Author Question: What type of process has occurred in the following glycolysis step? 1.tautomerization ... (Read 52 times)

mikaylakyoung

  • Hero Member
  • *****
  • Posts: 531
What type of process has occurred in the following glycolysis step?
   
Question 2

xYKVKgcqB3bkAGBWqXKgcmB8HBBB4+j5Ezv/OH5nU2+VphcHrIkTmDHdbgbQZik7Qa01E/XTb9aemUXIb6ZN1SxCe4BWFpf7Ltb02sa8J7pVBwidm1t2PVVzy3uiLTXPyoHKgcqByoHpwQGRZgMbfgU51+jz9OibZi1MW9oYYJYAELOGzeYoARz9JcJmVk30zDKoqdycMio0ju1EAAAgAElEQVRAazZgf73GfEcToFUF2l97u7arcqByoHJgajiQvqW5JICfqZHoqeH/rpRi7blpTt+iEzUTtEE2FABu1g5O9adQZjRAw/xUpNbr0jP1T+VA5UDlQOVA5cBucCB9TB387wYTp+hVQMwxXaguLJkuPVHrUTlQOVA5UDlQOVA5UDkwwoEK0KooVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqBypAqzJQOVA5UDlQOVA5UDlQOTDNOFAB2jTrkFqdyoHKgcqByoHKgcqByoEK0KoMVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqB7orCyoHZhIH+vv7Y3BwsDS5q6srHJUqByoHKgcqByoHphsHZjRAGxoaCsfAwEDpF47b70r7Hweee+65ePTRR2PdunXb+3jWrFmxdOnSOP744+O4447b/xpdW1Q5UDmw1ziQ/iXP/Ez1L3utO/bJgmc0QNNjQJmoCqoKtE/K8JiVZhDXrl0bf/7zn+OKK66Il19+ORYuXBidnZ3R19cXixcvjs997nPx9a9/PQ499NAx86oPKwcqByoHxsOBBGIJzrxT/ct4OFfTNDkw4wFac8qrt7d3+/RXk0n1et/kAIP45JNPFnB25ZVXxl133RVHH310iZj19PTEAw88EHfffXe8/fbbpYHnnXdenHDCCdHR0bFvNrjWunKgcmDacAA441+2bt1a6mRAmMsrpk0la0WmNQdmNEDr7u6OQw45JE488cR45ZVX4thjjy3RlWndY7Vy4+YAg/jggw/Gb3/727j99ttL337hC1+IH//4xzF79uy4+OKL42c/+1l5BpwvX768gLcK0MbN4pqwcqByoA0H2BA25qCDDiqDPksrVq5cGYsWLWqTut6qHGjPgRkN0ObOnRtnnnlmLFiwIN56663inEVYKu0fHDCCff311+OZZ54pDRI1O+aYY+I973lP+Q2Yz5kzp0x1PvHEEzusT9s/OFBbUTlQObA3OGAJhfWt/MsBBxwQmzdvLtF7QYBKlQPj5cCMB2gf+chHwlFp/+MAI7lixYo466yzSiTt5JNPLr+zpXZwSlOpcqByoHJgMjkgggagVf8ymVydeXnNaIC2N7pbVKdOoU0N50XM3ve+98W//uu/xmuvvRYHHnhgAGnI2hBrz3KDyPz588uUxNTUrJZSOVA5UDmw5zgw3f3MdK/fnuuZieU84wGa6a/HH388Nm7cWKIpFpZbyJkgSnj6lFNOKWvVkrUWfZoSswDd9ZFHHhknnXRSAQCZpnkGAp599tlSzptvvhkHH3xwmWY7/PDDm8km5dpah4ceeqjsVtSG1ggRIGJqz6clRiPTvdq3evXqsDbLWj0K5WhHdkWaNrTGYmdkytG6sDVr1pSk+R2yVFjTzj55Ib/Wuu8s79bn3tc3jibp6zvuuCP+8pe/xIYNG0I/nH/++YUvu1tms5x6XTlQOTBzOcCPsKFPPfVUvPHGG8WnsHN8DLJGzbpX057NHeR8hPeef/752LZtW3kmDb/Rjkyfvvjii2Uph0GngShbzK5Ntj2zVpu/fOmll4qfZL/TN/hskV3xlpFYKpS2vVlnvhAv+EN5oCOOOKK8I+LYSvLmj/DjhRdeKP7IunHtG40frXnsy79nHECjHBaPo/Xr18fVV18dl112WfkUAwFDhAIBOIDXd77znfj85z8fwAOiENdff3385je/KcL2mc98Jv7lX/5lVICmPLsFf/7zn4fvcZ122mnxn/7TfyoKVDKcpD+Ax6233loWxa9ataooZypJtokhuOCCC8q6u6ZRaFYBX6655ppyyJMhwbfMQ1rXDjwyjfjVr341vva1rxWD08yreY1vd955Z+EbgISAP5R5AcR4PW/evKLk5eEk/tEOuzl/8YtfxHXXXReibDYO/OAHP4j3v//924H5li1bSj/rO210kA8A1zuVKgcqByoHmhxgw4Ayx6ZNmwpo+tvf/lZ8DLvP1rHHCdBsGOBfvvjFL5ZP/VgLjUT7//GPf8S1115b/MsnPvGJ+OY3v9kWkCgToGNXL7/88gLq2LFvfOMbBdhNJkDziaKbb745rrrqqrj33nsLWGITs91stsHwZz/72WJT263nZk8BLX73hhtuKO21e57/aAfQ8ErQ4e9//3v86U9/KmDt4x//ePE1FaA1pW8/udbZwAEED8n/9a9/LaBmtOYZxXDOlOvcc8/dvgvH+5QC2akjr9HIqMEIx05CowEK/KUvfWm05Lt0X/lAox2LKcjtMnrkkUe2R8UAk3ZKxLgYJQEy4yF5UiTKSjmNiFoJ0LvxxhvjoosuKsDo1VdfbU2y/beoJFDIcPnsxWQR0HXLLbcUcOazG/pVP3z729+Oj370o9vBIiPy2GOPFbkwctMuh1GbRb/teDZZdaz5VA5UDuybHGADRYXMYLCJZgnYUIPm0YgfYW9sVvrYxz5WNhTwF2Z2+AvgS1RKEGA0Yi+Vdc8995RIk3qcc845xc+M9s5E74ucAY2CGcCSmYd2pN0G4oAoX9A6q8L3aRP/cttttxVwx57mp45a85TeM3zit83A4McnP/nJ1qT75e8ZF0Hz0dJLL720ADOKAHhB4kYBSRw3pSFIhEM0KQHI2WefXa6bURTpd0bSZDTL9Xje2Vme+Rzou+mmm+KXv/xlGXUJiytryZIlJdqjbdoKJHkGpJi6dP/CCy8s07fN+jR5oQw8MtrL0VI+x5P/v727f7azqu4Avu5LbkIS0pIEyAstOiOCTTFQXnR0qkjoD1VG6IyoYMRCdap/kcP4g5VRrOBUrEqjTqf2h7ba1sYgQQww+BJUIIA35OXmvp3O5zlZNztPzrm5yb25mHv2mnnOc87z7L2ftdez91rfvfba+3g2WXm+Z7gH9PCEZX0BPkrqK1/5SjP6wofn4Q8Qk0dHdB2IotSUqXwjQYBvsSNB5QLUZOR94u2uu+5qPJkCedUxyXONFikQe6VRnkaH2oMYtgrQUlL1XCVQJZASoP8M6L7xjW80g1D6jO4o7Qu9R9fRw+5zGHAS0IHu0UXu56BQ2aVuzme1z9Kkvl1I+nb+fr/xRRcaXLObBv/4po/ZBPXDL33NVgKLdD1Z0KN33nnnGVOt+JMfv8pfiG6Xho7OvP34XWnXT1mllVazPvXRuJ5//vlm3zNJjFrsJM8LptNoMBpCupmNGowIuGOBCcBG/JbpTp0oY7TO1inczw6k/IU0yj5VOO0ygKSDAz86kTogbvFdu3Y1ygGPAIpp1vSucVEDmeoLUF199dVz5eK1rM/OnTub0RBgoiwdD//KNMqzSz8ZAVbqpsOaphQDoaNyiz/88MPNyIv80S233BJc21