Author Question: What type of process has occurred in the following glycolysis step? 1.tautomerization ... (Read 59 times)

mikaylakyoung

  • Hero Member
  • *****
  • Posts: 531
What type of process has occurred in the following glycolysis step?
   
Question 2

xYKVKgcqB3bkAGBWqXKgcmB8HBBB4+j5Ezv/OH5nU2+VphcHrIkTmDHdbgbQZik7Qa01E/XTb9aemUXIb6ZN1SxCe4BWFpf7Ltb02sa8J7pVBwidm1t2PVVzy3uiLTXPyoHKgcqByoHpwQGRZgMbfgU51+jz9OibZi1MW9oYYJYAELOGzeYoARz9JcJmVk30zDKoqdycMio0ju1EAAAgAElEQVRAazZgf73GfEcToFUF2l97u7arcqByoHJgajiQvqW5JICfqZHoqeH/rpRi7blpTt+iEzUTtEE2FABu1g5O9adQZjRAw/xUpNbr0jP1T+VA5UDlQOVA5cBucCB9TB387wYTp+hVQMwxXaguLJkuPVHrUTlQOVA5UDlQOVA5UDkwwoEK0KooVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqBypAqzJQOVA5UDlQOVA5UDlQOTDNOFAB2jTrkFqdyoHKgcqByoHKgcqByoEK0KoMVA5UDlQOVA5UDlQOVA5MMw5UgDbNOqRWp3KgcqByoHKgcqByoHKgArQqA5UDlQOVA5UDlQOVA5UD04wDFaBNsw6p1akcqByoHKgcqByoHKgcqACtykDlQOVA5UDlQOVA5UDlwDTjQAVo06xDanUqByoHKgcqByoHKgcqB7orCyoHZhIH+vv7Y3BwsDS5q6srHJUqByoHKgcqByoHphsHZjRAGxoaCsfAwEDpF47b70r7Hweee+65ePTRR2PdunXb+3jWrFmxdOnSOP744+O4447b/xpdW1Q5UDmw1ziQ/iXP/Ez1L3utO/bJgmc0QNNjQJmoCqoKtE/K8JiVZhDXrl0bf/7zn+OKK66Il19+ORYuXBidnZ3R19cXixcvjs997nPx9a9/PQ499NAx86oPKwcqByoHxsOBBGIJzrxT/ct4OFfTNDkw4wFac8qrt7d3+/RXk0n1et/kAIP45JNPFnB25ZVXxl133RVHH310iZj19PTEAw88EHfffXe8/fbbpYHnnXdenHDCCdHR0bFvNrjWunKgcmDacAA441+2bt1a6mRAmMsrpk0la0WmNQdmNEDr7u6OQw45JE488cR45ZVX4thjjy3RlWndY7Vy4+YAg/jggw/Gb3/727j99ttL337hC1+IH//4xzF79uy4+OKL42c/+1l5BpwvX768gLcK0MbN4pqwcqByoA0H2BA25qCDDiqDPksrVq5cGYsWLWqTut6qHGjPgRkN0ObOnRtnnnlmLFiwIN56663inEVYKu0fHDCCff311+OZZ54pDRI1O+aYY+I973lP+Q2Yz5kzp0x1PvHEEzusT9s/OFBbUTlQObA3OGAJhfWt/MsBBxwQmzdvLtF7QYBKlQPj5cCMB2gf+chHwlFp/+MAI7lixYo466yzSiTt5JNPLr+zpXZwSlOpcqByoHJgMjkgggagVf8ymVydeXnNaIC2N7pbVKdOoU0N50XM3ve+98W//uu/xmuvvRYHHnhgAGnI2hBrz3KDyPz588uUxNTUrJZSOVA5UDmw5zgw3f3MdK/fnuuZieU84wGa6a/HH388Nm7cWKIpFpZbyJkgSnj6lFNOKWvVkrUWfZoSswDd9ZFHHhknnXRSAQCZpnkGAp599tlSzptvvhkHH3xwmWY7/PDDm8km5dpah4ceeqjsVtSG1ggRIGJqz6clRiPTvdq3evXqsDbLWj0K5WhHdkWaNrTGYmdkytG6sDVr1pSk+R2yVFjTzj55Ib/Wuu8s79bn3tc3jibp6zvuuCP+8pe/xIYNG0I/nH/++YUvu1tms5x6XTlQOTBzOcCPsKFPPfVUvPHGG8WnsHN8DLJGzbpX057NHeR8hPeef/752LZtW3kmDb/Rjkyfvvjii2Uph0GngShbzK5Ntj2zVpu/fOmll4qfZL/TN/hskV3xlpFYKpS2vVlnvhAv+EN5oCOOOKK8I+LYSvLmj/DjhRdeKP7IunHtG40frXnsy79nHECjHBaPo/Xr18fVV18dl112WfkUAwFDhAIBOIDXd77znfj85z8fwAOiENdff3385je/KcL2mc98Jv7lX/5lVICmPLsFf/7zn4fvcZ122mnxn/7TfyoKVDKcpD+Ax6233loWxa9ataooZypJtokhuOCCC8q6u6ZRaFYBX6655ppyyJMhwbfMQ1rXDjwyjfjVr341vva1rxWD08yreY1vd955Z+EbgISAP5R5AcR4PW/evKLk5eEk/tEOuzl/8YtfxHXXXReibDYO/OAHP4j3v//924H5li1bSj/rO210kA8A1zuVKgcqByoHmhxgw4Ayx6ZNmwpo+tvf/lZ8DLvP1rHHCdBsGOBfvvjFL5ZP/VgLjUT7//GPf8S1115b/MsnPvGJ+OY3v9kWkCgToGNXL7/88gLq2LFvfOMbBdhNJkDziaKbb745rrrqqrj33nsLWGITs91stsHwZz/72WJT263nZk8BLX73hhtuKO21e57/aAfQ8ErQ4e9//3v86U9/KmDt4x//ePE1FaA1pW8/udbZwAEED8n/9a9/LaBmtOYZxXDOlOvcc8/dvgvH+5QC2akjr9HIqMEIx05CowEK/KUvfWm05Lt0X/lAox2LKcjtMnrkkUe2R8UAk3ZKxLgYJQEy4yF5UiTKSjmNiFoJ0LvxxhvjoosuKsDo1VdfbU2y/beoJFDIcPnsxWQR0HXLLbcUcOazG/pVP3z729+Oj370o9vBIiPy2GOPFbkwctMuh1GbRb/teDZZdaz5VA5UDuybHGADRYXMYLCJZgnYUIPm0YgfYW9sVvrYxz5WNhTwF2Z2+AvgS1RKEGA0Yi+Vdc8995RIk3qcc845xc+M9s5E74ucAY2CGcCSmYd2pN0G4oAoX9A6q8L3aRP/cttttxVwx57mp45a85TeM3zit83A4McnP/nJ1qT75e8ZF0Hz0dJLL720ADOKAHhB4kYBSRw3pSFIhEM0KQHI2WefXa6bURTpd0bSZDTL9Xje2Vme+Rzou+mmm+KXv/xlGXUJiytryZIlJdqjbdoKJHkGpJi6dP/CCy8s07fN+jR5oQw8MtrL0VI+x5P/v727f7azqu4Avu5LbkIS0pIEyAstOiOCTTFQXnR0qkjoD1VG6IyoYMRCdap/kcP4g5VRrOBUrEqjTqf2h7ba1sYgQQww+BJUIIA35OXmvp3O5zlZNztPzrm5yb25mHv2mnnOc87z7L2ftdez91rfvfba+3g2WXm+Z7gH9PCEZX0BPkrqK1/5SjP6wofn4Q8Qk0dHdB2IotSUqXwjQYBvsSNB5QLUZOR94u2uu+5qPJkCedUxyXONFikQe6VRnkaH2oMYtgrQUlL1XCVQJZASoP8M6L7xjW80g1D6jO4o7Qu9R9fRw+5zGHAS0IHu0UXu56BQ2aVuzme1z9Kkvl1I+nb+fr/xRRcaXLObBv/4po/ZBPXDL33NVgKLdD1Z0KN33nnnGVOt+JMfv8pfiG6Xho7OvP34XWnXT1mllVazPvXRuJ5//vlm3zNJjFrsJM8LptNoMBpCupmNGowIuGOBCcBG/JbpTp0oY7TO1inczw6k/IU0yj5VOO0ygKSDAz86kTogbvFdu3Y1ygGPAIpp1vSucVEDmeoLUF199dVz5eK1rM/OnTub0RBgoiwdD//KNMqzSz8ZAVbqpsOaphQDoaNyiz/88MPNyIv80S233BJc21ziOjW+gSHTjrxr+/btm5tKNCW7GE8anoEt3kXgDO/KfPDBBxs+8FyS95SrP8kllaX6A56VqgSqBKoE2hKgF+lj05lmTNCOHTuamRd6jh5CzjxSdKfBsu+8UgaB9KDQE6EUwA86m72gq+m0tC/0+lLZF7yxffaMpMfpb7aP/jabQD/iOXW2NGynwTB+8MGTVm4vkrYw+c10TWV7fKQ9ko4sziaPHkVctJdOt0wXbTXOzrhGZCQgNosnJOmmm25qNi5NoACwaOBGNoIR5du7d2/T6Lh3ATkuVmCtBGjZ2LLc8uxe2Qg1sBIAlWkX+p0y0BESeJjT1/F1ajFuH/vYx+Luu++Obdu2NSCJF0u8g3ymQrmKdSa/8QawqFt27pI/AfumAQE1IyWgSx5lCugns+yYPGkbN25sVk9aPGBBgGlNcQs6N5lZWSmmQswa0KM8YI8LG7jbs2fPXCf3PLyIUVCXVFoLkRO+uOKBvUcffbTxLqofr6EYQHLqRd6POlM+eEtZyHsuz+9Vdr1WJVAlsLIkQM/QXwb++/fvn5v+Yyduvvnm+MQnPtF43ukyadkUU6FsDn1napJtEq8mz+23396AtdTF8wESugkIcqSeKm3N+UqaLcEj+yK2zYIq+l6cnBgwtsXCKlOY6oV/+pt+l1bIDZtAf6qjcBrAE29p/xJEzsevNNJLU9Y1855v/S6WfAMD0CB83hMjgVxByEULlDhQaXyBATFQSRqqRqsjAjUlZSMqr5XfywZWXl/Md3xwJfNMAUV4QxTC7t27mw6hDsjzdXwjHgpCJwKYeL1yMYF0AFOCtOzsrhsxpeeI0nAg5YjL81t6cV34MIp08Ih9+ctfnnOLyyOAlcIyvZhThfgD5rj3yVZ5pgkAaTENAJ5Ojr92TEPDSJ8PigM4szjDCBUo5XJXjpW5yPPwnO8wFYG6OSpVCVQJVAnMJwEghMfMbMu3vvWtuY2xraZ0WKmJSr2ZfylH/9DJwA2dbjbBNfq0ffTjgc6aD+T0y9fvOn4MbHnBOCXMzABn7MCtt97a6E8zJBlrrF6+O2d9zOoAaWZtXMefPGyS32lfyjr24odezvpJi7dBooEBaIy9BgdoecnQPMDCK9SPTNEBaTqOTgZICCYH7Bh1HRNpRPMZc/fkzUa5FI3MKOxnP/tZ437WmQCcG264ofGc4RnvbbJKxugM4Z17XUwemfCEmXIE0HSI5FVa4Cjr2i4TcFOmjsjzRcHogDmq4h73DO574Aw44q2zFLtN6iC4FclPMVjxo2xTjsDguQA0ykJwKY9hTjmolzgRYI1HT73UL71+pq/Lurd5rL+rBKoEqgRKCdAzZjPMFggdMfCl32yQTefR/W2iY+hcniX2wxQgHcmrz0tFj6bOpY/nsy9mc5bSvtCHdKNtpHj3rOrPTXcNrNmJBGdlvcw40dFI/XjQ6H5lGIyzneyS+pSEd3XoRWlby/r1SrdSr53ZclZoTTU6jT7BkWm2++67LwT992scRAHImRLT2TQ6QEEHBJCUiZRrStRZZ82OJb3GCBwCBOX1pRAzEIMPpOF/5CMfaQDQfMuPdX6diByMinQg9Sjrc668GSmRScpDfuXjj0wQnnRuU6/p2ev1HF5M8XMICAbQUMq2+bHAD/I36jOK5TUFrO1JZLoTAd54lg7wk5bS9LtSlUCVQJXAQiRA19Ej9BX9D0wAZmJ72Rd6pxcBH4Ac+0Iny0cHsRV0E/2pbN8BQEH4bBVdS0dJ75mmF+WRHi2F/lIf5akPSjBp8D+f/jbAZyvlwydPGv7xWdqH5FE6YJD9zEE7W0Q2bKe84uDMyLCfrg8SDQxA0yBK5A4wAGlWEs5H8ogVcCRpMDpOlmcrDvP04