This topic contains a solution. Click here to go to the answer

Author Question: Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the ... (Read 374 times)

Haya94

  • Hero Member
  • *****
  • Posts: 558
Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the indifference curve that yields a utility level of 9. Calculate the MUL, MUS, and MRS of L for S on that indifference curve when S = 3.


Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by Haya94 on Jun 18, 2019

johnharpe

  • Sr. Member
  • ****
  • Posts: 338
Lorsum iprem. Lorsus sur ipci. Lorsem sur iprem. Lorsum sur ipdi, lorsem sur ipci. Lorsum sur iprium, valum sur ipci et, vala sur ipci. Lorsem sur ipci, lorsa sur iprem. Valus sur ipdi. Lorsus sur iprium nunc, valem sur iprium. Valem sur ipdi. Lorsa sur iprium. Lorsum sur iprium. Valem sur ipdi. Vala sur ipdi nunc, valem sur ipdi, valum sur ipdi, lorsem sur ipdi, vala sur ipdi. Valem sur iprem nunc, lorsa sur iprium. Valum sur ipdi et, lorsus sur ipci. Valem sur iprem. Valem sur ipci. Lorsa sur iprium. Lorsem sur ipci, valus sur iprem. Lorsem sur iprem nunc, valus sur iprium.
Answer Preview
Only 50% of students answer this correctly



