK86H4NMdPMd9aogBWkkXPnGoVonJ6FsmGaUhNoyaMknzTls3UeKzLFRgmqNwVpiwf5jJykNfoxOuI69jxgBOWz8nnNxQV8lM+XvARSfpf3xW055iMufcBIHFzGIKS3KvOdrWNnOmfPLzux78oDXk0Xp6yM/nI7DIqHXDJWgyfP/UpVAlUCVQIXUgL0cB6eQ3+di75L3lLvlWXRYaYNefjdT11NJ0rHC2WXArqxHEArU1rxt+yLUBS6EwlvcU9slyB+04h0p9Xt7Avekwdnz3JtIXXi6ZMu9Td751nKSUoQpz6mgdkPz0XulXl5B9lINjDrl+Ws9PPAALR88flCgZ+Fjkoyr0bj0IAcOWVpBY7gd3uqaYgaEZJWo9cJbBBrybJGJk3Z0HWez3/+8808u3J5y3iiAA27N9sI1rYTGvgDDzzQrNY0t5+N2LOUqSEvlNSdDJI8t+xAZdmZpt9ZB7PZ7/33399sYCgdfhzKzd88Xwsl/OW0pDw6smsUzEMPPdSsQMUjUGgjRDK2zYe9hMjZO/D/mt5JpSqBKoEqgQslgdSbeabz6NZz0XfJG5uinNSbdJw4WtsD0WU8XFku2+I5Bv88Y+wEoEX3sS/KkZbnzCbdVusDQTnD4B596b4YN88CruwG4DlJeFEm3tq2K9OU57RF9Le8WR/ntCvSIKEltoayp5p/aUGeI5064NFCMdsk5UbsmbdJvMI/BgagZSPJ95nbL5j+4uItAVOmcdbITOFZcgwkCMQHjrIDSGN0Y3sIgei9SBk6jhEM0miVlWS7DJ0L8Qb5n7Hcg41XSCfiSTOlp3PpQDqSOmVj1UnthybYFI9lB8vn5FndlVl6xXRA5SWlgvDbtCElYf6fQshOl2mNxgA0nrN8ro6FN+UiMWOAKFlboDDftKMRnw5JLlk/ZQCgYhXEvQFr9hKyxYfVoZ7DQ2nq007eZEWOFaDlW6rnKoEqgQslATrRQT866FiDSYNX+hMQ6UX0GD1HZ9GdbAk97Dsbw07Q6fnPML3KYCMM5gEwm8vSmfIpB9jJ/73kZTPTw1bRmfSpBQb+AYZ9A9RsPWXxHPCX9fFMz+Bps1iOfemnv9U9y3IW76buaQeSf2UjdsziA7qaXWuTdOTj+fgkr8zbTrsSfw8MQNPguVG5iXmx7FljE1XThrbb6NXgNHBxVI888kjzF0TKuPfee5vGBKRpxMCXzqCh9SP5pM3Rg3QlGBKcKX4LiNMBypU/7mU+HUoHQK6ZUtWhrfIBanjbdE6rFm+88cae7BiNGC0J7Bc/hjzPPm/4RDqAcpJHgMrO+9zfgFfy0CQ+GedFtpnfdfxxzbsOPHJRP/74401H5dnKGLEsI88WW/i7py996UsNMHYdb8rxjhxkRQFSfCkr8vUuE/iSVQnusvx6rhKoEqgSWEoJ0DnsgZWOdDJ9x76wCcAJMJSb1ZbPBV4M/nn87UlJX5oNoLvpsrQpyu/nQFAe3edI3eda6m56mNeM/gRu6MxccCY9+5Jl0+0AHfJstlKdgCM2hoMh7YK/emoTEGbQbz9MdbJwjC2hrw3uyQJfyZv8+Juvfu6pW/LYfuZK/z0wAE2j9N+URhG8M8CQEYGGVzaYfOGuQex2sdcwpUNGBTbcKzuERpgNO/OXZyCuHEEouwQPOuRnP/vZJoaAp4oXLSk7RP7O0YOGbVNDAfn+IcEoCY/+IUBjlo/ruCSgxv1ySTPFQSnwzOmQCK/5HL+BQGX12vy2LL/8DqzZKoNywquFBsDhE0880ciODOxKTY5JFAFZ+7cHo0E8UHi8ZHgkF+UCi96fkRyPHJJWnT0LUTClwmou1o8qgSqBKoEllgB9S0eyC7z4ZjLoMiANkCl1aT7aANLWEQbV9Lftiug6+42Z6qO/EpTIX9qPLCPPBsxtnZ32BSgyi+C+Dc3NOngGko8eTv7yO71pIGxgTvdKZ+bCVh7KTdtHvyeIlBc4o9/Vie2UlsfOHm8Otsa1dl16Xcu6uef5zoNIp6zjCq89TwuABixpbAy8lw40QPqMv06DNECeHECGl82ICAED4s2MOuTNhq3BtRtdk+Hkh7TuZ/p2hwO0dBwNUdk6qvTA4IEDB5rvOowtI9xL0vF0QB3KaIwXTR4AJzubEZM6u2/6z5+q6zwIINNxeNzIJj1gni1/UvKfvxdyVpYObmSJP6M3ANEu/kZXyZ9AfnI3ejMFij/xFO4bUZo2veeeexqApiyjMQomlYt8FCHgTcl5lnpRHkZtlaoEqgSqBC6kBNgLAE2IC13GpgBopg9NOeb+mPQwveYsDWAGzEiD2AD6mq5PUMJWlLamXQ/lue/wHeU1g1X2AUhkO5TFM0ev4tMMikE9fc+usG3sJGCoThwHvjuyXuqiXHmsvLRozT3AlP62H6g9MfFgahbA8z/K7Azbpu6pu6VJXtM2tuuX9c/6ZR7nQaCBAWgMN1evKcT0FHnBGpNGo2FqOEha06A8bAnOAAkLAQTv88YBBvKh+TqQ+xpZNiy/NW55kjRcR0nl1Cp+zNEDUjpEEhAkXkBZOo3OAaQAQQLmnbmoPQ+/wJ49Z5AO6W9Gyk1cs9zkN3+TS8omr53tjB/8GQ1a2Zn8qReFRDkBwVzvyuaBpCz8rRNZkQevGf6AtJQPBeNApk1N1wJ03helB8RRBqateSMrVQlUCVQJXGgJADE8RLma3/PoXHFd4sPco4fpNmfeLB6pBGcAFH1MzwNoBrR0ovQLsS+lzi7tC71b6syUgxkN9sKgnX1JIEVf+43YCM4DhAehJ2yIvHjzHTD1nf5le4A+PItLpr8Nrs2UAIUIn3lI5/t89cs0Wb9M7/og0MAAtHyZGooRBVCgA0H++dc/mSbPwIPARXm4rz/60Y82gEjnMmrQEZCyztZgNCwNGTn73Ys0VkGRplZ57zR8AaIAhw6cS5EzLxez+lAQ+NDpLCjQeRy9iGeJIvj4xz/erBhNz1mZNuvmGn7L32W6s33HF0+aEZm6AbWAGG+aoxcBy/4iBSC2uifBWTutsrwLo1VK0EpOzwNKgWiKrlKVQJVAlcBySYDu4nmit+kmZzq5bR+AIHqKbhQ6AghZGGbAbWDNOwWkIXq9n71wP0FM2pf50tOZ4t7sCmBwy8snHphtM4vSnnVgb8zU4BfYUzb+5rMvvIAJ+AyuE5zlO1AX9iTtoO9t+WTarB/bkXYID34PAg0cQNMZABMxV6bFBK5ncH35wgEfq124Z7lqdbz0XmlM7gM2Go0RCgDSjzRs6TV2IEKD9bsXmX59+OGHG4BmdKXTfPrTn24AVRuclfnFY/E24cnUbD/ww3toZGNLDKCzFzjTGbnGkwAddVgMcd8DXOptClY9exFZkvunPvWpZkVRG5yRfR7SUgTK9i7tISf+Q4yhesprqrNSlUCVQJXAhZYA3WZFIrAD9Bgo81CJq02wlTzQTzz9ts9gV9gXszv0btoXeldoCj02n30xKPXstEPS97IvbJVwECEmwBmdiU/2kB5tg7PkVXlAJ1DENqhPv8E/DyKbxXPGvrTBGTuiLmY6lIvUUx36kXvkon6cKlnPfulX0vX+qGIl1bKoi46RblteMC9eIxKTlmBFQ+Q9s3WEKU2NqSQNhmdNwzYCEXsgfT/SIIEIAf3ixIApnbEkowquY968R7761Xj10KGm0zz44N81fLQbepnXd/UQyK9zex5XMz51KOS6zsHVbp81IKifh4lrW8fVGeT3ndwWQxRGgiVlGsWhVDzJn2dTXBRG+0+Gjf4OHHi2qduRI280wPmdO3c2/AG+Rp3AmQUT3/ve95v3ks9cDO81b5VAlUCVwNkkQN/y3Dt4woTHiJmlc4G11HV0tSlA3iV6rtSt7EACIuDMzABbI30/kl44Bw+cGSHhOO2to46L1X3yyXj8m99sAvl59tit3bt3x+27dsWmjRv7Fd9c9wz2RR3wC+jxfNHrdDe+2ZPcEkTZdHmb5Gcr2ZS0t6ZAeRN7EZmmV5K9puPJAxAcBBo4gFa+VA3KVJoRTIKRvK8TXXnFFWeAM/c11ttue3+z7cT01FT88cmdkDNv+6wh3nLLzc1ChBMTE7G+2X7i8rlkGjdQwfNlavO1V7vg7DOf+UzccceuWL9+4bvhA38aO8ACkJ3yfJmz78aF6SD9wBmmKBQjO51I/q7S6d2B5iqxwC9kbZuND3/4w02ONn86vJFcG5xJ7B398If/GV/84j/EiwcPxvve/76m827burVJb2SVdOzY0cYdn7/ruUqgSqBKYDklQI8abIov40FLXQd0GPRv3rzpNHCGN4NX+o99Mf0JBG3YcGls2ripJ+vKBJiEuVg8xb6sXbeu0dmjJ71SBrPPPPPzxvP13T17Gttgv7P77rs37rjjr84Im+n5oJN2jycNCOOYAMy6DgAAresYWHvJJbFx05n1yjIBtKu2b2/CdfCAALn+AG24AXQfuO22BphxnpDHxj7yyOeslHNvgNY5uQv+8OKmtS4GIeWI51x4BSK2bt3WHAvJ1+10l8fmzadAWeabnZ6MJ/fti8ce+3p889vfiZd/+5vY9YHb4nOf+/v44Ic+FDHU3/WbZZRnIMVqnLSNTtUAAAZjSURBVMUQ5SGOwLHUBPj6n87zoc7sTPzuxYPxPz/6r5iejfjpvp/E+OuvzhU11JkJBxodGYrRAWi/c5WvX6oEqgT+4CTA++M4F6J/t2zZ2hwLycceAYOONh09cjie/MlP4jvf/nY8see7MW7G5923xv33725mZoZHT/1jQDtvr9/sS25t1Ov+2a6xhQCkY2E01IDZLVu3hmOlERM1MjwUw5wpPSp3GkCbnu3E1OxQxOjqBheMjp7a7b5H3nppCSTQmZmMvT/+7/j6o1+NZ1/4dWy7clPcdMP1sX3L5XHwl90l0JMWIczMxLp162PzFVfGmnUbluDJF18Ra9esirdefVXc+M4d8eT+Z+LE8SNx4Jmn48+uuybGxw/HC88/FyNDnbhsw/q4cef1sXXLmQrr4qt15bhKoEqgSuD8JHDsjfF4at/e+P6e78RT+56Oa655a7z9bW+NTZf9Ufz2xV/F1ORkTE1PB3hgZuiyjZtizfrFhbOcH6eDmavrSIgmHGlyJmJ65vTVqXMAjbtycroTMXpJxOjaiJGZmO1UgHahm83U9Gy89vvx+O3vXgqv5sjRY/F/e/fF4SNHY3ra/2seixkrPjsR1117bXzwzjvjz9/Z+18CLjSvb3b5Y2suiXe9+z3xyd+Pxz89/s/x9P6fxj9+7Wvx1P6n4/jE8Xjqp/tj9Zq1cdvt74l7770vrnvHqS1J3mze6/OrBKoEqgSWVwKdODE5FeOHD8ehQ6+GPQdeeeVQ/O+P98Zrr4838WRi3DqdbtzbNW+7Jt5vavUvbHBebf9yvKtu/F4nZodGI0bGYtLUUOFKmwNoI8PD8fYta+K9bzkS02MTccXqmXj6xZGYsd/I7EwDEgZk65EL/l7EDVgUOTIyHK+/fiyeO3FlDL/lLyNePhjjY+vjX39+LP7t2aea+ANz7l6iPDteuSRmth2K19YeC4tGJydP/4PzC874m/iA4eGh0P46w2+JS3f8dWw4MBG//+VM/MeBN+JHB/c3nM3Mro7tV90am3beGfEn74n94xvixMtHuvlq430T3159dJVAlcBySYCtMPt1YnI6XnppOp6b3BJTW98VMXEgDo1eEj94diL+/blnGmBmZSeyCO26l1bH65e+Ei+vORwb1o/F8YnBsS/L9W7yOezZyFDEGycifv7SREwcj7jhquF4+1VrG2yQ6YY6rL8N5Dqd+PVrU/GrV09EZ3g0XnxtIv5l/+F4ZXJ1dKYnw1Rc4+LJnPV8/hI4Od+sI52YnGz28frFC7+IyYmj3ZHL1HTE9JRd/Sy/7D6nE7Hm8svjmmuvjW3bt4XFmTPcoXn//Lm5KHJ2Qe1QrBpbfXIvtefj+Wefi87h8a4MIN6x1bFu8+a5HbmHYjYmJk50m+2AyOmieJmVySqBKoELJwH/bzk01DhVJuzy/9LL8ZuDB+PoG3Rls+tsBBvTme3aGC6bsVWxdtOmJr5s2/btMTY2EtNm1KrevCDvqWvPIqaGVsf4sanYccWq+Jud6+KG7WvjTy9fPQfS5gBam4sfv3A0/vaLv4injmyJmD4eMT3RTlJ/L0oCJ4FX15XGnRYxNNztNNMz3Y5TuDrnwHGT7WTeRT3/YsvcrFyJGB5pjqERHrVOxMx0xAy3cOOS7MqxUUKUDzlaNFAK8mKrd+W3SqBKoErgXCVACQ6drhf9Bsps8urcJvp0EE1LWw7L+Xv1+sZG3fOOiXjo/qvjsrVzk5oNF6f/Khjzni5bMxKrDr3eBWcz3b81KpLUr0shAdjBfOXYWLczKXOoEzHc6inSASL+vWBAdlHuK15gdtVoV240SsqqMxQx1enKqBkhtmTYt8B6o0qgSqBKYAVKwMCVfaEvT+6J2diXXkjMYJZzYNDty3I2g47IwJm4dPW6ZmeC9qP7ArQrNqyKT753U9z+xkjE7HT3aOeuvxcvAR3IWlueoTlHz9yX08tvRj/plj791kD9amQ2bH3ymd6xKqOBagq1slUCVQLzSCB1JRvje0N5buWrurMlkGX4OWKbk05cv200xgSltajvFKeYNGC6+iBaElu2n2e+rPo2egm/lFNtrb0kVK9VCVQJVAmcLoFSb+adqj9TEst9hp/t2zmHoU8y0BegLTeD9XlVAlUCVQJVAlUCVQJVAlUCXQnUzU5qS6gSqBKoEqgSqBKoEqgS+AOTwP8DAdR7hBAi73AAAAAASUVORK5CYII= />
  1.tautomerization
  2.oxidation
  3.reduction
  4.isomerization
  5.none of these"

