This topic contains a solution. Click here to go to the answer

Author Question: Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the ... (Read 350 times)

Haya94

  • Hero Member
  • *****
  • Posts: 558
Suppose Joe's utility for lobster (L) and soda (S) can be represented as U = L0.5 S0.5. Draw the indifference curve that yields a utility level of 9. Calculate the MUL, MUS, and MRS of L for S on that indifference curve when S = 3.


Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by Haya94 on Jun 18, 2019

johnharpe

  • Sr. Member
  • ****
  • Posts: 338
Lorsum iprem. Lorsus sur ipci. Lorsem sur iprem. Lorsum sur ipdi, lorsem sur ipci. Lorsum sur iprium, valum sur ipci et, vala sur ipci. Lorsem sur ipci, lorsa sur iprem. Valus sur ipdi. Lorsus sur iprium nunc, valem sur iprium. Valem sur ipdi. Lorsa sur iprium. Lorsum sur iprium. Valem sur ipdi. Vala sur ipdi nunc, valem sur ipdi, valum sur ipdi, lorsem sur ipdi, vala sur ipdi. Valem sur iprem nunc, lorsa sur iprium. Valum sur ipdi et, lorsus sur ipci. Valem sur iprem. Valem sur ipci. Lorsa sur iprium. Lorsem sur ipci, valus sur iprem. Lorsem sur iprem nunc, valus sur iprium.
Answer Preview
Only 50% of students answer this correctly