matiaslunam

  • Newbie
  • *
  • Posts: 1
<br />
<img src="data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFyAXgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvhT8SD8TtI1q//ALO/s3+zdf1TRPL8/wA3zPsd3Jb+bnauN/l7tvO3OMnGa7g9K+cf2aPiL4U0PSPGWk6j4l0aw1VvH3iRRY3OoQxzkvq0+wbGYNlsjAxzkUAfR9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZzXm/wC0F4v1/wACfCDxHr3hpbZdSsYVla4udhW0g3qJ7gI7osrRRGSRYy6h2QLnmvE/g98XdT1T4u+HdB8N/EXxD8TtL1K3uJ9Xj8YeH00ZtOt40BjuLZxaWxlYyOiNEEk4cMWi2/OAfWtcVd/B3wHfa22s3Pgnw7cau04uW1CTSbdp2lDBhIZCm7dkA7s5yK4f4j+M/F2h/tE/CbRLbUrSw8H65Lfw3NnFAJLm9misZ5sO7DEcaFIioTLOS2Sqrhu61b4ueB9B1i70rU/Gfh/TtTtCouLK71WCKaEsoZd6M4K5UgjI5BBoA81/Zn/acn/aE8U/FTSX8NLoMPgjX5NDS4F99oN6UeVTIV8tfL/1YOMt97rxz77Xwx/wTbEB+IH7Tclre22o2svj24liurOUSQyozzMrIw4YEEcivuegAor5h+On/BQT4Xfs+fF7Svh/4jlv31G4jEl/c2sIaHTQ4Bh80kgneDn5c7Ry2M19K2t1FeW8U8MqzQSqHjkRgyupGQQRwQRzmgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeU/tJeBNW+IHwvex0W0g1PUbHVdN1mPTLmQRpfLZ3sNy1vuYFVMixFAWG3LDOBk15umpeI/wBof4tfDfVIvh34r+H+meCNVuNXvb7xhb29u9yJLOa2S3tlimlLkmXcxJVVVOrFgK+nqQKB0AFAHivxg8Fa34j+NnwM1jTdPkutL0DWdSudSuVZQttHJpdxCjMCcnMjqvAPJrL+IX7DHwR+K3xC1Hxt4s8ER614k1HYt1czX10qSbI1jU+WsoQEKijIA6ete/0h6UAfCH/BMnR9J8PeLf2jtI0HTxpei6f44ls7OyWRpBBDG0yIgZskgBR1Oa+8K+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AfBX7dn7MXw+8Q/G34MeO9Q0mS71fxJ430rw5rEEk7G2vbTy5mw8fZsRIuVIBXIIOc191WNrDp9lBa28MdvbQxrHFDEgVI0Awqqo4AAAAA9K+W/wDgolb6npvwp8GeNNKu4ba98GeNtJ1mOOeLzFmLSm2C9Rjm5DfRSODzX1cvSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkPSgD4X/AOCa3/I//tP/APZQrr/0bPX3TXwt/wAE1v8Akf8A9p//ALKFdf8Ao2evumgD5h/4KOTLbfso+ILmT5ILfVNHnmfBISNdSt2ZjjsACT9K+kdOvrfVLC3vLOZLm0uI1mhmibcsiMNysCOoIIP415B+2p/yaX8X/wDsWL//ANEmu7+Dv/JJ/Bf/AGBbL/0njoA7GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/wDgmt/yP/7T/wD2UK6/9Gz19018Lf8ABNb/AJH/APaf/wCyhXX/AKNnr7poA86/aD8K2Pjj4HePdC1W6msdNvtEvIri4gcK8aeUxLAkEdu46Zrkf2I9WvNb/ZM+Fd5f3k1/dyaDb757hy7vgFRljycAAfhXqPj3RLjxH4J1/SbRLeS6vtPuLWJLvPks7xMih8AnblhnHOM14X/wTv8AEQ1z9knwRamDyJtESfRJsOHWSS2meNnUjqrYyKAPpaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/8Agmt/yP8A+0//ANlCuv8A0bPX3TXwt/wTW/5H/wDaf/7KFdf+jZ6+6aAGn+or5N/4JkSK/wCy7bBWVyuv6sGAIO0/bHOD6HBB/EV9aV8j/sHWkGneK/2k7a1hjt7eL4nakqQwoERBsj4AHAFAH1xRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC//AATW/wCR/wD2n/8AsoV1/wCjZ6+6a+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AIelfKP7LGlzeEv2pP2pfDdtevNoaa7pmuRwzRoXS6v7Rprg7wASuVRVU5wF9SSfq49K+VvhRdXXhL9v8A+Omg3lnlPFeg6J4ls7uOUEJDbxmyZHXGQzSbyPZPcUAfVVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/8ABNb/AJH/APaf/wCyhXX/AKNnr7pr4W/4Jrf8j/8AtP8A/ZQrr/0bPX3TQAV8rT38Og/8FJ4Vvlntk174aCz02V4XMdzPBqEk00auBt3JGQxyf4h3Iz9U18x/GH/k+r9nv/sDeJv/AETb0AfTlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/wDBNb/kf/2n/wDsoV1/6Nnr7pr4W/4Jrf8AI/8A7T//AGUK6/8ARs9fdNABXy1+1xplsnxl/Zp1tIvL1aHxt/Z8d2mVkFvNaytLHkHlWMaZB/u/WvqWvlz9ve0m0/wL4A8W2V7PZax4a8baRdWTxqjIzTTi2cOrKcjy5n6Y5xQB9Qp0H0p1NXp+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPhf/AIJrf8j/APtP/wDZQrr/ANGz19018Lf8E1v+R/8A2n/+yhXX/o2evumgAr5u/wCCg2kzXv7Kvi7UrW6W0vPD7Wuv27SR+YjyWlxHKqMMjhiuOtfSNePftaeDbrx9+zT8StBs7mK0nu9Duds06lkG1N5BA55CEZ7E5welAHpXhfUZdW8O6ZfTKizXVrFcOsYIUM6BjjJPGSe9a9eafs3eMJ/iD8Afh34kubdLW41TQbK6khiJKIzQrkAnnFel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHwv/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAVzHxF0K88UeAfEmj6fJBFf6hptzaW8l3nylkkiZFL7QTtBYZwM4zXT0x03IRnGRjNAHzp/wAE+/Fn/CW/sg/DqX7Ott/Z1k+jNsk8xZDaSvbmQHA4fy9wGOM45r6Or5F/4JpPPofwL8ReA7pYXvPAfi/VvD093bOzRXTrN5zSJuVSBmcrgj+HPfFfXVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUvbuDTrSe5uZkt7WFGklmkYKkaAZZmJ4AABJJrlPAfxm8BfFG4urfwd410DxVPaIslxHo2pw3TQqxIVmCMSASCAT6UAdtSHpXktz+1l8FbO4lhuPi34JhlidkkifX7UMjA4II38EEGvULS7hvrWG5tpUngmQSRyxsGV1IBBBHUEEHNAHxD/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAUh6UtIeRQB8lfsU2d/wCDvi1+0z4LuoYpY7Pxy2vR6hDIcS/2jCJhEUIyDGix5PQljjpk/W1fLPwtt7rwn+3n8ZtHhuRPpviPQNJ8SzJJFiSK4XdZhVcH7myInBGct1GOfqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4jfDvSPij4Zbw/ryzS6VLc21xPbxuAtwIZklEMgIIeJygV0Iwykg9a8c1O2tfi7+0J4QuPBlvFbab8PL67bXPEtugSKeWS3aFtJhZcGUhmjlm52RmKNTufhPY/iR4RvvHXgrVtA07xFqHhS5v4/I/tfShGbmBCRv8surBWK7lDYyucjBANeefDL4D+KvhnrGhwWXxSvpfBOlQGBfCaaBptvbuNrAfvY4RIvzEOcHLMDk8mgDO/aSjj1//hHPhXoltDb6r47mmtr67igQtaaPEobUJsjlSyOsCtjG+4XkHBrL8dftyfAf4DeMpPhz4i8VNoWq6MkFvJaDTLuaO3RokaMGRI2UgIyc5PvzXrdn8MrO1+Lup+P3vrm5v7vR7fRY7Wba0VrHHNJK7RHGVMhkTeOh8pD2GLep/C7wdrWq3Op3/hPQ73Uboqbi8uNNgkmmKqFUu7IS2FAAyeAAKAPjv/gmPrWkeJPFf7R2saBqH9qaJqXjeW9srzymjE0MhldH2sARkMOCAa+8a+Gf+Cbzxt8Qf2nRBaW9jAnj64jjtrSMRxRqrzKFVRwAABwK+5qACiiigD85P2wf2pvDP7L/AO3d4M8RT6NqN/MPCsllrn2CURma3mnJtyAW2yGLZK20hfvD5vT798G+K9N8e+E9G8S6NObrR9Ys4b+znKFDJDKgdGKsARlWHB5FfLf/AAUe/Zn0r4u/B6+8bafothc+OfB0Q1S0ubiIH7VaQnzJ7WXLKHjKBmCtnBBAxvOfoP4GeP8Aw/8AFL4ReFPFPhVYoNA1LT4ntbeCNY1tgBtaHYpKoY2VkKjgFSO1AHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC/8AwTW/5H/9p/8A7KFdf+jZ6+6a+Fv+Ca3/ACP/AO0//wBlCuv/AEbPX3TQAUUUUAV7i3ju7eSCVFkikUo6MMqykYII9CK+Qv2Pbi7+A3xZ8e/s7as8p0vT5H8SeDJp9wD6VO+ZIFJY8QyNjHXLOT1wPsWvlr9uP4N6t4h8LaX8V/A0ktt8S/hwzavpgt0H/Ewt1Ia4s5cYdkZFchAeSWXB38AH1LRXCfBn4ueHvjl8NtB8Z+G7yG607VLdJSkcgdraUqDJBJjo6MdrA9x7iu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAC0h6UA5oPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAqORFlQowDKwwQRkEVJRQB8T+DLiz/AGIP2m18ByBLL4T/ABTu3vPDyxxsE0rWd0cb2YUOQsUgZWDbQAWQdASPtcHNeYftGfAzRf2ivhNrXgnWd8K3arLaX0WBLZ3KHdFMjEHBDAA45Klh3rzf9jD40eIvFmh6v8NfiPbnT/ix4CMNlrEJyy3duy/6NeJJkiQSIASc9ecDcKAPpiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBP2qLyNIPAWn69qNxpHw71PX/ALL4qvYZmt41tTazmCOadcNDDJdC3RmBUHcFLAMc+91znjyx1HUvBus2uk6bpOs6lNaulvY66zLYzuRwkxVHOw98KfpQB87/AAkn8D+DP2jtN8KfCfX4NQ8M6p4Zv9T1vTbLWH1K2huYLi1jtplZ5JPLkZZp1ZVb5gqFl+VTWz8UP+CgvwS+DHxC1nwX4v8AE11pWv6U0a3EK6VczJ+8iWVdrxowPyuufc10PwU+BupeFPFFx4z8Vx+HbPxBLY/2fZ6J4Tsjb6XpULSeZN5Zf5pZpWWISTbY9ywRDYNmT6jdeB/Dt5rD6tcaFpk+quAr3r2UTTsMAYLldxGAB16CgD4s/wCCYWv6P4s8TftFa74fuZL7RNV8bSX1lcSRNG0kMvmyIxUgFchhwQD619518Of8E4rn7V8Rf2nn8qKDPxAuVWOFAiKA8wAAHTgV9x0AFFFFABRRRQAV8m/ti/BfWNO1jRvj78N0SD4geCY3uL7T4VaMeI9OG0y2kzR/MxCIdmdw6jHQj6yrO1rSbbxBpF9pl8jSWV7A9tOiuyFo3UqwDKQRwTyCCKAPnH9ln/goB8O/2r/EV/4d8P2mraHrtpaLefZNZSFPtCZAk8kpI2/YSM5AOCDjrj6fr88vBfwb8L/8E/f2uYdQtfDbJ8MfHlvHpWneIrmSW4k0LUGc4si3zHy5SEw7jd23kK2f0MBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzvjjx34d+Gvh+fXvFGtWWgaNCyJJfX8wiiRnYKoLHuSQBQB0VIeleYeC/wBpj4VfEbxHbaD4Y+IGga7rVyrtDYWN8kk0gRSzlVHJwoJPsK9PPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAooooAKKKKAOL+LPwp8N/G3wHqfhDxdpq6jot+gDxk7ZInBykkbjlHU4IYdCO4yK+Vv2eP2iPFXwK+I0XwD+PlyY9Tz5fhDxpcuTBrttu2xxSSkAeeAVXJwSflb5tpf7drzL48/s9eCv2kPBZ8MeN9MN9YpMLi3uIX8q5tZR/HFIBlTjIPUEHBBoA9MBzS18Q6d8Yvin+xTqNroHxhtrvx98JxKtvp/wARdMgea50y2U7VOqRqpJPzRjeOTg4Ln5a+svh98TfCnxX8PQ674P8AEGn+IdJl+7dafcCQA/3WA5Rh3VgCDkEUAdZRSdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqne3dvZRo1zNHAkkiRKZXChnYhVUZ6kkgAdyauVxnxU8DaL8Q/BV9pWvTyWFnGUvYtTt5/Im0+eFhLFdRy/wADxOgcMePl5yMigDxHwlL4p+FH7