This topic contains a solution. Click here to go to the answer

Author Question: Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the ... (Read 310 times)

Haya94

  • Hero Member
  • *****
  • Posts: 558
Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the indifference curve that yields a utility level of 9. Calculate the MUL, MUS, and MRS of L for S on that indifference curve when S = 3.


Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by Haya94 on Jun 18, 2019

johnharpe

  • Sr. Member
  • ****
  • Posts: 338
Lorsum iprem. Lorsus sur ipci. Lorsem sur iprem. Lorsum sur ipdi, lorsem sur ipci. Lorsum sur iprium, valum sur ipci et, vala sur ipci. Lorsem sur ipci, lorsa sur iprem. Valus sur ipdi. Lorsus sur iprium nunc, valem sur iprium. Valem sur ipdi. Lorsa sur iprium. Lorsum sur iprium. Valem sur ipdi. Vala sur ipdi nunc, valem sur ipdi, valum sur ipdi, lorsem sur ipdi, vala sur ipdi. Valem sur iprem nunc, lorsa sur iprium. Valum sur ipdi et, lorsus sur ipci. Valem sur iprem. Valem sur ipci. Lorsa sur iprium. Lorsem sur ipci, valus sur iprem. Lorsem sur iprem nunc, valus sur iprium.
Answer Preview
Only 50% of students answer this correctly



matiaslunam

  • Newbie
  • *
  • Posts: 1
<br />
<img src="data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFyAXgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvhT8SD8TtI1q//ALO/s3+zdf1TRPL8/wA3zPsd3Jb+bnauN/l7tvO3OMnGa7g9K+cf2aPiL4U0PSPGWk6j4l0aw1VvH3iRRY3OoQxzkvq0+wbGYNlsjAxzkUAfR9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZzXm/wC0F4v1/wACfCDxHr3hpbZdSsYVla4udhW0g3qJ7gI7osrRRGSRYy6h2QLnmvE/g98XdT1T4u+HdB8N/EXxD8TtL1K3uJ9Xj8YeH00ZtOt40BjuLZxaWxlYyOiNEEk4cMWi2/OAfWtcVd/B3wHfa22s3Pgnw7cau04uW1CTSbdp2lDBhIZCm7dkA7s5yK4f4j+M/F2h/tE/CbRLbUrSw8H65Lfw3NnFAJLm9misZ5sO7DEcaFIioTLOS2Sqrhu61b4ueB9B1i70rU/Gfh/TtTtCouLK71WCKaEsoZd6M4K5UgjI5BBoA81/Zn/acn/aE8U/FTSX8NLoMPgjX5NDS4F99oN6UeVTIV8tfL/1YOMt97rxz77Xwx/wTbEB+IH7Tclre22o2svj24liurOUSQyozzMrIw4YEEcivuegAor5h+On/BQT4Xfs+fF7Svh/4jlv31G4jEl/c2sIaHTQ4Bh80kgneDn5c7Ry2M19K2t1FeW8U8MqzQSqHjkRgyupGQQRwQRzmgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeU/tJeBNW+IHwvex0W0g1PUbHVdN1mPTLmQRpfLZ3sNy1vuYFVMixFAWG3LDOBk15umpeI/wBof4tfDfVIvh34r+H+meCNVuNXvb7xhb29u9yJLOa2S3tlimlLkmXcxJVVVOrFgK+nqQKB0AFAHivxg8Fa34j+NnwM1jTdPkutL0DWdSudSuVZQttHJpdxCjMCcnMjqvAPJrL+IX7DHwR+K3xC1Hxt4s8ER614k1HYt1czX10qSbI1jU+WsoQEKijIA6ete/0h6UAfCH/BMnR9J8PeLf2jtI0HTxpei6f44ls7OyWRpBBDG0yIgZskgBR1Oa+8K+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AfBX7dn7MXw+8Q/G34MeO9Q0mS71fxJ430rw5rEEk7G2vbTy5mw8fZsRIuVIBXIIOc191WNrDp9lBa28MdvbQxrHFDEgVI0Awqqo4AAAAA9K+W/wDgolb6npvwp8GeNNKu4ba98GeNtJ1mOOeLzFmLSm2C9Rjm5DfRSODzX1cvSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkPSgD4X/AOCa3/I//tP/APZQrr/0bPX3TXwt/wAE1v8Akf8A9p//ALKFdf8Ao2evumgD5h/4KOTLbfso+ILmT5ILfVNHnmfBISNdSt2ZjjsACT9K+kdOvrfVLC3vLOZLm0uI1mhmibcsiMNysCOoIIP415B+2p/yaX8X/wDsWL//ANEmu7+Dv/JJ/Bf/AGBbL/0njoA7GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/wDgmt/yP/7T/wD2UK6/9Gz19018Lf8ABNb/AJH/APaf/wCyhXX/AKNnr7poA86/aD8K2Pjj4HePdC1W6msdNvtEvIri4gcK8aeUxLAkEdu46Zrkf2I9WvNb/ZM+Fd5f3k1/dyaDb757hy7vgFRljycAAfhXqPj3RLjxH4J1/SbRLeS6vtPuLWJLvPks7xMih8AnblhnHOM14X/wTv8AEQ1z9knwRamDyJtESfRJsOHWSS2meNnUjqrYyKAPpaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/8Agmt/yP8A+0//ANlCuv8A0bPX3TXwt/wTW/5H/wDaf/7KFdf+jZ6+6aAGn+or5N/4JkSK/wCy7bBWVyuv6sGAIO0/bHOD6HBB/EV9aV8j/sHWkGneK/2k7a1hjt7eL4nakqQwoERBsj4AHAFAH1xRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC//AATW/wCR/wD2n/8AsoV1/wCjZ6