matiaslunam

  • Newbie
  • *
  • Posts: 1
<br />
<img src="data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFyAXgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhvhT8SD8TtI1q//ALO/s3+zdf1TRPL8/wA3zPsd3Jb+bnauN/l7tvO3OMnGa7g9K+cf2aPiL4U0PSPGWk6j4l0aw1VvH3iRRY3OoQxzkvq0+wbGYNlsjAxzkUAfR9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZzXm/wC0F4v1/wACfCDxHr3hpbZdSsYVla4udhW0g3qJ7gI7osrRRGSRYy6h2QLnmvE/g98XdT1T4u+HdB8N/EXxD8TtL1K3uJ9Xj8YeH00ZtOt40BjuLZxaWxlYyOiNEEk4cMWi2/OAfWtcVd/B3wHfa22s3Pgnw7cau04uW1CTSbdp2lDBhIZCm7dkA7s5yK4f4j+M/F2h/tE/CbRLbUrSw8H65Lfw3NnFAJLm9misZ5sO7DEcaFIioTLOS2Sqrhu61b4ueB9B1i70rU/Gfh/TtTtCouLK71WCKaEsoZd6M4K5UgjI5BBoA81/Zn/acn/aE8U/FTSX8NLoMPgjX5NDS4F99oN6UeVTIV8tfL/1YOMt97rxz77Xwx/wTbEB+IH7Tclre22o2svj24liurOUSQyozzMrIw4YEEcivuegAor5h+On/BQT4Xfs+fF7Svh/4jlv31G4jEl/c2sIaHTQ4Bh80kgneDn5c7Ry2M19K2t1FeW8U8MqzQSqHjkRgyupGQQRwQRzmgCzRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeU/tJeBNW+IHwvex0W0g1PUbHVdN1mPTLmQRpfLZ3sNy1vuYFVMixFAWG3LDOBk15umpeI/wBof4tfDfVIvh34r+H+meCNVuNXvb7xhb29u9yJLOa2S3tlimlLkmXcxJVVVOrFgK+nqQKB0AFAHivxg8Fa34j+NnwM1jTdPkutL0DWdSudSuVZQttHJpdxCjMCcnMjqvAPJrL+IX7DHwR+K3xC1Hxt4s8ER614k1HYt1czX10qSbI1jU+WsoQEKijIA6ete/0h6UAfCH/BMnR9J8PeLf2jtI0HTxpei6f44ls7OyWRpBBDG0yIgZskgBR1Oa+8K+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AfBX7dn7MXw+8Q/G34MeO9Q0mS71fxJ430rw5rEEk7G2vbTy5mw8fZsRIuVIBXIIOc191WNrDp9lBa28MdvbQxrHFDEgVI0Awqqo4AAAAA9K+W/wDgolb6npvwp8GeNNKu4ba98GeNtJ1mOOeLzFmLSm2C9Rjm5DfRSODzX1cvSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkPSgD4X/AOCa3/I//tP/APZQrr/0bPX3TXwt/wAE1v8Akf8A9p//ALKFdf8Ao2evumgD5h/4KOTLbfso+ILmT5ILfVNHnmfBISNdSt2ZjjsACT9K+kdOvrfVLC3vLOZLm0uI1mhmibcsiMNysCOoIIP415B+2p/yaX8X/wDsWL//ANEmu7+Dv/JJ/Bf/AGBbL/0njoA7GiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/wDgmt/yP/7T/wD2UK6/9Gz19018Lf8ABNb/AJH/APaf/wCyhXX/AKNnr7poA86/aD8K2Pjj4HePdC1W6msdNvtEvIri4gcK8aeUxLAkEdu46Zrkf2I9WvNb/ZM+Fd5f3k1/dyaDb757hy7vgFRljycAAfhXqPj3RLjxH4J1/SbRLeS6vtPuLWJLvPks7xMih8AnblhnHOM14X/wTv8AEQ1z9knwRamDyJtESfRJsOHWSS2meNnUjqrYyKAPpaiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkPSlpD0oA+F/8Agmt/yP8A+0//ANlCuv8A0bPX3TXwt/wTW/5H/wDaf/7KFdf+jZ6+6aAGn+or5N/4JkSK/wCy7bBWVyuv6sGAIO0/bHOD6HBB/EV9aV8j/sHWkGneK/2k7a1hjt7eL4nakqQwoERBsj4AHAFAH1xRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC//AATW/wCR/wD2n/8AsoV1/wCjZ6+6a+Fv+Ca3/I//ALT/AP2UK6/9Gz1900AIelfKP7LGlzeEv2pP2pfDdtevNoaa7pmuRwzRoXS6v7Rprg7wASuVRVU5wF9SSfq49K+VvhRdXXhL9v8A+Omg3lnlPFeg6J4ls7uOUEJDbxmyZHXGQzSbyPZPcUAfVVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/8ABNb/AJH/APaf/wCyhXX/AKNnr7pr4W/4Jrf8j/8AtP8A/ZQrr/0bPX3TQAV8rT38Og/8FJ4Vvlntk174aCz02V4XMdzPBqEk00auBt3JGQxyf4h3Iz9U18x/GH/k+r9nv/sDeJv/AETb0AfTlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8L/wDBNb/kf/2n/wDsoV1/6Nnr7pr4W/4Jrf8AI/8A7T//AGUK6/8ARs9fdNABXy1+1xplsnxl/Zp1tIvL1aHxt/Z8d2mVkFvNaytLHkHlWMaZB/u/WvqWvlz9ve0m0/wL4A8W2V7PZax4a8baRdWTxqjIzTTi2cOrKcjy5n6Y5xQB9Qp0H0p1NXp+lOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApD0paQ9KAPhf/AIJrf8j/APtP/wDZQrr/ANGz19018Lf8E1v+R/8A2n/+yhXX/o2evumgAr5u/wCCg2kzXv7Kvi7UrW6W0vPD7Wuv27SR+YjyWlxHKqMMjhiuOtfSNePftaeDbrx9+zT8StBs7mK0nu9Duds06lkG1N5BA55CEZ7E5welAHpXhfUZdW8O6ZfTKizXVrFcOsYIUM6BjjJPGSe9a9eafs3eMJ/iD8Afh34kubdLW41TQbK6khiJKIzQrkAnnFel0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHwv/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAVzHxF0K88UeAfEmj6fJBFf6hptzaW8l3nylkkiZFL7QTtBYZwM4zXT0x03IRnGRjNAHzp/wAE+/Fn/CW/sg/DqX7Ott/Z1k+jNsk8xZDaSvbmQHA4fy9wGOM45r6Or5F/4JpPPofwL8ReA7pYXvPAfi/VvD093bOzRXTrN5zSJuVSBmcrgj+HPfFfXVABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVUvbuDTrSe5uZkt7WFGklmkYKkaAZZmJ4AABJJrlPAfxm8BfFG4urfwd410DxVPaIslxHo2pw3TQqxIVmCMSASCAT6UAdtSHpXktz+1l8FbO4lhuPi34JhlidkkifX7UMjA4II38EEGvULS7hvrWG5tpUngmQSRyxsGV1IBBBHUEEHNAHxD/wTW/5H/wDaf/7KFdf+jZ6+6a+Fv+Ca3/I//tP/APZQrr/0bPX3TQAUh6UtIeRQB8lfsU2d/wCDvi1+0z4LuoYpY7Pxy2vR6hDIcS/2jCJhEUIyDGix5PQljjpk/W1fLPwtt7rwn+3n8ZtHhuRPpviPQNJ8SzJJFiSK4XdZhVcH7myInBGct1GOfqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5T4jfDvSPij4Zbw/ryzS6VLc21xPbxuAtwIZklEMgIIeJygV0Iwykg9a8c1O2tfi7+0J4QuPBlvFbab8PL67bXPEtugSKeWS3aFtJhZcGUhmjlm52RmKNTufhPY/iR4RvvHXgrVtA07xFqHhS5v4/I/tfShGbmBCRv8surBWK7lDYyucjBANeefDL4D+KvhnrGhwWXxSvpfBOlQGBfCaaBptvbuNrAfvY4RIvzEOcHLMDk8mgDO/aSjj1//hHPhXoltDb6r47mmtr67igQtaaPEobUJsjlSyOsCtjG+4XkHBrL8dftyfAf4DeMpPhz4i8VNoWq6MkFvJaDTLuaO3RokaMGRI2UgIyc5PvzXrdn8MrO1+Lup+P3vrm5v7vR7fRY7Wba0VrHHNJK7RHGVMhkTeOh8pD2GLep/C7wdrWq3Op3/hPQ73Uboqbi8uNNgkmmKqFUu7IS2FAAyeAAKAPjv/gmPrWkeJPFf7R2saBqH9qaJqXjeW9srzymjE0MhldH2sARkMOCAa+8a+Gf+Cbzxt8Qf2nRBaW9jAnj64jjtrSMRxRqrzKFVRwAABwK+5qACiiigD85P2wf2pvDP7L/AO3d4M8RT6NqN/MPCsllrn2CURma3mnJtyAW2yGLZK20hfvD5vT798G+K9N8e+E9G8S6NObrR9Ys4b+znKFDJDKgdGKsARlWHB5FfLf/AAUe/Zn0r4u/B6+8bafothc+OfB0Q1S0ubiIH7VaQnzJ7WXLKHjKBmCtnBBAxvOfoP4GeP8Aw/8AFL4ReFPFPhVYoNA1LT4ntbeCNY1tgBtaHYpKoY2VkKjgFSO1AHf0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfC/8AwTW/5H/9p/8A7KFdf+jZ6+6a+Fv+Ca3/ACP/AO0//wBlCuv/AEbPX3TQAUUUUAV7i3ju7eSCVFkikUo6MMqykYII9CK+Qv2Pbi7+A3xZ8e/s7as8p0vT5H8SeDJp9wD6VO+ZIFJY8QyNjHXLOT1wPsWvlr9uP4N6t4h8LaX8V/A0ktt8S/hwzavpgt0H/Ewt1Ia4s5cYdkZFchAeSWXB38AH1LRXCfBn4ueHvjl8NtB8Z+G7yG607VLdJSkcgdraUqDJBJjo6MdrA9x7iu7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQnFAC0h6UA5oPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAqORFlQowDKwwQRkEVJRQB8T+DLiz/AGIP2m18ByBLL4T/ABTu3vPDyxxsE0rWd0cb2YUOQsUgZWDbQAWQdASPtcHNeYftGfAzRf2ivhNrXgnWd8K3arLaX0WBLZ3KHdFMjEHBDAA45Klh3rzf9jD40eIvFmh6v8NfiPbnT/ix4CMNlrEJyy3duy/6NeJJkiQSIASc9ecDcKAPpiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvBP2qLyNIPAWn69qNxpHw71PX/ALL4qvYZmt41tTazmCOadcNDDJdC3RmBUHcFLAMc+91znjyx1HUvBus2uk6bpOs6lNaulvY66zLYzuRwkxVHOw98KfpQB87/AAkn8D+DP2jtN8KfCfX4NQ8M6p4Zv9T1vTbLWH1K2huYLi1jtplZ5JPLkZZp1ZVb5gqFl+VTWz8UP+CgvwS+DHxC1nwX4v8AE11pWv6U0a3EK6VczJ+8iWVdrxowPyuufc10PwU+BupeFPFFx4z8Vx+HbPxBLY/2fZ6J4Tsjb6XpULSeZN5Zf5pZpWWISTbY9ywRDYNmT6jdeB/Dt5rD6tcaFpk+quAr3r2UTTsMAYLldxGAB16CgD4s/wCCYWv6P4s8TftFa74fuZL7RNV8bSX1lcSRNG0kMvmyIxUgFchhwQD619518Of8E4rn7V8Rf2nn8qKDPxAuVWOFAiKA8wAAHTgV9x0AFFFFABRRRQAV8m/ti/BfWNO1jRvj78N0SD4geCY3uL7T4VaMeI9OG0y2kzR/MxCIdmdw6jHQj6yrO1rSbbxBpF9pl8jSWV7A9tOiuyFo3UqwDKQRwTyCCKAPnH9ln/goB8O/2r/EV/4d8P2mraHrtpaLefZNZSFPtCZAk8kpI2/YSM5AOCDjrj6fr88vBfwb8L/8E/f2uYdQtfDbJ8MfHlvHpWneIrmSW4k0LUGc4si3zHy5SEw7jd23kK2f0MBzQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzvjjx34d+Gvh+fXvFGtWWgaNCyJJfX8wiiRnYKoLHuSQBQB0VIeleYeC/wBpj4VfEbxHbaD4Y+IGga7rVyrtDYWN8kk0gRSzlVHJwoJPsK9PPSgD4X/4Jrf8j/8AtP8A/ZQrr/0bPX3TXwt/wTW/5H/9p/8A7KFdf+jZ6+6aACiiigAooooAKKKKAOL+LPwp8N/G3wHqfhDxdpq6jot+gDxk7ZInBykkbjlHU4IYdCO4yK+Vv2eP2iPFXwK+I0XwD+PlyY9Tz5fhDxpcuTBrttu2xxSSkAeeAVXJwSflb5tpf7drzL48/s9eCv2kPBZ8MeN9MN9YpMLi3uIX8q5tZR/HFIBlTjIPUEHBBoA9MBzS18Q6d8Yvin+xTqNroHxhtrvx98JxKtvp/wARdMgea50y2U7VOqRqpJPzRjeOTg4Ln5a+svh98TfCnxX8PQ674P8AEGn+IdJl+7dafcCQA/3WA5Rh3VgCDkEUAdZRSdaWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqne3dvZRo1zNHAkkiRKZXChnYhVUZ6kkgAdyauVxnxU8DaL8Q/BV9pWvTyWFnGUvYtTt5/Im0+eFhLFdRy/wADxOgcMePl5yMigDxHwlL4p+FH7Ren/wDCxW0bxPqXxDuLzTtE1nSlmik0mG3ha6WyMMjMqwskbMXjwzSKDJvypSn8Z/2vviX8MviZrPhnQf2cPGHjvSbExCDxBpckgt7vdEjsUAt3HysxQ/MeVPTpW7+z/oek/FfUrX4iXPxJ1b4rjQLu907RrrUNPtbG3s5xmG5niS3ijEjOvyLI2cIzbcByT9HHGKAPg3/gmDq11rviT9ojU73QLjwpe3/jR7qfRLty8tjI/mu0LkgEspJB4HToK+9K+Hv+Cc4uh8S/2oftnm+f/wALBut3nZ3/AOsnxnPtivuGgAooooAKKKKACiiigAooooAhlhSeNkkUOjAqykZBB6g182eLf2BvhtqniK48SeDpNZ+FfiSaWKZtQ8FXzWKFkbIJt+YTkZH3Mck4yTn6ZooA+T7P4e/tX/DmS0t9C+Ivgn4m6aIXhK+MtPn064hwwMbmW23tM5XIYttHse3yJ+0H+3F+1f4F+N+gaJJ4ITwpeWsNvnw/aW39pW2ryP8AKzrKuSyO2Qqq25MYJ3A1+tdJgUAfK9r+2F8QPDtzLZeOf2aviLp19sjlgbwmkGv28iMDndNGyKjAj7nzHByccZdqf7eEGjWFxf6l8CPjTp2n2yGW4vLnwmqxQxj7zufP4UDkn0FfU20elGBQB8x/8PIvgF/0Neqf+Evqn/yNWt4W/b9+AHi2a9ig+JWl6XLZ7TJHryS6Ux3ZxtFykZfpztzjIz1FfQ233P51yeufCzwb4o1JtQ1nwloerXzqqtdX2mwTysAMAF3QkgDpzQB55p37a3wJ1WWCO2+K/hZ5Z7hLaONtRRWZ26cNg4/2j8vvXoH/AAt/wKD/AMjn4e/8Gtv/APF1i+IP2cPhZ4n0i60vUvh54ansrpNksa6XDGWGQeGRQw5A6EVwv/Dv79nn/olOgf8AfEn/AMXQB7ZoPinR/FFvJPo2q2WqwxP5byWNwk6o2M4JQkA4IOPetbcPf8q+WdY/4JtfBC/1GW607R9W8MJKqh7XQNZuLOAsowG2KxG7HU+1ULj/AIJt/DyzjW48O+J/HXhjW4JY5rTV7LxHPJNbMrZJRZMpkjK8g4zxQB9bZHqKAQelfMf/AAxRqnb9oz41Af8AYxQf/I1VrX9mb44+F5bq08LftQa0miPKZYIvFHhq01m9jyqhg1y7IWGQSAFUDOMdSQD6mor5auvhR+1R4bkt9Q0b46+GfG06S4k0fxN4Qj06zljKsCTLas0u4HaQBgHuccGz5P7ZH/P18D/+/Osf/FUAfTlFfK9n8Vv2qtCSSx1b4F+FvFN7BM6f2vonjBNPtLlN3yMkE6PInH95sn0HSlm/aX+OHha8tZfFn7NGr/2ROXjMnhHxDbazdI4XK7oQkYCHBBYsMe54oA+p6K+ZR+2T4iP/ADbj8X//AAU2v/yRVXTf+Chnw2Ntt1rSPG3hzVo5HiutLvPC17JNbSK5UozRI6E8Z+ViOaAPqSivm3TP+Cg/wQvdUjsL7xTceGJJYnmjl8SaVdaZFIFKhgsk8aqzfMOAc1v/APDcfwC/6K34U/8ABitAHudFea6f+0b8K9T0+zv4PiN4W+z3cSzwNLrFvGXjbo21nBHfqAeDSa9+0X8NNA8G+IPFMvjbRr7RdBtxdajNpd7HetBGW2qSkJZssxCgY5PFAHpdFeZ/Av8AaF8DftHeF7rxB4D1dtW061uTZz+ZA8MkUoUNhkcAjIYEHoa9MoAKKKKACiiigAooooAKKKKACq1zbx3dvLDNGssUilHR1DKykYIIPUEVZpCMigDwr9k+NYtI+JcaKERfiDr6qoGAoF1gAD0xXE/GH9kH4i/Ej4qax4t0X9onxl4J067eFrbQNLDm1tQkSIQF89VO5lZz8o5bnPWvovwp4I0bwTFqcej2htE1LUbjVroeY7+Zczvvlf5icZbnAwB2AroD0oA+D/8AgmLpNzoPij9orTLvX7jxTeWXjR7afWrtSst9Inmq0zgk4ZiCTyea+8a+Fv8Agmt/yP8A+0//ANlCuv8A0bPX3TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAPUZpaKAG7V9B+VG0e/wCdOooAydY8M6R4hWIappdnqaxklBeW6TBCepG4HH4VjXnwo8F31tNbT+EtDlgmRo5I202HDKwwQfl6EEiuvooA8LH7DfwCAH/FpPCn/guWuO+IX/BN34FePNKurO28KHwjPPa/ZTdeGbh7LjeHBaIExykFf+WitwfXBH1LRQB4L+yL+yXoX7I3gK98OaNrN/rs2o3Qvb28vVSNWmCBP3caj5F2qOCzHOTnsPeqKKACiiigAooooAKKKKACiiigAooooAKQjNLRQB+dnhb9mX9rD4NeOvifffDTWvh5ZaR4u8SXOthtVeaW4VWllMa48kqvyyDI55HB656n/hF/2/P+hr+Fn/fl/wD5Hr7qooA/Mj4pfGD9tH4P+Pfh54S1zxP8P5dV8c3z6dpbWdmXiSRWjUmYmJSq5lXlQ3fivTh4X/b8Iz/wlnwt/wC/L/8AyPX0L8Zv2b9K+M3xI+FvjHUNVvdPu/AWpSala21siFLpmMR