g80wmzUnqlBaai8dxobWqrRgLKzwZrCFJBqFHM2ojB4DoHPJHXJTpPX8uw6nnuRuAvxb1z0OiGSPo/kDzAU19Vr5NUuV1oKDuiUn0zPR2byeKYpVXETlBu+UvGUCgPw1hbcr1QlUCVQJXAuEqA36Co6hy4FVHjje+3tVZYrPd3jSGIv2BA2xmHLDVOntqYwOwHAeJ7nAC0GyMJJgDT3lblYyvp4hnqZYTCIPZv+lo8Nshk6IGfAjce2fUm7wGbYluSxxx5rZkrw7Zr7Dt/ZW55JDgWeRGUNCi3+TV4kksoGV7Kr8Z8v6QQMPtBlGo0nSufoRYCATpUARl78tEkHM1JSpg4qjTIBFlOJVvaU5H5ZzrnUp5223YHK5+BJLBi+1SN502EEhNq6QqwXXnRgignYMbIrqQRE5fVe35O/rB/+yo7ZlpXOXMrKdAF+LYzAE74RZZHKr3yudwnk5vPKe/V7lUCVQJVAPwnQGQ46qNQf56LvsuzUe6mP/QbMOAHmsy9pM1LvlXxk2WZy6HJ6G2/SADxCS+jrtC+uO7I+vuMj9abf8xEdW9Zd+qxP5ktdziZahGffybyWaZw9V1lAq7PZkF7pyjwr6fvAADQvrWxY2RHO92UqSwNG2YAWWlbJR+bh5hVk6tCJshE6Axg2KuQ6Xipq1z/rovyyQ0lnhPOFL3yhmabMzieNaUfAzUID6XglBYJa4cNdzaOoUye1n5nXe53backhefRccWWlrNwDyMhKjITtU5ApA0elKoEqgSqB5ZIA/dXWYQt5dq98rgEoCyF6MO1LnuUzhWhbD3Fh4nHTvhj8iw+jLy3SAthSz7afhw+2LvO27+dvaUrCR8mLe+VvNoL9WwiV9VtI+os9zcAAtGxc+cK86H4NMdPMd9aogBWkkXPnGoVonJ6FsmGaUhNoyaMknzTls3UeKzLFRgmqNwVpiwf5jJykNfoxOuI69jxgBOWz8nnNxQV8lM+XvARSfpf3xW055iMufcBIHFzGIKS3KvOdrWNnOmfPLzux78oDXk0Xp6yM/nI7DIqHXDJWgyfP/UpVAlUCVQIXUgL0cB6eQ3+di75L3lLvlWXRYaYNefjdT11NJ0rHC2WXArqxHEArU1rxt+yLUBS6EwlvcU9slyB+04h0p9Xt7Avekwdnz3JtIXXi6ZMu9Td751nKSUoQpz6mgdkPz0XulXl5B9lINjDrl+Ws9PPAALR88flCgZ+Fjkoyr0bj0IAcOWVpBY7gd3uqaYgaEZJWo9cJbBBrybJGJk3Z0HWez3/+8808u3J5y3iiAA27N9sI1rYTGvgDDzzQrNY0t5+N2LOUqSEvlNSdDJI8t+xAZdmZpt9ZB7PZ7/33399sYCgdfhzKzd88Xwsl/OW0pDw6smsUzEMPPdSsQMUjUGgjRDK2zYe9hMjZO/D/mt5JpSqBKoEqgQslgdSbeabz6NZz0XfJG5uinNSbdJw4WtsD0WU8XFku2+I5Bv88Y+wEoEX3sS/KkZbnzCbdVusDQTnD4B596b4YN88CruwG4DlJeFEm3tq2K9OU57RF9Le8WR/ntCvSIKEltoayp5p/aUGeI5064NFCMdsk5UbsmbdJvMI/BgagZSPJ95nbL5j+4uItAVOmcdbITOFZcgwkCMQHjrIDSGN0Y3sIgei9SBk6jhEM0miVlWS7DJ0L8Qb5n7Hcg41XSCfiSTOlp3PpQDqSOmVj1UnthybYFI9lB8vn5FndlVl6xXRA5SWlgvDbtCElYf6fQshOl2mNxgA0nrN8ro6FN+UiMWOAKFlboDDftKMRnw5JLlk/ZQCgYhXEvQFr9hKyxYfVoZ7DQ2nq007eZEWOFaDlW6rnKoEqgQslATrRQT866FiDSYNX+hMQ6UX0GD1HZ9GdbAk97Dsbw07Q6fnPML3KYCMM5gEwm8vSmfIpB9jJ/73kZTPTw1bRmfSpBQb+AYZ9A9RsPWXxHPCX9fFMz+Bps1iOfemnv9U9y3IW76buaQeSf2UjdsziA7qaXWuTdOTj+fgkr8zbTrsSfw8MQNPguVG5iXmx7FljE1XThrbb6NXgNHBxVI888kjzF0TKuPfee5vGBKRpxMCXzqCh9SP5pM3Rg3QlGBKcKX4LiNMBypU/7mU+HUoHQK6ZUtWhrfIBanjbdE6rFm+88cae7BiNGC0J7Bc/hjzPPm/4RDqAcpJHgMrO+9zfgFfy0CQ+GedFtpnfdfxxzbsOPHJRP/74401H5dnKGLEsI88WW/i7py996UsNMHYdb8rxjhxkRQFSfCkr8vUuE/iSVQnusvx6rhKoEqgSWEoJ0DnsgZWOdDJ9x76wCcAJMJSb1ZbPBV4M/nn87UlJX5oNoLvpsrQpyu/nQFAe3edI3eda6m56mNeM/gRu6MxccCY9+5Jl0+0AHfJstlKdgCM2hoMh7YK/emoTEGbQbz9MdbJwjC2hrw3uyQJfyZv8+Juvfu6pW/LYfuZK/z0wAE2j9N+URhG8M8CQEYGGVzaYfOGuQex2sdcwpUNGBTbcKzuERpgNO/OXZyCuHEEouwQPOuRnP/vZJoaAp4oXLSk7RP7O0YOGbVNDAfn+IcEoCY/+IUBjlo/ruCSgxv1ySTPFQSnwzOmQCK/5HL+BQGX12vy2LL/8DqzZKoNywquFBsDhE0880ciODOxKTY5JFAFZ+7cHo0E8UHi8ZHgkF+UCi96fkRyPHJJWnT0LUTClwmou1o8qgSqBKoEllgB9S0eyC7z4ZjLoMiANkCl1aT7aANLWEQbV9Lftiug6+42Z6qO/EpTIX9qPLCPPBsxtnZ32BSgyi+C+Dc3NOngGko8eTv7yO71pIGxgTvdKZ+bCVh7KTdtHvyeIlBc4o9/Vie2UlsfOHm8Otsa1dl16Xcu6uef5zoNIp6zjCq89TwuABixpbAy8lw40QPqMv06DNECeHECGl82ICAED4s2MOuTNhq3BtRtdk+Hkh7TuZ/p2hwO0dBwNUdk6qvTA4IEDB5rvOowtI9xL0vF0QB3KaIwXTR4AJzubEZM6u2/6z5+q6zwIINNxeNzIJj1gni1/UvKfvxdyVpYObmSJP6M3ANEu/kZXyZ9AfnI3ejMFij/xFO4bUZo2veeeexqApiyjMQomlYt8FCHgTcl5lnpRHkZtlaoEqgSqBC6kBNgLAE2IC13GpgBopg9NOeb+mPQwveYsDWAGzEiD2AD6mq5PUMJWlLamXQ/lue/wHeU1g1X2AUhkO5TFM0ev4tMMikE9fc+usG3sJGCoThwHvjuyXuqiXHmsvLRozT3AlP62H6g9MfFgahbA8z/K7Azbpu6pu6VJXtM2tuuX9c/6ZR7nQaCBAWgMN1evKcT0FHnBGpNGo2FqOEha06A8bAnOAAkLAQTv88YBBvKh+TqQ+xpZNiy/NW55kjRcR0nl1Cp+zNEDUjpEEhAkXkBZOo3OAaQAQQLmnbmoPQ+/wJ49Z5AO6W9Gyk1cs9zkN3+TS8omr53tjB/8GQ1a2Zn8qReFRDkBwVzvyuaBpCz8rRNZkQevGf6AtJQPBeNApk1N1wJ03helB8RRBqateSMrVQlUCVQJXGgJADE8RLma3/PoXHFd4sPco4fpNmfeLB6pBGcAFH1MzwNoBrR0ovQLsS+lzi7tC71b6syUgxkN9sKgnX1JIEVf+43YCM4DhAehJ2yIvHjzHTD1nf5le4A+PItLpr8Nrs2UAIUIn3lI5/t89cs0Wb9M7/og0MAAtHyZGooRBVCgA0H++dc/mSbPwIPARXm4rz/60Y82gEjnMmrQEZCyztZgNCwNGTn73Ys0VkGRplZ57zR8AaIAhw6cS5EzLxez+lAQ+NDpLCjQeRy9iGeJIvj4xz/erBhNz1mZNuvmGn7L32W6s33HF0+aEZm6AbWAGG+aoxcBy/4iBSC2uifBWTutsrwLo1VK0EpOzwNKgWiKrlKVQJVAlcBySYDu4nmit+kmZzq5bR+AIHqKbhQ6AghZGGbAbWDNOwWkIXq9n71wP0FM2pf50tOZ4t7sCmBwy8snHphtM4vSnnVgb8zU4BfYUzb+5rMvvIAJ+AyuE5zlO1AX9iTtoO9t+WTarB/bkXYID34PAg0cQNMZABMxV6bFBK5ncH35wgEfq124Z7lqdbz0XmlM7gM2Go0RCgDSjzRs6TV2IEKD9bsXmX59+OGHG4BmdKXTfPrTn24AVRuclfnFY/E24cnUbD/ww3toZGNLDKCzFzjTGbnGkwAddVgMcd8DXOptClY9exFZkvunPvWpZkVRG5yRfR7SUgTK9i7tISf+Q4yhesprqrNSlUCVQJXAhZYA3WZFIrAD9Bgo81CJq02wlTzQTzz9ts9gV9gXszv0btoXeldoCj02n30xKPXstEPS97IvbJVwECEmwBmdiU/2kB5tg7PkVXlAJ1DENqhPv8E/DyKbxXPGvrTBGTuiLmY6lIvUUx36kXvkon6cKlnPfulX0vX+qGIl1bKoi46RblteMC9eIxKTlmBFQ+Q9s3WEKU2NqSQNhmdNwzYCEXsgfT/SIIEIAf3ixIApnbEkowquY968R7761Xj10KGm0zz44N81fLQbepnXd/UQyK9zex5XMz51KOS6zsHVbp81IKifh4lrW8fVGeT3ndwWQxRGgiVlGsWhVDzJn2dTXBRG+0+Gjf4OHHi2qduRI280wPmdO3c2/AG+Rp3AmQUT3/ve95v3ks9cDO81b5VAlUCVwNkkQN/y3Dt4woTHiJmlc4G11HV0tSlA3iV6rtSt7EACIuDMzABbI30/kl44Bw+cGSHhOO2to46L1X3yyXj8m99sAvl59tit3bt3x+27dsWmjRv7Fd9c9wz2RR3wC+jxfNHrdDe+2ZPcEkTZdHmb5Gcr2ZS0t6ZAeRN7EZmmV5K9puPJAxAcBBo4gFa+VA3KVJoRTIKRvK8TXXnFFWeAM/c11ttue3+z7cT01FT88cmdkDNv+6wh3nLLzc1ChBMTE7G+2X7i8rlkGjdQwfNlavO1V7vg7DOf+UzccceuWL9+4bvhA38aO8ACkJ3yfJmz78aF6SD9wBmmKBQjO51I/q7S6d2B5iqxwC9kbZuND3/4w02ONn86vJFcG5xJ7B398If/GV/84j/EiwcPxvve/76m827burVJb2SVdOzY0cYdn7/ruUqgSqBKYDklQI8abIov40FLXQd0GPRv3rzpNHCGN4NX+o99Mf0JBG3YcGls2ripJ+vKBJiEuVg8xb6sXbeu0dmjJ71SBrPPPPPzxvP13T17Gttgv7P77rs37rjjr84Im+n5oJN2jycNCOOYAMy6DgAAresYWHvJJbFx05n1yjIBtKu2b2/CdfCAALn+AG24AXQfuO22BphxnpDHxj7yyOeslHNvgNY5uQv+8OKmtS4GIeWI51x4BSK2bt3WHAvJ1+10l8fmzadAWeabnZ6MJ/fti8ce+3p889vfiZd/+5vY9YHb4nOf+/v44Ic+FDHU3/WbZZRnIMVqnLSNTtUAAAZjSURBVMUQ5SGOwLHUBPj6n87zoc7sTPzuxYPxPz/6r5iejfjpvp/E+OuvzhU11JkJBxodGYrRAWi/c5WvX6oEqgT+4CTA++M4F6J/t2zZ2hwLycceAYOONh09cjie/MlP4jvf/nY8see7MW7G5923xv33725mZoZHT/1jQDtvr9/sS25t1Ov+2a6xhQCkY2E01IDZLVu3hmOlERM1MjwUw5wpPSp3GkCbnu3E1OxQxOjqBheMjp7a7b5H3nppCSTQmZmMvT/+7/j6o1+NZ1/4dWy7clPcdMP1sX3L5XHwl90l0JMWIczMxLp162PzFVfGmnUbluDJF18Ra9esirdefVXc+M4d8eT+Z+