Author Question: Directions: Determine the normal dosage range to the nearest tenth. State your course of action. ... (Read 212 times)

tuffie

  • Hero Member
  • *****
  • Posts: 534
Directions: Determine the normal dosage range to the nearest tenth. State your course of action.
 
  An IV medication of 50 mcg in 200 mL is ordered to infuse over 2 hours. The normal dosage range is 1.5 to 3 mcg/kg/hr. The child weighs 5.7 kg. Determine the dosage range per hour. Determine whether the dosage ordered is within normal limits. State your course of action: ___________________ ___________

Question 2

Directions: Use the following weight-based heparin protocol for the following problems.
 
  1. Bolus heparin at 80 units/kg
  2. Begin intravenous infusion of heparin at 18 units/kg/hr using 25,000 units of heparin in 250 mL of 0.45 NaCl for 100 units per mL
  3. Adjust intravenous heparin daily on the basis of APTT results.
  - APTT less than 35 sec. Rebolus with 80 units/kg and increase rate
  by 4 units/kg/hr
  - APTT 35-45 sec. Rebolus with 40 units/kg and increase rate by
  2 units/kg/hr
  - APTT 46-70 sec. No change
  - APTT 71-90 sec. Decrease rate by 2 units/kg/hr
  - APTT greater than 90 sec. Stop heparin infusion for 1 hour and decrease rate by 3 units/kg/hr
 
  A client weighs 81 kg. Determine the bolus dose of heparin, the initial infusion rate, and then adjust the hourly infusion rate up or down on the basis of the APTT results. APTT is reported as 43. The IV pump is calibrated in tenths of a milliliter.



steff9894

  • Sr. Member
  • ****
  • Posts: 337
Answer to Question 1

ANS:

Calculate the hourly dosage range:
1.5 mcg/kg/hr  5.7 kg = 8.5 mcg/hr
3 mcg/kg/hr  5.7 kg = 17.1 mcg/hr
Calculate the dosage infusing per hour.
50 mcg  2 hr = 25 mcg/hr
The dosage is 25 mcg/hr. It is greater than the safe range of 8.6 to 17.1 mcg/hr. Notify the prescriber.

Answer to Question 2

ANS:
a. No weight conversion required
b. Calculate heparin bolus dosage
80 units/kg  81 kg = 6,480 units
100 units: 1 mL = 6,480 units: mL
100  = 6,480
100 100
 = 64.8 mL
c. Calculate infusion rate
18 units/kg/hr  81 kg = 1,458 units/hr
100 units:1 mL = 1,458 units:  mL
100 x = 1,458
100 100
 = 14.6 mL/hr (Rate not rounded to a whole number, pump delivers in tenths
of a mL/hr)
d. Client's APTT is 43. According to the protocol, rebolus with 40 units/kg and increase rate by 2 units/kg/hr.
40 units/kg  81 kg = 3,240 units
100 units:1 mL = 3,240 units:  mL
100  = 3,240
100 100
 = 32.4 mL
e. Determine the infusion rate increase.
2 units/kg/hr x 81 kg = 162 units/hr increase
Calculate adjustment rate.
100 units:1 mL = 162 units: mL
100  = 162
100 100
 = 1.6 mL/hr increase
14.6 mL/hr (initial rate)
+ 1.6 mL/hr (increase)
16.2 mL/hr

New rate 16.2 mL/hr. (rate not rounded to whole number, pump capable of delivering in tenths of a mL/hr)



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

The tallest man ever known was Robert Wadlow, an American, who reached the height of 8 feet 11 inches. He died at age 26 years from an infection caused by the immense weight of his body (491 pounds) and the stress on his leg bones and muscles.

Did you know?

The human body's pharmacokinetics are quite varied. Our hair holds onto drugs longer than our urine, blood, or saliva. For example, alcohol can be detected in the hair for up to 90 days after it was consumed. The same is true for marijuana, cocaine, ecstasy, heroin, methamphetamine, and nicotine.

Did you know?

Acute bronchitis is an inflammation of the breathing tubes (bronchi), which causes increased mucus production and other changes. It is usually caused by bacteria or viruses, can be serious in people who have pulmonary or cardiac diseases, and can lead to pneumonia.

Did you know?

Intradermal injections are somewhat difficult to correctly administer because the skin layers are so thin that it is easy to accidentally punch through to the deeper subcutaneous layer.

Did you know?

Dogs have been used in studies to detect various cancers in human subjects. They have been trained to sniff breath samples from humans that were collected by having them breathe into special tubes. These people included 55 lung cancer patients, 31 breast cancer patients, and 83 cancer-free patients. The dogs detected 54 of the 55 lung cancer patients as having cancer, detected 28 of the 31 breast cancer patients, and gave only three false-positive results (detecting cancer in people who didn't have it).

For a complete list of videos, visit our video library