Ren/wDCxW0bxPqXxDuLzTtE1nSlmik0mG3ha6WyMMjMqwskbMXjwzSKDJvypSn8Z/2vviX8MviZrPhnQf2cPGHjvSbExCDxBpckgt7vdEjsUAt3HysxQ/MeVPTpW7+z/oek/FfUrX4iXPxJ1b4rjQLu907RrrUNPtbG3s5xmG5niS3ijEjOvyLI2cIzbcByT9HHGKAPg3/gmDq11rviT9ojU73QLjwpe3/jR7qfRLty8tjI/mu0LkgEspJB4HToK+9K+Hv+Cc4uh8S/2oftnm+f/wALBut3nZ3/AOsnxnPtivuGgAooooAKKKKACiiigAooooAhlhSeNkkUOjAqykZBB6g182eLf2BvhtqniK48SeDpNZ+FfiSaWKZtQ8FXzWKFkbIJt+YTkZH3Mck4yTn6ZooA+T7P4e/tX/DmS0t9C+Ivgn4m6aIXhK+MtPn064hwwMbmW23tM5XIYttHse3yJ+0H+3F+1f4F+N+gaJJ4ITwpeWsNvnw/aW39pW2ryP8AKzrKuSyO2Qqq25MYJ3A1+tdJgUAfK9r+2F8QPDtzLZeOf2aviLp19sjlgbwmkGv28iMDndNGyKjAj7nzHByccZdqf7eEGjWFxf6l8CPjTp2n2yGW4vLnwmqxQxj7zufP4UDkn0FfU20elGBQB8x/8PIvgF/0Neqf+Evqn/yNWt4W/b9+AHi2a9ig+JWl6XLZ7TJHryS6Ux3ZxtFykZfpztzjIz1FfQ233P51yeufCzwb4o1JtQ1nwloerXzqqtdX2mwTysAMAF3QkgDpzQB55p37a3wJ1WWCO2+K/hZ5Z7hLaONtRRWZ26cNg4/2j8vvXoH/AAt/wKD/AMjn4e/8Gtv/APF1i+IP2cPhZ4n0i60vUvh54ansrpNksa6XDGWGQeGRQw5A6EVwv/Dv79nn/olOgf8AfEn/AMXQB7ZoPinR/FFvJPo2q2WqwxP5byWNwk6o2M4JQkA4IOPetbcPf8q+WdY/4JtfBC/1GW607R9W8MJKqh7XQNZuLOAsowG2KxG7HU+1ULj/AIJt/DyzjW48O+J/HXhjW4JY5rTV7LxHPJNbMrZJRZMpkjK8g4zxQB9bZHqKAQelfMf/AAxRqnb9oz41Af8AYxQf/I1VrX9mb44+F5bq08LftQa0miPKZYIvFHhq01m9jyqhg1y7IWGQSAFUDOMdSQD6mor5auvhR+1R4bkt9Q0b46+GfG06S4k0fxN4Qj06zljKsCTLas0u4HaQBgHuccGz5P7ZH/P18D/+/Osf/FUAfTlFfK9n8Vv2qtCSSx1b4F+FvFN7BM6f2vonjBNPtLlN3yMkE6PInH95sn0HSlm/aX+OHha8tZfFn7NGr/2ROXjMnhHxDbazdI4XK7oQkYCHBBYsMe54oA+p6K+ZR+2T4iP/ADbj8X//AAU2v/yRVXTf+Chnw2Ntt1rSPG3hzVo5HiutLvPC17JNbSK5UozRI6E8Z+ViOaAPqSivm3TP+Cg/wQvdUjsL7xTceGJJYnmjl8SaVdaZFIFKhgsk8aqzfMOAc1v/APDcfwC/6K34U/8ABitAHudFea6f+0b8K9T0+zv4PiN4W+z3cSzwNLrFvGXjbo21nBHfqAeDSa9+0X8NNA8G+IPFMvjbRr7RdBtxdajNpd7HetBGW2qSkJZssxCgY5PFAHpdFeZ/Av8AaF8DftHeF7rxB4D1dtW061uTZz+ZA8MkUoUNhkcAjIYEHoa9MoAKKKKACiiigAooooAKKKKACq1zbx3dvLDNGssUilHR1DKykYIIPUEVZpCMigDwr9k+NYtI+JcaKERfiDr6qoGAoF1gAD0xXE/GH9kH4i/Ej4qax4t0X9onxl4J067eFrbQNLDm1tQkSIQF89VO5lZz8o5bnPWvovwp4I0bwTFqcej2htE1LUbjVroeY7+Zczvvlf5icZbnAwB2AroD0oA+D/8AgmLpNzoPij9orTLvX7jxTeWXjR7afWrtSst9Inmq0zgk4ZiCTyea+8a+Fv8Agmt/yP8A+0//ANlCuv8A0bPX3TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPUZpaKAG7V9B+VG0e/wCdOooAydY8M6R4hWIappdnqaxklBeW6TBCepG4HH4VjXnwo8F31tNbT+EtDlgmRo5I202HDKwwQfl6EEiuvooA8LH7DfwCAH/FpPCn/guWuO+IX/BN34FePNKurO28KHwjPPa/ZTdeGbh7LjeHBaIExykFf+WitwfXBH1LRQB4L+yL+yXoX7I3gK98OaNrN/rs2o3Qvb28vVSNWmCBP3caj5F2qOCzHOTnsPeqKKACiiigAooooAKKKKACiiigAooooAKQjNLRQB+dnhb9mX9rD4NeOvifffDTWvh5ZaR4u8SXOthtVeaW4VWllMa48kqvyyDI55HB656n/hF/2/P+hr+Fn/fl/wD5Hr7qooA/Mj4pfGD9tH4P+Pfh54S1zxP8P5dV8c3z6dpbWdmXiSRWjUmYmJSq5lXlQ3fivTh4X/b8Iz/wlnwt/wC/L/8AyPX0L8Zv2b9K+M3xI+FvjHUNVvdPu/AWpSala21siFLpmMR2yFhkDMK9PU/WvYwNoAoA/Mf42fGL9tL4CXfgy38R+Jfh/PJ4r1iPRLD+zrIyBJ3KhTJuiXanzDkZPtXqB8Mft+ZP/FW/Cw84z5L/APyPX0J+0F+zZpH7Qd/4BudU1W90tvCGvQ67braBGFw8ZB8t9w4B2jkc9a9kAxQB8Lf8Iv8At+f9DX8LP+/L/wDyPR/wi/7fn/Q1/Cz/AL8v/wDI9fdVIelAH5oaD8Uf21/EXxw8UfCq28TfD1PEnh2wg1O6llsyLV4ptmwRuIixb94MgqOh5Pf0b/hF/wBvz/oa/hZ/35f/AOR6+gfB/wCzXpvg/wDaV8b/ABjg1u+n1HxVp8FhcaVKkf2eIRLCqurY3ZxCOM4+Y9eMe00AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9ea+Pfit+2r8Ofin8P/AGq+J/h4+teN5LiLTZLa03wRmFVZ/OJiDKMMMEK2ea/STWNZsPD2mXOo6pfW+m6fbIZJ7u8mWKKJR1ZnYgKPcmvCvHHwn8DfG34p/D/AOM9n47t2g+HzXR8zTLq2nspAygyCaXJCbV5PPAOeOtAHjY8Mft+EA/8JZ8Lf+/L/wDyPSf8Iv8At+f9DX8LP+/L/wDyPX1bY/HL4cajdQWdl4+8L3d1O6xQwW+s2zvI5OFVVEmSSeABXe0AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9L/wAIv+35x/xVvws/78v/API9fdNeK/8ADWHgn+2fs/ka/wD2B9s+w/8ACYf2NP8A2D5u/wAv/j+x5ezzf3fmZ2buN3egD4z+Cnxe/bS+PUvjFPDPin4ep/wi+tS6HetfWZjEk8edzRbYW3JxwTg+1emf8Iv+32Qf+Kt+FvT/AJ4v/wDI9eqeDvA3gH9gvwj8QPFGteK7oaV4k8QPq8zXsal1nmOBBCkY3SHqccnAJ4AJr6WoAzPDw1EaDp39rtA2rfZo/tbW2fKM2weYUz/Duzj2xXk/j/45eJbbx5feCvhx4LtvHHiDSLWC91s6hq40u1sI7jf9nUSGKQySP5cjbVXCquS2SAfa6+cfjHbfC3V/ilJb6/4x1b4Y+MIdPjLatY6m2if2raMx2xi4bCXIifsCWiL9g5yAet/C/wAb33jvw213q3hzUPCmtWtw9lqGlX43eVOmNxilACzwsGVklThgeQrBlHZ141+zF4x1Lxh4N15bnVZPEekaTr11pWh+IpgC+r2ESx7LhpAAsxEjSxGVAA/k55JJPstABRRRQAUUUUAFFFFABRRRQAUUUUAeAfGzXfE+iftBfAuGy8Rz2nhvVdYurG60W3jCLdOunXkpeeTJLquyLZGAAGDMxY7Nnvw5FeRfFz4ea14w+KPwc1vTYI5rDwzrt3f6i8koUxwvp9zApUHlj5kiDA9c9Aa9dHSgD5b/AGqfB9xoKSa9o1x8WNT1rWbgW6QeEtZ1OSw0sCMA3MlrbODsULny4xukc443Fh7H8CYtLh+EnhgaL4r1Lxxp32XdH4g1e7a5u7wlmLtK7chw25ShAKbdmBtxXL+Itc+LXgTxnrzab4Ub4meHtTmjutMW31G106XSAIkjktZBMR5iM6GVZAS37x1IAVd3S/Af4d3/AML/AIY6boWrXNvd6r9ovdQvHtAwhWe7u5rqSOPdyURpygY4LBQSBnAAPRa5T4nXeuWHw38V3PhiNpfEkOlXcmmRpGJGa6ELmEBTwxLheDweldXRQB+dvirVPhD4N+DmkeMvAXirTD8dhLpjm6GtGTWbi+muoI7yO7gZyx3eZMskcqBVwAwTaMfogpz+deBeIvgZ4k+KHjuV/FkXhXR/BFrqaXi2eiWzzahrqRy+ZGl7NIiLHHuSMyRKsokxjeoHPvwGKAFooooA4P4jfCfSfilf+GW16We60vRb5r99Fba1lqEnlskYuY2B8xY2YSKOgdFJzivJ/hLpGheM/jV4h8Q+BtFsrL4WJokvh+9ltreOGw8Qagtwp82GJRtnjgjE8JnIAYysql1Ukei/H