Author Question: In which of the following would there be the greatest need for osmoregulation? A (Read 1667 times)

hummingbird

  • Sr. Member
  • ****
  • Posts: 324
In which of the following would there be the greatest need for osmoregulation?
A) an animal connective tissue cell bathed in isotonic body fluid
B) cells of a tidepool animal such as an anemone
C) a red blood cell surrounded by plasma
D) a lymphocyte before it has been taken back into lymph fluid
E) a plant being grown hydroponically (in a watery mixture of designated nutrients)



Jones

  • Full Member
  • ***
  • Posts: 145

I know the answer to this :D, it's B. Don't forget to give me a thumbs up!



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question

hummingbird

  • Sr. Member
  • ****
  • Posts: 324

 

Did you know?

Pink eye is a term that refers to conjunctivitis, which is inflammation of the thin, clear membrane (conjunctiva) over the white part of the eye (sclera). It may be triggered by a virus, bacteria, or foreign body in the eye. Antibiotic eye drops alleviate bacterial conjunctivitis, and antihistamine allergy pills or eye drops help control allergic conjunctivitis symptoms.

Did you know?

The average older adult in the United States takes five prescription drugs per day. Half of these drugs contain a sedative. Alcohol should therefore be avoided by most senior citizens because of the dangerous interactions between alcohol and sedatives.

Did you know?

Asthma-like symptoms were first recorded about 3,500 years ago in Egypt. The first manuscript specifically written about asthma was in the year 1190, describing a condition characterized by sudden breathlessness. The treatments listed in this manuscript include chicken soup, herbs, and sexual abstinence.

Did you know?

There are major differences in the metabolism of morphine and the illegal drug heroin. Morphine mostly produces its CNS effects through m-receptors, and at k- and d-receptors. Heroin has a slight affinity for opiate receptors. Most of its actions are due to metabolism to active metabolites (6-acetylmorphine, morphine, and morphine-6-glucuronide).

Did you know?

For high blood pressure (hypertension), a new class of drug, called a vasopeptidase blocker (inhibitor), has been developed. It decreases blood pressure by simultaneously dilating the peripheral arteries and increasing the body's loss of salt.

For a complete list of videos, visit our video library