+6a+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AIelfKP7LGlzeEv2pP2pfDdtevNoaa7pmuRwzRoXS6v7Rprg7wASuVRVU5wF9SSfq49K+VvhRdXXhL9v8A+Omg3lnlPFeg6J4ls7uOUEJDbxmyZHXGQzSbyPZPcUAfVVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/8ABNb/AJH/APaf/wCyhXX/AKNnr7pr4W/4Jrf8j/8AtP8A/ZQrr/0bPX3TQAV8rT38Og/8FJ4Vvlntk174aCz02V4XMdzPBqEk00auBt3JGQxyf4h3Iz9U18x/GH/k+r9nv/sDeJv/AETb0AfTlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/wDBNb/kf/2n/wDsoV1/6Nnr7pr4W/4Jrf8AI/8A7T//AGUK6/8ARs9fdNABXy1+1xplsnxl/Zp1tIvL1aHxt/Z8d2mVkFvNaytLHkHlWMaZB/u/WvqWvlz9ve0m0/wL4A8W2V7PZax4a8baRdWTxqjIzTTi2cOrKcjy5n6Y5xQB9Qp0H0p1NXp+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPhf/AIJrf8j/APtP/wDZQrr/ANGz19018Lf8E1v+R/8A2n/+yhXX/o2evumgAr5u/wCCg2kzXv7Kvi7UrW6W0vPD7Wuv27SR+YjyWlxHKqMMjhiuOtfSNePftaeDbrx9+zT8StBs7mK0nu9Duds06lkG1N5BA55CEZ7E5welAHpXhfUZdW8O6ZfTKizXVrFcOsYIUM6BjjJPGSe9a9eafs3eMJ/iD8Afh34kubdLW41TQbK6khiJKIzQrkAnnFel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHwv/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAVzHxF0K88UeAfEmj6fJBFf6hptzaW8l3nylkkiZFL7QTtBYZwM4zXT0x03IRnGRjNAHzp/wAE+/Fn/CW/sg/DqX7Ott/Z1k+jNsk8xZDaSvbmQHA4fy9wGOM45r6Or5F/4JpPPofwL8ReA7pYXvPAfi/VvD093bOzRXTrN5zSJuVSBmcrgj+HPfFfXVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUvbuDTrSe5uZkt7WFGklmkYKkaAZZmJ4AABJJrlPAfxm8BfFG4urfwd410DxVPaIslxHo2pw3TQqxIVmCMSASCAT6UAdtSHpXktz+1l8FbO4lhuPi34JhlidkkifX7UMjA4II38EEGvULS7hvrWG5tpUngmQSRyxsGV1IBBBHUEEHNAHxD/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAUh6UtIeRQB8lfsU2d/wCDvi1+0z4LuoYpY7Pxy2vR6hDIcS/2jCJhEUIyDGix5PQljjpk/W1fLPwtt7rwn+3n8ZtHhuRPpviPQNJ8SzJJFiSK4XdZhVcH7myInBGct1GOfqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4jfDvSPij4Zbw/ryzS6VLc21xPbxuAtwIZklEMgIIeJygV0Iwykg9a8c1O2tfi7+0J4QuPBlvFbab8PL67bXPEtugSKeWS3aFtJhZcGUhmjlm52RmKNTufhPY/iR4RvvHXgrVtA07xFqHhS5v4/I/tfShGbmBCRv8surBWK7lDYyucjBANeefDL4D+KvhnrGhwWXxSvpfBOlQGBfCaaBptvbuNrAfvY4RIvzEOcHLMDk8mgDO/aSjj1//hHPhXoltDb6r47mmtr67igQtaaPEobUJsjlSyOsCtjG+4XkHBrL8dftyfAf4DeMpPhz4i8VNoWq6MkFvJaDTLuaO3RokaMGRI2UgIyc5PvzXrdn8MrO1+Lup+P3vrm5v7vR7fRY7Wba0VrHHNJK7RHGVMhkTeOh8pD2GLep/C7wdrWq3Op3/hPQ73Uboqbi8uNNgkmmKqFUu7IS2FAAyeAAKAPjv/gmPrWkeJPFf7R2saBqH9qaJqXjeW9srzymjE0MhldH2sARkMOCAa+8a+Gf+Cbzxt8Qf2nRBaW9jAnj64jjtrSMRxRqrzKFVRwAABwK+5qACiiigD85P2wf2pvDP7L/AO3d4M8RT6NqN/MPCsllrn2CURma3mnJtyAW2yGLZK20hfvD5vT798G+K9N8e+E9G8S6NObrR9Ys4b+znKFDJDKgdGKsARlWHB5FfLf/AAUe/Zn0r4u/B6+8bafothc+OfB0Q1S0ubiIH7VaQnzJ7WXLKHjKBmCtnBBAxvOfoP4GeP8Aw/8AFL4ReFPFPhVYoNA1LT4ntbeCNY1tgBtaHYpKoY2VkKjgFSO1AHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC/8AwTW/5H/9p/8A7KFdf+jZ6+6a+Fv+Ca3/ACP/AO0//wBlCuv/AEbPX3TQAUUUUAV7i3ju7eSCVFkikUo6MMqykYII9CK+Qv2Pbi7+A3xZ8e/s7as8p0vT5H8SeDJp9wD6VO+ZIFJY8QyNjHXLOT1wPsWvlr9uP4N6t4h8LaX8V/A0ktt8S/hwzavpgt0H/Ewt1Ia4s5cYdkZFchAeSWXB38AH1LRXCfBn4ueHvjl8NtB8Z+G7yG607VLdJSkcgdraUqDJBJjo6MdrA9x7iu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAC0h6UA5oPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAqORFlQowDKwwQRkEVJRQB8T+DLiz/AGIP2m18ByBLL4T/ABTu3vPDyxxsE0rWd0cb2YUOQsUgZWDbQAWQdASPtcHNeYftGfAzRf2ivhNrXgnWd8K3arLaX0WBLZ3KHdFMjEHBDAA45Klh3rzf9jD40eIvFmh6v8NfiPbnT/ix4CMNlrEJyy3duy/6NeJJkiQSIASc9ecDcKAPpiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBP2qLyNIPAWn69qNxpHw71PX/ALL4qvYZmt41tTazmCOadcNDDJdC3RmBUHcFLAMc+91znjyx1HUvBus2uk6bpOs6lNaulvY66zLYzuRwkxVHOw98KfpQB87/AAkn8D+DP2jtN8KfCfX4NQ8M6p4Zv9T1vTbLWH1K2huYLi1jtplZ5JPLkZZp1ZVb5gqFl+VTWz8UP+CgvwS+DHxC1nwX4v8AE11pWv6U0a3EK6VczJ+8iWVdrxowPyuufc10PwU+BupeFPFFx4z8Vx+HbPxBLY/2fZ6J4Tsjb6XpULSeZN5Zf5pZpWWISTbY9ywRDYNmT6jdeB/Dt5rD6tcaFpk+quAr3r2UTTsMAYLldxGAB16CgD4s/wCCYWv6P4s8TftFa74fuZL7RNV8bSX1lcSRNG0kMvmyIxUgFchhwQD619518Of8E4rn7V8Rf2nn8qKDPxAuVWOFAiKA8wAAHTgV9x0AFFFFABRRRQAV8m/ti/BfWNO1jRvj78N0SD4geCY3uL7T4VaMeI9OG0y2kzR/MxCIdmdw6jHQj6yrO1rSbbxBpF9pl8jSWV7A9tOiuyFo3UqwDKQRwTyCCKAPnH9ln/goB8O/2r/EV/4d8P2mraHrtpaLefZNZSFPtCZAk8kpI2/YSM5AOCDjrj6fr88vBfwb8L/8E/f2uYdQtfDbJ8MfHlvHpWneIrmSW4k0LUGc4si3zHy5SEw7jd23kK2f0MBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzvjjx34d+Gvh+fXvFGtWWgaNCyJJfX8wiiRnYKoLHuSQBQB0VIeleYeC/wBpj4VfEbxHbaD4Y+IGga7rVyrtDYWN8kk0gRSzlVHJwoJPsK9PPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAooooAKKKKAOL+LPwp8N/G3wHqfhDxdpq6jot+gDxk7ZInBykkbjlHU4IYdCO4yK+Vv2eP2iPFXwK+I0XwD+PlyY9Tz5fhDxpcuTBrttu2xxSSkAeeAVXJwSflb5tpf7drzL48/s9eCv2kPBZ8MeN9MN9YpMLi3uIX8q5tZR/HFIBlTjIPUEHBBoA9MBzS18Q6d8Yvin+xTqNroHxhtrvx98JxKtvp/wARdMgea50y2U7VOqRqpJPzRjeOTg4Ln5a+svh98TfCnxX8PQ674P8AEGn+IdJl+7dafcCQA/3WA5Rh3VgCDkEUAdZRSdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqne3dvZRo1zNHAkkiRKZXChnYhVUZ6kkgAdyauVxnxU8DaL8Q/BV9pWvTyWFnGUvYtTt5/Im0+eFhLFdRy/wADxOgcMePl5yMigDxHwlL4p+FH7Ren/wDCxW0bxPqXxDuLzTtE1nSlmik0mG3ha6WyMMjMqwskbMXjwzSKDJvypSn8Z/2vviX8MviZrPhnQf2cPGHjvSbExCDxBpckgt7vdEjsUAt3HysxQ/MeVPTpW7+z/oek/FfUrX4iXPxJ1b4rjQLu907RrrUNPtbG3s5xmG5niS3ijEjOvyLI2cIzbcByT9HHGKAPg3/gmDq11rviT9ojU73QLjwpe3/jR7qfRLty8tjI/mu0LkgEspJB4HToK+9K+Hv+Cc4uh8S/2oftnm+f/wALBut3nZ3/AOsnxnPtivuGgAooooAKKKKACiiigAooooAhlhSeNkkUOjAqykZBB6g182eLf2BvhtqniK48SeDpNZ+FfiSaWKZtQ8FXzWKFkbIJt+YTkZH3Mck4yTn6ZooA+T7P4e/tX/DmS0t9C+Ivgn4m6aIXhK+MtPn064hwwMbmW23tM5XIYttHse3yJ+0H+3F+1f4F+N+gaJJ4ITwpeWsNvnw/aW39pW2ryP8AKzrKuSyO2Qqq25MYJ3A1+tdJgUAfK9r+2F8QPDtzLZeOf2aviLp19sjlgbwmkGv28iMDndNGyKjAj7nzHByccZdqf7eEGjWFxf6l8CPjTp2n2yGW4vLnwmqxQxj7zufP4UDkn0FfU20elGBQB8x/8PIvgF/0Neqf+Evqn/yNWt4W/b9+AHi2a9ig+JWl6XLZ7TJHryS6Ux3ZxtFykZfpztzjIz1FfQ233P51yeufCzwb4o1JtQ1nwloerXzqqtdX2mwTysAMAF3QkgDpzQB55p37a3wJ1WWCO2+K/hZ5Z7hLaONtRRWZ26cNg4/2j8vvXoH/AAt/wKD/AMjn4e/8Gtv/APF1i+IP2cPhZ4n0i60vUvh54ansrpNksa6XDGWGQeGRQw5A6EVwv/Dv79nn/olOgf8AfEn/AMXQB7ZoPinR/FFvJPo2q2WqwxP5byWNwk6o2M4JQkA4IOPetbcPf8q+WdY/4JtfBC/1GW607R9W8MJKqh7XQNZuLOAsowG2KxG7HU+1ULj/AIJt/DyzjW48O+J/HXhjW4JY5rTV7LxHPJNbMrZJRZMpkjK8g4zxQB9bZHqKAQelfMf/AAxRqnb9oz41Af8AYxQf/I1VrX9mb44+F5bq08LftQa0miPKZYIvFHhq01m9jyqhg1y7IWGQSAFUDOMdSQD6mor5auvhR+1R4bkt9Q0b46+GfG06S4k0fxN4Qj06zljKsCTLas0u4HaQBgHuccGz5P7ZH/P18D/+/Osf/FUAfTlFfK9n8Vv2qtCSSx1b4F+FvFN7BM6f2vonjBNPtLlN3yMkE6PInH95sn0HSlm/aX+OHha8tZfFn7NGr/2ROXjMnhHxDbazdI4XK7oQkYCHBBYsMe54oA+p6K+ZR+2T4iP/ADbj8X//AAU2v/yRVXTf+Chnw2Ntt1rSPG3hzVo5HiutLvPC17JNbSK5UozRI6E8Z+ViOaAPqSivm3TP+Cg/wQvdUjsL7xTceGJJYnmjl8SaVdaZFIFKhgsk8aqzfMOAc1v/APDcfwC/6K34U/8ABitAHudFea6f+0b8K9T0+zv4PiN4W+z3cSzwNLrFvGXjbo21nBHfqAeDSa9+0X8NNA8G+IPFMvjbRr7RdBtxdajNpd7HetBGW2qSkJZssxCgY5PFAHpdFeZ/Av8AaF8DftHeF7rxB4D1dtW061uTZz+ZA8MkUoUNhkcAjIYEHoa9MoAKKKKACiiigAooooAKKKKACq1zbx3dvLDNGssUilHR1DKykYIIPUEVZpCMigDwr9k+NYtI+JcaKERfiDr6qoGAoF1gAD0xXE/GH9kH4i/Ej4qax4t0X9onxl4J067eFrbQNLDm1tQkSIQF89VO5lZz8o5bnPWvovwp4I0bwTFqcej2htE1LUbjVroeY7+Zczvvlf5icZbnAwB2AroD0oA+D/8AgmLpNzoPij9orTLvX7jxTeWXjR7afWrtSst9Inmq0zgk4ZiCTyea+8a+Fv8Agmt/yP8A+0//ANlCuv8A0bPX3TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPUZpaKAG7V9B+VG0e/wCdOooAydY8M6R4hWIappdnqaxklBeW6TBCepG4HH4VjXnwo8F31tNbT+EtDlgmRo5I202HDKwwQfl6EEiuvooA8LH7DfwCAH/FpPCn/guWuO+IX/BN34FePNKurO28KHwjPPa/ZTdeGbh7LjeHBaIExykFf+WitwfXBH1LRQB4L+yL+yXoX7I3gK98OaNrN/rs2o3Qvb28vVSNWmCBP3caj5F2qOCzHOTnsPeqKKACiiigAooooAKKKKACiiigAooooAKQjNLRQB+dnhb9mX9rD4NeOvifffDTWvh5ZaR4u8SXOthtVeaW4VWllMa48kqvyyDI55HB656n/hF/2/P+hr+Fn/fl/wD5Hr7qooA/Mj4pfGD9tH4P+Pfh54S1zxP8P5dV8c3z6dpbWdmXiSRWjUmYmJSq5lXlQ3fivTh4X/b8Iz/wlnwt/wC/L/8AyPX0L8Zv2b9K+M3xI+FvjHUNVvdPu/AWpSala21siFLpmMR2yFhkDMK9PU/WvYwNoAoA/Mf42fGL9tL4CXfgy38R+Jfh/PJ4r1iPRLD+zrIyBJ3KhTJuiXanzDkZPtXqB8Mft+ZP/FW/Cw84z5L/APyPX0J+0F+zZpH7Qd/4BudU1W90tvCGvQ67braBGFw8ZB8t9w4B2jkc9a9kAxQB8Lf8Iv8At+f9DX8LP+/L/wDyPR/wi/7fn/Q1/Cz/AL8v/wDI9fdVIelAH5oaD8Uf21/EXxw8UfCq28TfD1PEnh2wg1O6llsyLV4ptmwRuIixb94MgqOh5Pf0b/hF/wBvz/oa/hZ/35f/AOR6+gfB/wCzXpvg/wDaV8b/ABjg1u+n1HxVp8FhcaVKkf2eIRLCqurY3ZxCOM4+Y9eMe00AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9ea+Pfit+2r8Ofin8P/AGq+J/h4+teN5LiLTZLa03wRmFVZ/OJiDKMMMEK2ea/STWNZsPD2mXOo6pfW+m6fbIZJ7u8mWKKJR1ZnYgKPcmvCvHHwn8DfG34p/D/AOM9n47t2g+HzXR8zTLq2nspAygyCaXJCbV5PPAOeOtAHjY8Mft+EA/8JZ8Lf+/L/wDyPSf8Iv8At+f9DX8LP+/L/wDyPX1bY/HL4cajdQWdl4+8L3d1O6xQwW+s2zvI5OFVVEmSSeABXe0AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9L/wAIv+35x/xVvws/78v/API9fdNeK/8ADWHgn+2fs/ka/wD2B9s+w/8ACYf2NP8A2D5u/wAv/j+x5ezzf3fmZ2buN3egD4z+Cnxe/bS+PUvjFPDPin4ep/wi+tS6HetfWZjEk8edzRbYW3JxwTg+1emf8Iv+32Qf+Kt+FvT/AJ4v/wDI9eqeDvA3gH9gvwj8QPFGteK7oaV4k8QPq8zXsal1nmOBBCkY3SHqccnAJ4AJr6WoAzPDw1EaDp39rtA2rfZo/tbW2fKM2weYUz/Duzj2xXk/j/45eJbbx5feCvhx4LtvHHiDSLWC91s6hq40u1sI7jf9nUSGKQySP5cjbVXCquS2SAfa6+cfjHbfC3V/ilJb6/4x1b4Y+MIdPjLatY6m2if2raMx2xi4bCXIifsCWiL9g5yAet/C/wAb33jvw213q3hzUPCmtWtw9lqGlX43eVOmNxilACzwsGVklThgeQrBlHZ141+zF4x1Lxh4N15bnVZPEekaTr11pWh+IpgC+r2ESx7LhpAAsxEjSxGVAA/k55JJPstABRRRQAUUUUAFFFFABRRRQAUUUUAeAfGzXfE+iftBfAuGy8Rz2nhvVdYurG60W3jCLdOunXkpeeTJLquyLZGAAGDMxY7Nnvw5FeRfFz4ea14w+KPwc1vTYI5rDwzrt3f6i8koUxwvp9zApUHlj5kiDA9c9Aa9dHSgD5b/AGqfB9xoKSa9o1x8WNT1rWbgW6QeEtZ1OSw0sCMA3MlrbODsULny4xukc443Fh7H8CYtLh+EnhgaL4r1Lxxp32XdH4g1e7a5u7wlmLtK7chw25ShAKbdmBtxXL+Itc+LXgTxnrzab4Ub4meHtTmjutMW31G106XSAIkjktZBMR5iM6GVZAS37x1IAVd3S/Af4d3/AML/AIY6boWrXNvd6r9ovdQvHtAwhWe7u5rqSOPdyURpygY4LBQSBnAAPRa5T4nXeuWHw38V3PhiNpfEkOlXcmmRpGJGa6ELmEBTwxLheDweldXRQB+dvirVPhD4N+DmkeMvAXirTD8dhLpjm6GtGTWbi+muoI7yO7gZyx3eZMskcqBVwAwTaMfogpz+deBeIvgZ4k+KHjuV/FkXhXR/BFrqaXi2eiWzzahrqRy+ZGl7NIiLHHuSMyRKsokxjeoHPvwGKAFooooA4P4jfCfSfilf+GW16We60vRb5r99Fba1lqEnlskYuY2B8xY2YSKOgdFJzivJ/hLpGheM/jV4h8Q+BtFsrL4WJokvh+9ltreOGw8Qagtwp82GJRtnjgjE8JnIAYysql1Ukei/H34ZeJfi