LE8SNx4Jmn48+uuybGxw/HC88/FyNDnbhsw/q4cef1sXXLmQrr4qt15bhKoEqgSuD8JHDsjfF4at/e+P6e78RT+56Oa655a7z9bW+NTZf9Ufz2xV/F1ORkTE1PB3hgZuiyjZtizfrFhbOcH6eDmavrSIgmHGlyJmJ65vTVqXMAjbtycroTMXpJxOjaiJGZmO1UgHahm83U9Gy89vvx+O3vXgqv5sjRY/F/e/fF4SNHY3ra/2seixkrPjsR1117bXzwzjvjz9/Z+18CLjSvb3b5Y2suiXe9+z3xyd+Pxz89/s/x9P6fxj9+7Wvx1P6n4/jE8Xjqp/tj9Zq1cdvt74l7770vrnvHqS1J3mze6/OrBKoEqgSWVwKdODE5FeOHD8ehQ6+GPQdeeeVQ/O+P98Zrr4838WRi3DqdbtzbNW+7Jt5vavUvbHBebf9yvKtu/F4nZodGI0bGYtLUUOFKmwNoI8PD8fYta+K9bzkS02MTccXqmXj6xZGYsd/I7EwDEgZk65EL/l7EDVgUOTIyHK+/fiyeO3FlDL/lLyNePhjjY+vjX39+LP7t2aea+ANz7l6iPDteuSRmth2K19YeC4tGJydP/4PzC874m/iA4eGh0P46w2+JS3f8dWw4MBG//+VM/MeBN+JHB/c3nM3Mro7tV90am3beGfEn74n94xvixMtHuvlq430T3159dJVAlcBySYCtMPt1YnI6XnppOp6b3BJTW98VMXEgDo1eEj94diL+/blnGmBmZSeyCO26l1bH65e+Ei+vORwb1o/F8YnBsS/L9W7yOezZyFDEGycifv7SREwcj7jhquF4+1VrG2yQ6YY6rL8N5Dqd+PVrU/GrV09EZ3g0XnxtIv5l/+F4ZXJ1dKYnw1Rc4+LJnPV8/hI4Od+sI52YnGz28frFC7+IyYmj3ZHL1HTE9JRd/Sy/7D6nE7Hm8svjmmuvjW3bt4XFmTPcoXn//Lm5KHJ2Qe1QrBpbfXIvtefj+Wefi87h8a4MIN6x1bFu8+a5HbmHYjYmJk50m+2AyOmieJmVySqBKoELJwH/bzk01DhVJuzy/9LL8ZuDB+PoG3Rls+tsBBvTme3aGC6bsVWxdtOmJr5s2/btMTY2EtNm1KrevCDvqWvPIqaGVsf4sanYccWq+Jud6+KG7WvjTy9fPQfS5gBam4sfv3A0/vaLv4injmyJmD4eMT3RTlJ/L0oCJ4FX15XGnRYxNNztNNMz3Y5TuDrnwHGT7WTeRT3/YsvcrFyJGB5pjqERHrVOxMx0xAy3cOOS7MqxUUKUDzlaNFAK8mKrd+W3SqBKoErgXCVACQ6drhf9Bsps8urcJvp0EE1LWw7L+Xv1+sZG3fOOiXjo/qvjsrVzk5oNF6f/Khjzni5bMxKrDr3eBWcz3b81KpLUr0shAdjBfOXYWLczKXOoEzHc6inSASL+vWBAdlHuK15gdtVoV240SsqqMxQx1enKqBkhtmTYt8B6o0qgSqBKYAVKwMCVfaEvT+6J2diXXkjMYJZzYNDty3I2g47IwJm4dPW6ZmeC9qP7ArQrNqyKT753U9z+xkjE7HT3aOeuvxcvAR3IWlueoTlHz9yX08tvRj/plj791kD9amQ2bH3ymd6xKqOBagq1slUCVQLzSCB1JRvje0N5buWrurMlkGX4OWKbk05cv200xgSltajvFKeYNGC6+iBaElu2n2e+rPo2egm/lFNtrb0kVK9VCVQJVAmcLoFSb+adqj9TEst9hp/t2zmHoU8y0BegLTeD9XlVAlUCVQJVAlUCVQJVAlUCXQnUzU5qS6gSqBKoEqgSqBKoEqgS+AOTwP8DAdR7hBAi73AAAAAASUVORK5CYII= />
  1.tautomerization
  2.oxidation
  3.reduction
  4.isomerization
  5.none of these"

