This topic contains a solution. Click here to go to the answer

Author Question: N+rA4GqykpMnFSDQ4eadPq1rLQYEyZU66BSOnmZNRCFbbbXOR2yU2SZxne/lx81TK3HpGuuUsdA2R4o5aitrUIoENAjWEU25MhfOZo3Hk0gKmezQwKyBBEOexEOhVBaUoyOzi714p44cWK/M9lHjtTopRQKmWUscW6sHkPyXVpSgva2Nnh8XoSDQd1HLzMAYv2rfPUCQb+RL1HoMsCXAE3ixT9xQg0ONzYhEomirKQEE2orNQaA9Bfa7+g2fjdo (Read 15 times)

ETearle

  • Hero Member
  • *****
  • Posts: 580
N+rA4GqykpMnFSDQ4eadPq1rLQYEyZU66BSOnmZNRCFbbbXOR2yU2SZxne/lx81TK3HpGuuUsdA2R4o5aitrUIoENAjWEU25MhfOZo3Hk0gKmezQwKyBBEOexEOhVBaUoyOzi714p44cWK/M9lHjtTopRQKmWUscW6sHkPyXVpSgva2Nnh8XoSDQd1HLzMAYv2rfPUCQb+RL1HoMsCXAE3ixT9xQg0ONzYhEomirKQEE2orNQaA9Bfa7+g2fjdoVErGPF6v9k/SWqKs55zWgGlTJuLQkWb1DxBZqa02M5EyqxmL2xq3JBpNIm7HEU2KaZdEMGyhuFTkK4ii4mL1hZF8a/RkyNFBdd94AAAgAElEQVSThVymLDu50gecVPzHrB3mv8Uvylg6crHq5IaSzsVfIl7ZZv+zrPnLGmt3j6ztmhG0xMuX86rl98GAHyUl5TpClw66qaXLrM3KedZyIKbXhwQ64fEG1BZ0BTbaG0FvT8yZxpPTscTF30JFRbVa7eIRvvdAq+6RlZkDc0KbjLrNqFNmH2SdSab0Ze3TxA2QmQBTF9UobmZ8HQYB2b9vmEo7SKvKQFEUqThjSWAeYd7e0Y1Eqzn/XNpGlLaJhCYDxmIUl5TrzE1be692GiJD0vjy27jdBZ8/LaAPLMRjPejpjjmzAmZKVSyuotIKhEsqdfB3qLEHsViHDlBFPqQzkjtOxhPitCXyIZHYQoEgAsGAWisy4JDyyppwKGRO8hsGnCxdKsGyYmrVSobSDmIVG0u2EPqYk2GS/ieq9fPZNjzhMIrDYYgRInInfY8MAmSJKNEqR+Yahzzpf7w+jxohwVApSko8qshb0+VLrFGPF0mrGx5vf7+rWDSCSLcMLoSlOXtCrNnSskqU2EA0Hsf+Ix2IxmTpU+TanPgn8i9yKANT2Vao8hUMqXyJwhejRGRf/KVSBs/J6l9o3xln8PRSU/Gn0yjQ99J5imBLpylTVpZVqjUxa17GiU86TulAZSTc1R1FR2evOgTKTamKWVS+M7iWtCyrOU0Pm+9ktKy9tAwTnCURd2XEXCPXyWycBY/XB58MJJz1WVEWMhUogwoZfIhXuLusYLAXemeYv8KjylUUtlc6vSLdQSGdoTh4qlKVGZl4DHGZlYnLcozISEyn500ENrMCI22p7W9JR96WJh9Sdwu25R7BK4JkFna1VeUfVy6MsBkl7ww2RBZklUDKJzIsvijSAbvlzl+y47hkOmgz7drX//h82v9Ie8pnYv2LfEk/ZAYKIm8J9PTGjXypAjf9jwiIiIbIjelLWjUNp0vq65t0VdORJ+m7jHy515i+RwYD4ggYkP5HZMwZVEq/I32QzBzoFL8cN61zX+OvHan4C7bNTSdrbjq9bbQmMsoVw0wtN78o2mK9kdxqylSvdPAyABAnGXESlBtURtE6StbpMGOJpTpvvb1MEmmduHxgblJze+p7/ZX5W29LdT5071v53FEOjiLQ0bu7buwWkq/DJGB6ZR2Uue2lKRqnK/W891gIBoI6/S5KVnW6OubJ8owMEsW5LqmdtsiFzOZI24m8iIzJQ45e1VfT/aq46AciF7okkBoIyueq87V3d+RD0tHthSYVsYbF38PjMYMGM/8ElU83Xb7mCQHThEY5624OYwzoDJNHBv5mds9XJEo4tUNI+p2EGCAiX06/o4MD6XdEEctyoDOokBkS9yH9XPrDTdMMFkz/Z0RL7