2yFhkDMK9PU/WvYwNoAoA/Mf42fGL9tL4CXfgy38R+Jfh/PJ4r1iPRLD+zrIyBJ3KhTJuiXanzDkZPtXqB8Mft+ZP/FW/Cw84z5L/APyPX0J+0F+zZpH7Qd/4BudU1W90tvCGvQ67braBGFw8ZB8t9w4B2jkc9a9kAxQB8Lf8Iv8At+f9DX8LP+/L/wDyPR/wi/7fn/Q1/Cz/AL8v/wDI9fdVIelAH5oaD8Uf21/EXxw8UfCq28TfD1PEnh2wg1O6llsyLV4ptmwRuIixb94MgqOh5Pf0b/hF/wBvz/oa/hZ/35f/AOR6+gfB/wCzXpvg/wDaV8b/ABjg1u+n1HxVp8FhcaVKkf2eIRLCqurY3ZxCOM4+Y9eMe00AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9ea+Pfit+2r8Ofin8P/AGq+J/h4+teN5LiLTZLa03wRmFVZ/OJiDKMMMEK2ea/STWNZsPD2mXOo6pfW+m6fbIZJ7u8mWKKJR1ZnYgKPcmvCvHHwn8DfG34p/D/AOM9n47t2g+HzXR8zTLq2nspAygyCaXJCbV5PPAOeOtAHjY8Mft+EA/8JZ8Lf+/L/wDyPSf8Iv8At+f9DX8LP+/L/wDyPX1bY/HL4cajdQWdl4+8L3d1O6xQwW+s2zvI5OFVVEmSSeABXe0AfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9H/CL/ALfn/Q1/Cz/vy/8A8j191UUAfCv/AAi/7fn/AENfws/78v8A/I9L/wAIv+35x/xVvws/78v/API9fdNeK/8ADWHgn+2fs/ka/wD2B9s+w/8ACYf2NP8A2D5u/wAv/j+x5ezzf3fmZ2buN3egD4z+Cnxe/bS+PUvjFPDPin4ep/wi+tS6HetfWZjEk8edzRbYW3JxwTg+1emf8Iv+32Qf+Kt+FvT/AJ4v/wDI9eqeDvA3gH9gvwj8QPFGteK7oaV4k8QPq8zXsal1nmOBBCkY3SHqccnAJ4AJr6WoAzPDw1EaDp39rtA2rfZo/tbW2fKM2weYUz/Duzj2xXk/j/45eJbbx5feCvhx4LtvHHiDSLWC91s6hq40u1sI7jf9nUSGKQySP5cjbVXCquS2SAfa6+cfjHbfC3V/ilJb6/4x1b4Y+MIdPjLatY6m2if2raMx2xi4bCXIifsCWiL9g5yAet/C/wAb33jvw213q3hzUPCmtWtw9lqGlX43eVOmNxilACzwsGVklThgeQrBlHZ141+zF4x1Lxh4N15bnVZPEekaTr11pWh+IpgC+r2ESx7LhpAAsxEjSxGVAA/k55JJPstABRRRQAUUUUAFFFFABRRRQAUUUUAeAfGzXfE+iftBfAuGy8Rz2nhvVdYurG60W3jCLdOunXkpeeTJLquyLZGAAGDMxY7Nnvw5FeRfFz4ea14w+KPwc1vTYI5rDwzrt3f6i8koUxwvp9zApUHlj5kiDA9c9Aa9dHSgD5b/AGqfB9xoKSa9o1x8WNT1rWbgW6QeEtZ1OSw0sCMA3MlrbODsULny4xukc443Fh7H8CYtLh+EnhgaL4r1Lxxp32XdH4g1e7a5u7wlmLtK7chw25ShAKbdmBtxXL+Itc+LXgTxnrzab4Ub4meHtTmjutMW31G106XSAIkjktZBMR5iM6GVZAS37x1IAVd3S/Af4d3/AML/AIY6boWrXNvd6r9ovdQvHtAwhWe7u5rqSOPdyURpygY4LBQSBnAAPRa5T4nXeuWHw38V3PhiNpfEkOlXcmmRpGJGa6ELmEBTwxLheDweldXRQB+dvirVPhD4N+DmkeMvAXirTD8dhLpjm6GtGTWbi+muoI7yO7gZyx3eZMskcqBVwAwTaMfogpz+deBeIvgZ4k+KHjuV/FkXhXR/BFrqaXi2eiWzzahrqRy+ZGl7NIiLHHuSMyRKsokxjeoHPvwGKAFooooA4P4jfCfSfilf+GW16We60vRb5r99Fba1lqEnlskYuY2B8xY2YSKOgdFJzivJ/hLpGheM/jV4h8Q+BtFsrL4WJokvh+9ltreOGw8Qagtwp82GJRtnjgjE8JnIAYysql1Ukei/H34ZeJfi34JXw54e8XQ+EIri5RtSkl05rwX1qAd9qds0TIkhwHKsGKblBG4mnfCvwR4+8GzC28R+L/D+taDBaLbWWmaH4YOki2KlQmG+1SjYqAqECjtzxggHlHxT+Gfg3xl8X/Bnw38O+EtCsUs5ofFHiS+sNMgilt7S3lDWluHVVZGnuFU5VgwSB+CrGvqMDArhPAXwxi8FeJ/HXiCS/bVNS8U6ol808seHt7eO3jiitQ247kQrK69ADM3HUnvKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