Question 3

How many net moles of ATP are consumed or produced per mole of glucose entering glycolysis?
   
  1.two consumed
  2.one consumed
  3.zero
  4.one produced
  5.two produced



wtf444

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1



Answer to Question 2

4

Answer to Question 3

5



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Green tea is able to stop the scent of garlic or onion from causing bad breath.

Did you know?

A recent study has found that following a diet rich in berries may slow down the aging process of the brain. This diet apparently helps to keep dopamine levels much higher than are seen in normal individuals who do not eat berries as a regular part of their diet as they enter their later years.

Did you know?

In 2006, a generic antinausea drug named ondansetron was approved. It is used to stop nausea and vomiting associated with surgery, chemotherapy, and radiation therapy.

Did you know?

People who have myopia, or nearsightedness, are not able to see objects at a distance but only up close. It occurs when the cornea is either curved too steeply, the eye is too long, or both. This condition is progressive and worsens with time. More than 100 million people in the United States are nearsighted, but only 20% of those are born with the condition. Diet, eye exercise, drug therapy, and corrective lenses can all help manage nearsightedness.

Did you know?

In women, pharmacodynamic differences include increased sensitivity to (and increased effectiveness of) beta-blockers, opioids, selective serotonin reuptake inhibitors, and typical antipsychotics.

For a complete list of videos, visit our video library