Question 3

How many net moles of ATP are consumed or produced per mole of glucose entering glycolysis?
   
  1.two consumed
  2.one consumed
  3.zero
  4.one produced
  5.two produced



wtf444

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1



Answer to Question 2

4

Answer to Question 3

5



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

The human body's pharmacokinetics are quite varied. Our hair holds onto drugs longer than our urine, blood, or saliva. For example, alcohol can be detected in the hair for up to 90 days after it was consumed. The same is true for marijuana, cocaine, ecstasy, heroin, methamphetamine, and nicotine.

Did you know?

According to the Migraine Research Foundation, migraines are the third most prevalent illness in the world. Women are most affected (18%), followed by children of both sexes (10%), and men (6%).

Did you know?

Though newer “smart” infusion pumps are increasingly becoming more sophisticated, they cannot prevent all programming and administration errors. Health care professionals that use smart infusion pumps must still practice the rights of medication administration and have other professionals double-check all high-risk infusions.

Did you know?

Automated pill dispensing systems have alarms to alert patients when the correct dosing time has arrived. Most systems work with many varieties of medications, so patients who are taking a variety of drugs can still be in control of their dose regimen.

Did you know?

During the twentieth century, a variant of the metric system was used in Russia and France in which the base unit of mass was the tonne. Instead of kilograms, this system used millitonnes (mt).

For a complete list of videos, visit our video library