ziOjW+gSHTjrxr+/btm5tKNCW7GE8anoEt3kXgDO/KfPDBBxs+8FyS95SrP8kllaX6A56VqgSqBKoE2hKgF+lj05lmTNCOHTuamRd6jh5CzjxSdKfBsu+8UgaB9KDQE6EUwA86m72gq+m0tC/0+lLZF7yxffaMpMfpb7aP/jabQD/iOXW2NGynwTB+8MGTVm4vkrYw+c10TWV7fKQ9ko4sziaPHkVctJdOt0wXbTXOzrhGZCQgNosnJOmmm25qNi5NoACwaOBGNoIR5du7d2/T6Lh3ATkuVmCtBGjZ2LLc8uxe2Qg1sBIAlWkX+p0y0BESeJjT1/F1ajFuH/vYx+Luu++Obdu2NSCJF0u8g3ymQrmKdSa/8QawqFt27pI/AfumAQE1IyWgSx5lCugns+yYPGkbN25sVk9aPGBBgGlNcQs6N5lZWSmmQswa0KM8YI8LG7jbs2fPXCf3PLyIUVCXVFoLkRO+uOKBvUcffbTxLqofr6EYQHLqRd6POlM+eEtZyHsuz+9Vdr1WJVAlsLIkQM/QXwb++/fvn5v+Yyduvvnm+MQnPtF43ukyadkUU6FsDn1napJtEq8mz+23396AtdTF8wESugkIcqSeKm3N+UqaLcEj+yK2zYIq+l6cnBgwtsXCKlOY6oV/+pt+l1bIDZtAf6qjcBrAE29p/xJEzsevNNJLU9Y1855v/S6WfAMD0CB83hMjgVxByEULlDhQaXyBATFQSRqqRqsjAjUlZSMqr5XfywZWXl/Md3xwJfNMAUV4QxTC7t27mw6hDsjzdXwjHgpCJwKYeL1yMYF0AFOCtOzsrhsxpeeI0nAg5YjL81t6cV34MIp08Ih9+ctfnnOLyyOAlcIyvZhThfgD5rj3yVZ5pgkAaTENAJ5Ojr92TEPDSJ8PigM4szjDCBUo5XJXjpW5yPPwnO8wFYG6OSpVCVQJVAnMJwEghMfMbMu3vvWtuY2xraZ0WKmJSr2ZfylH/9DJwA2dbjbBNfq0ffTjgc6aD+T0y9fvOn4MbHnBOCXMzABn7MCtt97a6E8zJBlrrF6+O2d9zOoAaWZtXMefPGyS32lfyjr24odezvpJi7dBooEBaIy9BgdoecnQPMDCK9SPTNEBaTqOTgZICCYH7Bh1HRNpRPMZc/fkzUa5FI3MKOxnP/tZ437WmQCcG264ofGc4RnvbbJKxugM4Z17XUwemfCEmXIE0HSI5FVa4Cjr2i4TcFOmjsjzRcHogDmq4h73DO574Aw44q2zFLtN6iC4FclPMVjxo2xTjsDguQA0ykJwKY9hTjmolzgRYI1HT73UL71+pq/Lurd5rL+rBKoEqgRKCdAzZjPMFggdMfCl32yQTefR/W2iY+hcniX2wxQgHcmrz0tFj6bOpY/nsy9mc5bSvtCHdKNtpHj3rOrPTXcNrNmJBGdlvcw40dFI/XjQ6H5lGIyzneyS+pSEd3XoRWlby/r1SrdSr53ZclZoTTU6jT7BkWm2++67LwT992scRAHImRLT2TQ6QEEHBJCUiZRrStRZZ82OJb3GCBwCBOX1pRAzEIMPpOF/5CMfaQDQfMuPdX6diByMinQg9Sjrc668GSmRScpDfuXjj0wQnnRuU6/p2ev1HF5M8XMICAbQUMq2+bHAD/I36jOK5TUFrO1JZLoTAd54lg7wk5bS9LtSlUCVQJXAQiRA19Ej9BX9D0wAZmJ72Rd6pxcBH4Ac+0Iny0cHsRV0E/2pbN8BQEH4bBVdS0dJ75mmF+WRHi2F/lIf5akPSjBp8D+f/jbAZyvlwydPGv7xWdqH5FE6YJD9zEE7W0Q2bKe84uDMyLCfrg8SDQxA0yBK5A4wAGlWEs5H8ogVcCRpMDpOlmcrDvP04g80wmzUnqlBaai8dxobWqrRgLKzwZrCFJBqFHM2ojB4DoHPJHXJTpPX8uw6nnuRuAvxb1z0OiGSPo/kDzAU19Vr5NUuV1oKDuiUn0zPR2byeKYpVXETlBu+UvGUCgPw1hbcr1QlUCVQJXAuEqA36Co6hy4FVHjje+3tVZYrPd3jSGIv2BA2xmHLDVOntqYwOwHAeJ7nAC0GyMJJgDT3lblYyvp4hnqZYTCIPZv+lo8Nshk6IGfAjce2fUm7wGbYluSxxx5rZkrw7Zr7Dt/ZW55JDgWeRGUNCi3+TV4kksoGV7Kr8Z8v6QQMPtBlGo0nSufoRYCATpUARl78tEkHM1JSpg4qjTIBFlOJVvaU5H5ZzrnUp5223YHK5+BJLBi+1SN502EEhNq6QqwXXnRgignYMbIrqQRE5fVe35O/rB/+yo7ZlpXOXMrKdAF+LYzAE74RZZHKr3yudwnk5vPKe/V7lUCVQJVAPwnQGQ46qNQf56LvsuzUe6mP/QbMOAHmsy9pM1LvlXxk2WZy6HJ6G2/SADxCS+jrtC+uO7I+vuMj9abf8xEdW9Zd+qxP5ktdziZahGffybyWaZw9V1lAq7PZkF7pyjwr6fvAADQvrWxY2RHO92UqSwNG2YAWWlbJR+bh5hVk6tCJshE6Axg2KuQ6Xipq1z/rovyyQ0lnhPOFL3yhmabMzieNaUfAzUID6XglBYJa4cNdzaOoUye1n5nXe53backhefRccWWlrNwDyMhKjITtU5ApA0elKoEqgSqB5ZIA/dXWYQt5dq98rgEoCyF6MO1LnuUzhWhbD3Fh4nHTvhj8iw+jLy3SAthSz7afhw+2LvO27+dvaUrCR8mLe+VvNoL9WwiV9VtI+os9zcAAtGxc+cK86H4NMdPMd9aogBWkkXPnGoVonJ6FsmGaUhNoyaMknzTls3UeKzLFRgmqNwVpiwf5jJykNfoxOuI69jxgBOWz8nnNxQV8lM+XvARSfpf3xW055iMufcBIHFzGIKS3KvOdrWNnOmfPLzux78oDXk0Xp6yM/nI7DIqHXDJWgyfP/UpVAlUCVQIXUgL0cB6eQ3+di75L3lLvlWXRYaYNefjdT11NJ0rHC2WXArqxHEArU1rxt+yLUBS6EwlvcU9slyB+04h0p9Xt7Avekwdnz3JtIXXi6ZMu9Td751nKSUoQpz6mgdkPz0XulXl5B9lINjDrl+Ws9PPAALR88flCgZ+Fjkoyr0bj0IAcOWVpBY7gd3uqaYgaEZJWo9cJbBBrybJGJk3Z0HWez3/+8808u3J5y3iiAA27N9sI1rYTGvgDDzzQrNY0t5+N2LOUqSEvlNSdDJI8t+xAZdmZpt9ZB7PZ7/33399sYCgdfhzKzd88Xwsl/OW0pDw6smsUzEMPPdSsQMUjUGgjRDK2zYe9hMjZO/D/mt5JpSqBKoEqgQslgdSbeabz6NZz0XfJG5uinNSbdJw4WtsD0WU8XFku2+I5Bv88Y+wEoEX3sS/KkZbnzCbdVusDQTnD4B596b4YN88CruwG4DlJeFEm3tq2K9OU57RF9Le8WR/ntCvSIKEltoayp5p/aUGeI5064NFCMdsk5UbsmbdJvMI/BgagZSPJ95nbL5j+4uItAVOmcdbITOFZcgwkCMQHjrIDSGN0Y3sIgei9SBk6jhEM0miVlWS7DJ0L8Qb5n7Hcg41XSCfiSTOlp3PpQDqSOmVj1UnthybYFI9lB8vn5FndlVl6xXRA5SWlgvDbtCElYf6fQshOl2mNxgA0nrN8ro6FN+UiMWOAKFlboDDftKMRnw5JLlk/ZQCgYhXEvQFr9hKyxYfVoZ7DQ2nq007eZEWOFaDlW6rnKoEqgQslATrRQT866FiDSYNX+hMQ6UX0GD1HZ9GdbAk97Dsbw07Q6fnPML3KYCMM5gEwm8vSmfIpB9jJ/73kZTPTw1bRmfSpBQb+AYZ9A9RsPWXxHPCX9fFMz+Bps1iOfemnv9U9y3IW76