34ZeJfi34JXw54e8XQ+EIri5RtSkl05rwX1qAd9qds0TIkhwHKsGKblBG4mnfCvwR4+8GzC28R+L/D+taDBaLbWWmaH4YOki2KlQmG+1SjYqAqECjtzxggHlHxT+Gfg3xl8X/Bnw38O+EtCsUs5ofFHiS+sNMgilt7S3lDWluHVVZGnuFU5VgwSB+CrGvqMDArhPAXwxi8FeJ/HXiCS/bVNS8U6ol808seHt7eO3jiitQ247kQrK69ADM3HUnvKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3biO1mdl3qqElfXjpXwZ/whmv8A/DEP/Ccf8Jjff8IR/wAI/wD8JF/wrTyYv7L/ALO/4+P7K+1bftnl+X+63edjts8v91X33Xjn/DJ/w7/tn7X9g1T7B9t/tD/hH/7avP7F87zPNz/Z/m/Z8eb+82+Xt3/NjNAGJ+2pZ2l9+yh8QLiW0hZ4NFlltyyBjCxULlDj5TtYrkY4JHevfR0rn/HfgnSPiR4Q1bwz4gtmvNF1SBra6gWVoy8Z6jcpBHTqDXQ0AFYXiTwdoPjGKGPXdE07WoYWLxJqNpHcKjEYJUODgkcZFbtFAFSys4dNtIbW2hjt7aBFjihiQIkaAYCqo4AAGABVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" /><br />
See the above figure. Along that indifference curve, when:<br />
S = 3, L = 27. MU<span style="vertical-align: sub;">L</span> = 0.5 ∗ (S/L)<span style="vertical-align: super;">0.5</span> = 1/6.<br />
MU<span style="vertical-align: sub;">S</span> = 0.5 ∗ (L/S)<span style="vertical-align: super;">0.5</span> = 1.5.<br />
MRS of L for S = -MU<span style="vertical-align: sub;">S</span>/MU<span style="vertical-align: sub;">L</span> = -9.<br />
Joe is willing to give up 9 lobsters to get another soda.



 

Did you know?

Nearly all drugs pass into human breast milk. How often a drug is taken influences the amount of drug that will pass into the milk. Medications taken 30 to 60 minutes before breastfeeding are likely to be at peak blood levels when the baby is nursing.

Did you know?

Bacteria have flourished on the earth for over three billion years. They were the first life forms on the planet.

Did you know?

Astigmatism is the most common vision problem. It may accompany nearsightedness or farsightedness. It is usually caused by an irregularly shaped cornea, but sometimes it is the result of an irregularly shaped lens. Either type can be corrected by eyeglasses, contact lenses, or refractive surgery.

Did you know?

Vital signs (blood pressure, temperature, pulse rate, respiration rate) should be taken before any drug administration. Patients should be informed not to use tobacco or caffeine at least 30 minutes before their appointment.

Did you know?

There are more sensory neurons in the tongue than in any other part of the body.

For a complete list of videos, visit our video library