This topic contains a solution. Click here to go to the answer

Author Question: Explain soil-water potential. What will be an ideal response? ... (Read 114 times)

Yolanda

  • Hero Member
  • *****
  • Posts: 757
Explain soil-water potential.
 
  What will be an ideal response?

Question 2

Cohesion water, or ___________________ _ water, is held more loosely, can move in the soil, and can
  be absorbed by plants.


 
  Fill in the blank(s) with the appropriate word(s).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

uniquea123

  • Sr. Member
  • ****
  • Posts: 311
Answer to Question 1

Soil-water potential is used to measure soil-water forces. It is defined as the work water can do
when it moves from its present state to a pool of pure water in a defined reference state, which is
assigned a potential value of zero. Think of potential as the tendency of water to flow or move freely
in the soil; the higher the potential, the more freely it can move. Water, like energy, tends to move
toward a lower energy state (decrease its potential). Water potential is the relative energy of water in a
certain location compared to water in another. Water moves from locations of high potential to
locations of low potential, from wetter to drier.
Rain falling on dry soil is capable of great movement, so it has high potential. Infiltration
occurs because water will readily move to a state of lower potential, as when free water enters a pore at
the soil surface. What matters to a plant is not the amount of water in the soil but its energy. While the
amount of water in the soil partly defines its potential, so do other factors such as pore size and soil
salt content.
If a water molecule is located far from a soil particle, forces attracting the molecule to the
particle (adhesion and cohesion) are weak, and the water molecule can move relatively freely. It has a
high water potential. A water molecule close to a soil particle is subject to very strong attraction, and
the water molecule is fixed tightly in place. It has low potential. The lower the soil-water potential, the
more tightly water is attracted to soil particles and the less freely it can move.
Soil-water potential consists of the sum of several separate forces. The main force is matric
potential--the potential that results from the attraction of water to soil particles. A second force is
gravitational potential. Soil water is elevated above the water table and so carries potential energy from
gravity. To achieve a lower energy state, water simply percolates through the soil to a lower elevation.
The third force, osmotic potential, is most important in soils with high salt content. Water molecules
are polar and are attracted to charged salt ions, which lowers water potential.
Total water potential can be expressed by the formula:Ysoil
= Yg + Ym + Yo
This says that total water potential is the sum of the gravitational, matric, and osmotic potentials.



Answer to Question 2

ANS: capillary




Yolanda

  • Member
  • Posts: 757
Reply 2 on: Jul 21, 2018
Excellent


pangili4

  • Member
  • Posts: 346
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

Did you know?

Opium has influenced much of the world's most popular literature. The following authors were all opium users, of varying degrees: Lewis Carroll, Charles, Dickens, Arthur Conan Doyle, and Oscar Wilde.

Did you know?

According to the CDC, approximately 31.7% of the U.S. population has high low-density lipoprotein (LDL) or "bad cholesterol" levels.

Did you know?

Addicts to opiates often avoid treatment because they are afraid of withdrawal. Though unpleasant, with proper management, withdrawal is rarely fatal and passes relatively quickly.

Did you know?

The use of salicylates dates back 2,500 years to Hippocrates’s recommendation of willow bark (from which a salicylate is derived) as an aid to the pains of childbirth. However, overdosage of salicylates can harm body fluids, electrolytes, the CNS, the GI tract, the ears, the lungs, the blood, the liver, and the kidneys and cause coma or death.

For a complete list of videos, visit our video library