buaQeSf2UjdsziA7qaXWuTdOTj+fgkr8zbTrsSfw8MQNPguVG5iXmx7FljE1XThrbb6NXgNHBxVI888kjzF0TKuPfee5vGBKRpxMCXzqCh9SP5pM3Rg3QlGBKcKX4LiNMBypU/7mU+HUoHQK6ZUtWhrfIBanjbdE6rFm+88cae7BiNGC0J7Bc/hjzPPm/4RDqAcpJHgMrO+9zfgFfy0CQ+GedFtpnfdfxxzbsOPHJRP/74401H5dnKGLEsI88WW/i7py996UsNMHYdb8rxjhxkRQFSfCkr8vUuE/iSVQnusvx6rhKoEqgSWEoJ0DnsgZWOdDJ9x76wCcAJMJSb1ZbPBV4M/nn87UlJX5oNoLvpsrQpyu/nQFAe3edI3eda6m56mNeM/gRu6MxccCY9+5Jl0+0AHfJstlKdgCM2hoMh7YK/emoTEGbQbz9MdbJwjC2hrw3uyQJfyZv8+Juvfu6pW/LYfuZK/z0wAE2j9N+URhG8M8CQEYGGVzaYfOGuQex2sdcwpUNGBTbcKzuERpgNO/OXZyCuHEEouwQPOuRnP/vZJoaAp4oXLSk7RP7O0YOGbVNDAfn+IcEoCY/+IUBjlo/ruCSgxv1ySTPFQSnwzOmQCK/5HL+BQGX12vy2LL/8DqzZKoNywquFBsDhE0880ciODOxKTY5JFAFZ+7cHo0E8UHi8ZHgkF+UCi96fkRyPHJJWnT0LUTClwmou1o8qgSqBKoEllgB9S0eyC7z4ZjLoMiANkCl1aT7aANLWEQbV9Lftiug6+42Z6qO/EpTIX9qPLCPPBsxtnZ32BSgyi+C+Dc3NOngGko8eTv7yO71pIGxgTvdKZ+bCVh7KTdtHvyeIlBc4o9/Vie2UlsfOHm8Otsa1dl16Xcu6uef5zoNIp6zjCq89TwuABixpbAy8lw40QPqMv06DNECeHECGl82ICAED4s2MOuTNhq3BtRtdk+Hkh7TuZ/p2hwO0dBwNUdk6qvTA4IEDB5rvOowtI9xL0vF0QB3KaIwXTR4AJzubEZM6u2/6z5+q6zwIINNxeNzIJj1gni1/UvKfvxdyVpYObmSJP6M3ANEu/kZXyZ9AfnI3ejMFij/xFO4bUZo2veeeexqApiyjMQomlYt8FCHgTcl5lnpRHkZtlaoEqgSqBC6kBNgLAE2IC13GpgBopg9NOeb+mPQwveYsDWAGzEiD2AD6mq5PUMJWlLamXQ/lue/wHeU1g1X2AUhkO5TFM0ev4tMMikE9fc+usG3sJGCoThwHvjuyXuqiXHmsvLRozT3AlP62H6g9MfFgahbA8z/K7Azbpu6pu6VJXtM2tuuX9c/6ZR7nQaCBAWgMN1evKcT0FHnBGpNGo2FqOEha06A8bAnOAAkLAQTv88YBBvKh+TqQ+xpZNiy/NW55kjRcR0nl1Cp+zNEDUjpEEhAkXkBZOo3OAaQAQQLmnbmoPQ+/wJ49Z5AO6W9Gyk1cs9zkN3+TS8omr53tjB/8GQ1a2Zn8qReFRDkBwVzvyuaBpCz8rRNZkQevGf6AtJQPBeNApk1N1wJ03helB8RRBqateSMrVQlUCVQJXGgJADE8RLma3/PoXHFd4sPco4fpNmfeLB6pBGcAFH1MzwNoBrR0ovQLsS+lzi7tC71b6syUgxkN9sKgnX1JIEVf+43YCM4DhAehJ2yIvHjzHTD1nf5le4A+PItLpr8Nrs2UAIUIn3lI5/t89cs0Wb9M7/og0MAAtHyZGooRBVCgA0H++dc/mSbPwIPARXm4rz/60Y82gEjnMmrQEZCyztZgNCwNGTn73Ys0VkGRplZ57zR8AaIAhw6cS5EzLxez+lAQ+NDpLCjQeRy9iGeJIvj4xz/erBhNz1mZNuvmGn7L32W6s33HF0+aEZm6AbWAGG+aoxcBy/4iBSC2uifBWTutsrwLo1VK0EpOzwNKgWiKrlKVQJVAlcBySYDu4nmit+kmZzq5bR+AIHqKbhQ6AghZGGbAbWDNOwWkIXq9n71wP0FM2pf50tOZ4t7sCmBwy8snHphtM4vSnnVgb8zU4BfYUzb+5rMvvIAJ+AyuE5zlO1AX9iTtoO9t+WTarB/bkXYID34PAg0cQNMZABMxV6bFBK5ncH35wgEfq124Z7lqdbz0XmlM7gM2Go0RCgDSjzRs6TV2IEKD9bsXmX59+OGHG4BmdKXTfPrTn24AVRuclfnFY/E24cnUbD/ww3toZGNLDKCzFzjTGbnGkwAddVgMcd8DXOptClY9exFZkvunPvWpZkVRG5yRfR7SUgTK9i7tISf+Q4yhesprqrNSlUCVQJXAhZYA3WZFIrAD9Bgo81CJq02wlTzQTzz9ts9gV9gXszv0btoXeldoCj02n30xKPXstEPS97IvbJVwECEmwBmdiU/2kB5tg7PkVXlAJ1DENqhPv8E/DyKbxXPGvrTBGTuiLmY6lIvUUx36kXvkon6cKlnPfulX0vX+qGIl1bKoi46RblteMC9eIxKTlmBFQ+Q9s3WEKU2NqSQNhmdNwzYCEXsgfT/SIIEIAf3ixIApnbEkowquY968R7761Xj10KGm0zz44N81fLQbepnXd/UQyK9zex5XMz51KOS6zsHVbp81IKifh4lrW8fVGeT3ndwWQxRGgiVlGsWhVDzJn2dTXBRG+0+Gjf4OHHi2qduRI280wPmdO3c2/AG+Rp3AmQUT3/ve95v3ks9cDO81b5VAlUCVwNkkQN/y3Dt4woTHiJmlc4G11HV0tSlA3iV6rtSt7EACIuDMzABbI30/kl44Bw+cGSHhOO2to46L1X3yyXj8m99sAvl59tit3bt3x+27dsWmjRv7Fd9c9wz2RR3wC+jxfNHrdDe+2ZPcEkTZdHmb5Gcr2ZS0t6ZAeRN7EZmmV5K9puPJAxAcBBo4gFa+VA3KVJoRTIKRvK8TXXnFFWeAM/c11ttue3+z7cT01FT88cmdkDNv+6wh3nLLzc1ChBMTE7G+2X7i8rlkGjdQwfNlavO1V7vg7DOf+UzccceuWL9+4bvhA38aO8ACkJ3yfJmz78aF6SD9wBmmKBQjO51I/q7S6d2B5iqxwC9kbZuND3/4w02ONn86vJFcG5xJ7B398If/GV/84j/EiwcPxvve/76m827burVJb2SVdOzY0cYdn7/ruUqgSqBKYDklQI8abIov40FLXQd0GPRv3rzpNHCGN4NX+o99Mf0JBG3YcGls2ripJ+vKBJiEuVg8xb6sXbeu0dmjJ71SBrPPPPPzxvP13T17Gttgv7P77rs37rjjr84Im+n5oJN2jycNCOOYAMy6DgAAresYWHvJJbFx05n1yjIBtKu2b2/CdfCAALn+AG24AXQfuO22BphxnpDHxj7yyOeslHNvgNY5uQv+8OKmtS4GIeWI51x4BSK2bt3WHAvJ1+10l8fmzadAWeabnZ6MJ/fti8ce+3p889vfiZd/+5vY9YHb4nOf+/v44Ic+FDHU3/WbZZRnIMVqnLSNTtUAAAZjSURBVMUQ5SGOwLHUBPj6n87zoc7sTPzuxYPxPz/6r5iejfjpvp/E+OuvzhU11JkJBxodGYrRAWi/c5WvX6oEqgT+4CTA++M4F6J/t2zZ2hwLycceAYOONh09cjie/MlP4jvf/nY8see7MW7G5923xv33725mZoZHT/1jQDtvr9/sS25t1Ov+2a6xhQCkY2E01IDZLVu3hmOlERM1MjwUw5wpPSp3GkCbnu3E1OxQxOjqBheMjp7a7b5H3nppCSTQmZmMvT/+7/j6o1+NZ1/4dWy7clPcdMP1sX3L5XHwl90l0JMWIczMxLp162PzFVfGmnUbluDJF18Ra9esirdefVXc+M4d8eT+Z+LE8SNx4Jmn48+uuybGxw/HC88/FyNDnbhsw/q4cef1sXXLmQrr4qt15bhKoEqgSuD8JHDsjfF4at/e+P6e78RT+56Oa655a7z9bW+NTZf9Ufz2xV/F1ORkTE1PB3hgZuiyjZtizfrFhbOcH6eDmavrSIgmHGlyJmJ65vTVqXMAjbtycroTMXpJxOjaiJGZmO1UgHahm83U9Gy89vvx+O3vXgqv5sjRY/F/e/fF4SNHY3ra/2seixkrPjsR1117bXzwzjvjz9/Z+18CLjSvb3b5Y2suiXe9+z3xyd+Pxz89/s/x9P6fxj9+7Wvx1P6n4/jE8Xjqp/tj9Zq1cdvt74l7770vrnvHqS1J3mze6/OrBKoEqgSWVwKdODE5FeOHD8ehQ6+GPQdeeeVQ/O+P98Zrr4838WRi3DqdbtzbNW+7Jt5vavUvbHBebf9yvKtu/F4nZodGI0bGYtLUUOFKmwNoI8PD8fYta+K9bzkS02MTccXqmXj6xZGYsd/I7EwDEgZk65EL/l7EDVgUOTIyHK+/fiyeO3FlDL/lLyNePhjjY+vjX39+LP7t2aea+ANz7l6iPDteuSRmth2K19YeC4tGJydP/4PzC874m/iA4eGh0P46w2+JS3f8dWw4MBG//+VM/MeBN+JHB/c3nM3Mro7tV90am3beGfEn74n94xvixMtHuvlq430T3159dJVAlcBySYCtMPt1YnI6XnppOp6b3BJTW98VMXEgDo1eEj94diL+/blnGmBmZSeyCO26l1bH65e+Ei+vORwb1o/F8YnBsS/L9W7yOezZyFDEGycifv7SREwcj7jhquF4+1VrG2yQ6YY6rL8N5Dqd+PVrU/GrV09EZ3g0XnxtIv5l/+F4ZXJ1dKYnw1Rc4+LJnPV8/hI4Od+sI52YnGz28frFC7+IyYmj3ZHL1HTE9JRd/Sy/7D6nE7Hm8svjmmuvjW3bt4XFmTPcoXn//Lm5KHJ2Qe1QrBpbfXIvtefj+Wefi87h8a4MIN6x1bFu8+a5HbmHYjYmJk50m+2AyOmieJmVySqBKoELJwH/bzk01DhVJuzy/9LL8ZuDB+PoG3Rls+tsBBvTme3aGC6bsVWxdtOmJr5s2/btMTY2EtNm1KrevCDvqWvPIqaGVsf4sanYccWq+Jud6+KG7WvjTy9fPQfS5gBam4sfv3A0/vaLv4injmyJmD4eMT3RTlJ/L0oCJ4FX15XGnRYxNNztNNMz3Y5TuDrnwHGT7WTeRT3/YsvcrFyJGB5pjqERHrVOxMx0xAy3cOOS7MqxUUKUDzlaNFAK8mKrd+W3SqBKoErgXCVACQ6drhf9Bsps8urcJvp0EE1LWw7L+Xv1+sZG3fOOiXjo/qvjsrVzk5oNF6f/Khjzni5bMxKrDr3eBWcz3b81KpLUr0shAdjBfOXYWLczKXOoEzHc6inSASL+vWBAdlHuK15gdtVoV240SsqqMxQx1enKqBkhtmTYt8B6o0qgSqBKYAVKwMCVfaEvT+6J2diXXkjMYJZzYNDty3I2g47IwJm4dPW6ZmeC9qP7ArQrNqyKT753U9z+xkjE7HT3aOeuvxcvAR3IWlueoTlHz9yX08tvRj/plj791kD9amQ2bH3ymd6xKqOBagq1slUCVQLzSCB1JRvje0N5buWrurMlkGX4OWKbk05cv200xgSltajvFKeYNGC6+iBaElu2n2e+rPo2egm/lFNtrb0kVK9VCVQJVAmcLoFSb+adqj9TEst9hp/t2zmHoU8y0BegLTeD9XlVAlUCVQJVAlUCVQJVAlUCXQnUzU5qS6gSqBKoEqgSqBKoEqgS+AOTwP8DAdR7hBAi73AAAAAASUVORK5CYII= />
  1.tautomerization
  2.oxidation
  3.reduction
  4.isomerization
  5.none of these"