34JXw54e8XQ+EIri5RtSkl05rwX1qAd9qds0TIkhwHKsGKblBG4mnfCvwR4+8GzC28R+L/D+taDBaLbWWmaH4YOki2KlQmG+1SjYqAqECjtzxggHlHxT+Gfg3xl8X/Bnw38O+EtCsUs5ofFHiS+sNMgilt7S3lDWluHVVZGnuFU5VgwSB+CrGvqMDArhPAXwxi8FeJ/HXiCS/bVNS8U6ol808seHt7eO3jiitQ247kQrK69ADM3HUnvKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3biO1mdl3qqElfXjpXwZ/whmv8A/DEP/Ccf8Jjff8IR/wAI/wD8JF/wrTyYv7L/ALO/4+P7K+1bftnl+X+63edjts8v91X33Xjn/DJ/w7/tn7X9g1T7B9t/tD/hH/7avP7F87zPNz/Z/m/Z8eb+82+Xt3/NjNAGJ+2pZ2l9+yh8QLiW0hZ4NFlltyyBjCxULlDj5TtYrkY4JHevfR0rn/HfgnSPiR4Q1bwz4gtmvNF1SBra6gWVoy8Z6jcpBHTqDXQ0AFYXiTwdoPjGKGPXdE07WoYWLxJqNpHcKjEYJUODgkcZFbtFAFSys4dNtIbW2hjt7aBFjihiQIkaAYCqo4AAGABVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" /><br />
See the above figure. Along that indifference curve, when:<br />
S = 3, L = 27. MU<span style="vertical-align: sub;">L</span> = 0.5 ∗ (S/L)<span style="vertical-align: super;">0.5</span> = 1/6.<br />
MU<span style="vertical-align: sub;">S</span> = 0.5 ∗ (L/S)<span style="vertical-align: super;">0.5</span> = 1.5.<br />
MRS of L for S = -MU<span style="vertical-align: sub;">S</span>/MU<span style="vertical-align: sub;">L</span> = -9.<br />
Joe is willing to give up 9 lobsters to get another soda.



 

Did you know?

Since 1988, the CDC has reported a 99% reduction in bacterial meningitis caused by Haemophilus influenzae, due to the introduction of the vaccine against it.

Did you know?

Most fungi that pathogenically affect humans live in soil. If a person is not healthy, has an open wound, or is immunocompromised, a fungal infection can be very aggressive.

Did you know?

People often find it difficult to accept the idea that bacteria can be beneficial and improve health. Lactic acid bacteria are good, and when eaten, these bacteria improve health and increase longevity. These bacteria included in foods such as yogurt.

Did you know?

A good example of polar molecules can be understood when trying to make a cake. If water and oil are required, they will not mix together. If you put them into a measuring cup, the oil will rise to the top while the water remains on the bottom.

Did you know?

The first-known contraceptive was crocodile dung, used in Egypt in 2000 BC. Condoms were also reportedly used, made of animal bladders or intestines.

For a complete list of videos, visit our video library