3biO1mdl3qqElfXjpXwZ/whmv8A/DEP/Ccf8Jjff8IR/wAI/wD8JF/wrTyYv7L/ALO/4+P7K+1bftnl+X+63edjts8v91X33Xjn/DJ/w7/tn7X9g1T7B9t/tD/hH/7avP7F87zPNz/Z/m/Z8eb+82+Xt3/NjNAGJ+2pZ2l9+yh8QLiW0hZ4NFlltyyBjCxULlDj5TtYrkY4JHevfR0rn/HfgnSPiR4Q1bwz4gtmvNF1SBra6gWVoy8Z6jcpBHTqDXQ0AFYXiTwdoPjGKGPXdE07WoYWLxJqNpHcKjEYJUODgkcZFbtFAFSys4dNtIbW2hjt7aBFjihiQIkaAYCqo4AAGABVuiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==" alt="" /><br />
See the above figure. Along that indifference curve, when:<br />
S = 3, L = 27. MU<span style="vertical-align: sub;">L</span> = 0.5 ∗ (S/L)<span style="vertical-align: super;">0.5</span> = 1/6.<br />
MU<span style="vertical-align: sub;">S</span> = 0.5 ∗ (L/S)<span style="vertical-align: super;">0.5</span> = 1.5.<br />
MRS of L for S = -MU<span style="vertical-align: sub;">S</span>/MU<span style="vertical-align: sub;">L</span> = -9.<br />
Joe is willing to give up 9 lobsters to get another soda.



 

Did you know?

Bisphosphonates were first developed in the nineteenth century. They were first investigated for use in disorders of bone metabolism in the 1960s. They are now used clinically for the treatment of osteoporosis, Paget's disease, bone metastasis, multiple myeloma, and other conditions that feature bone fragility.

Did you know?

A strange skin disease referred to as Morgellons has occurred in the southern United States and in California. Symptoms include slowly healing sores, joint pain, persistent fatigue, and a sensation of things crawling through the skin. Another symptom is strange-looking, threadlike extrusions coming out of the skin.

Did you know?

Inotropic therapy does not have a role in the treatment of most heart failure patients. These drugs can make patients feel and function better but usually do not lengthen the predicted length of their lives.

Did you know?

Certain topical medications such as clotrimazole and betamethasone are not approved for use in children younger than 12 years of age. They must be used very cautiously, as directed by a doctor, to treat any child. Children have a much greater response to topical steroid medications.

Did you know?

One way to reduce acid reflux is to lose two or three pounds. Most people lose weight in the belly area first when they increase exercise, meaning that heartburn can be reduced quickly by this method.

For a complete list of videos, visit our video library