Question 3

How many net moles of ATP are consumed or produced per mole of glucose entering glycolysis?
   
  1.two consumed
  2.one consumed
  3.zero
  4.one produced
  5.two produced



wtf444

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1



Answer to Question 2

4

Answer to Question 3

5



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

After a vasectomy, it takes about 12 ejaculations to clear out sperm that were already beyond the blocked area.

Did you know?

Carbamazepine can interfere with the results of home pregnancy tests. If you are taking carbamazepine, do not try to test for pregnancy at home.

Did you know?

The largest baby ever born weighed more than 23 pounds but died just 11 hours after his birth in 1879. The largest surviving baby was born in October 2009 in Sumatra, Indonesia, and weighed an astounding 19.2 pounds at birth.

Did you know?

The term bacteria was devised in the 19th century by German biologist Ferdinand Cohn. He based it on the Greek word "bakterion" meaning a small rod or staff. Cohn is considered to be the father of modern bacteriology.

Did you know?

Though Candida and Aspergillus species are the most common fungal pathogens causing invasive fungal disease in the immunocompromised, infections due to previously uncommon hyaline and dematiaceous filamentous fungi are occurring more often today. Rare fungal infections, once accurately diagnosed, may require surgical debridement, immunotherapy, and newer antifungals used singly or in combination with older antifungals, on a case-by-case basis.

For a complete list of videos, visit our video library