This topic contains a solution. Click here to go to the answer

Author Question: Which statement is always correct when applied to a charge distribution located in a finite region ... (Read 86 times)

sheilaspns

  • Hero Member
  • *****
  • Posts: 567
Which statement is always correct when applied to a charge distribution located in a finite region of space?
 a. Electric potential is always zero at infinity.
  b. Electric potential is always zero at the origin.
  c. Electric potential is always zero at a boundary surface to a charge distribution.
  d. Electric potential is always infinite at a boundary surface to a charge distribution.
  e. The location where electric potential is zero may be chosen arbitrarily.

Question 2

A nonconducting sphere of radius 10 cm is charged uniformly with a density of 100 nC/m3 . What is the magnitude of the potential difference between the center and a point 4.0 cm away?
 a. 12 V
  b. 6.8 V
  c. 3.0 V
  d. 4.7 V
  e. 2.2 V



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dpost18

  • Sr. Member
  • ****
  • Posts: 345
Answer to Question 1

E

Answer to Question 2

C




sheilaspns

  • Member
  • Posts: 567
Reply 2 on: Jul 28, 2018
YES! Correct, THANKS for helping me on my review


amcvicar

  • Member
  • Posts: 341
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

More than 20 million Americans cite use of marijuana within the past 30 days, according to the National Survey on Drug Use and Health (NSDUH). More than 8 million admit to using it almost every day.

Did you know?

Your chance of developing a kidney stone is 1 in 10. In recent years, approximately 3.7 million people in the United States were diagnosed with a kidney disease.

Did you know?

Your heart beats over 36 million times a year.

Did you know?

The first documented use of surgical anesthesia in the United States was in Connecticut in 1844.

Did you know?

Pubic lice (crabs) are usually spread through sexual contact. You cannot catch them by using a public toilet.

For a complete list of videos, visit our video library