Xun6zLyZQavUmApozPLpLJn+iVN23YqlJ7JGH5PxV+QjWtrpy27EmTLlXjGy1SuxzIe8lIlEWbply1LpheNV7Ss38uI1yex8XXWNjV4MFORZnpW7hrp9M2IWtIxW8HU4Jdtg45lJ3n0u5HkOh3FOwOHvpvM6fUd1u4tJssVHZ2duu4sQT34GDkCYtVI/PPm1haNk19cFNZZGO38nGykja2kaQ1R/mYAYCI/hoLGKcq0sduutumc1dJyZcfpsEX5q8iYz0WhixI/Wj5ksOBO8Usx5HvzT2pgIPIqowQZkLZ3duo56pUVFboLp9/oYuRwMaUhEZD+J6DWvezq8fm6VdbcHTo6c6j3vhgVZmOwK18+MUo8XqTLl/QZ6f2GypxjIIjyl67I9EcmMqQaFNp/yXWmr5FrRDZEvsyREqnZAP1KQ0mbSurQwCPLYTKz1aXbESfUThij0/zHb1gq/uNzyftPZe+7hKqUo3jb2tvQG+mFOMrJer+snbvK3vShpnM3fazckambxe3YzatU2+nQHStOb5pU32y49Ls+ldbJOmVX2Ut6EV0D7EJPr6wdJ3WrU01NTd4zL6QCynp5XX2dRsiTCH6RSEQ7Z9l6KQNG6fxkXVNnadRiS7Vjn0w4AzmVCh3kmQGgfu/KiREnI1NpgKSdXZly01PZSvtN+ltV9iYj4/MR79HgQbJeLDsE6urqHMe+/pZfehp8nz0CEmVT+p89e/aivb1Tt46KA2Nf/yMOwGmDSdO0zqDQkQ1R5q5sHC0rorb7PjuqL0pPKyVnjuI/AQJV9o6xI8taEuinV2IHJCQWQAUm1U3SGYGT9WEnSLogP6biL8hmk0LbqKisRDAUxJHDhyHnYMvT09HhjMZlAGAc6GSbi1j6OhhwwqzqjSUj7fT6qyWX/sGJ30tacmP2ddhH/VS+k4e8yla+uOQVjfat+cl1YuXX1tSgsqoSliVevOzUj8I4jD8lGlkRZs1q0JDIzU3NGrNfZlg0xGkopBabWG4yEJC1dbOjI7X1SqdanbV2scolRsOAbXRUEw5GPlyLT2YIXL8UGbCGgiFMnDABMij0+fs7mg4DDC8dEQI2iktKMWvWTMh5Gy0tzXquQrv0P0HZTiynKga1LxL5kv5HHhrx0Z35d5aW3OKkT+27nw386voGpH4pB0WZ7se8uvIVidpp/Q/0/qirrtYYLuJfMqBsp7Io+HdU/AXdhKZznzZ9Oib09JqOvb1dT1aTQYCMqOVGkxtPt/MFgmaq3+sxoXnTlgAEg1HWrm0ut4HTi8uLvk316rLOK783a3Jm7VduXF0D1uk2Z31Yp/HkkB+z7icWgSh8iY0tW0zMDae5F3RL5Gfhbfj9AdTV1etWpY7ODj3ERKLotXd2aEctilk8nf0Bs9tCwvSKf4hG/ZO1Wl3/F3vJPJzx3PGrm/alO/ATRa4drwSZctZx1Z9E1nfjCQ3mJD4EUg7JS5SGRGMrLy/T2A5Sfifn4+fJT3NIwNaom1OmTEFtbQ1kZkkC6kjAorb2drS2mV0MulPDL3EjzNOVrz7Zcvx9BlMRNVic2QDjtS9LATK9b+RLZU38UGTfvit7srPF2Y4s8lVcLP1PqcqXyLt5pPq2wZSj0H9DxV/oLaga2dLAJhLcRE6okq00vb09OgCQWOsSwU221nR19zhraSkv2NTNZ07Ski03R+l4V/3LyEBpGaXvrO06AwDp6F3rzih52Y8t2/ZkLVC2koURLgprx55S9pLc+Lrhsi9uhq8/ENDwyhIrQbf0RSIahEXkRELxyha/np52lQ9TRrkupfhVTsRi0yA9xzabDhKdppQXUfg6S+BsqXIHAiIjrpKX4C1FulYssw9yyEqRWorGundJOYm6f/I1zwiY9gkGZYYxpLMz4rsT6e1R3xJZgpQpdZGv7h4J8y1K2cwdiR+HyJNZcjIOpipfUsOjmt2VL/1YZUqWCUTETHoqXzKAcJaw3K2h6osQDunskZwXIdH5Usr+OBnlGd3RKg4V/2iRzWq66XeJpcItAl5WboISqfess2VLttWIV3/U2b4lW7rU8kqIN61MyUuH7Sx3OXVQPwF9b+w+r2VmDIyzoFiHPg0iJFainsYWNFPH8reZ4nPtRRdKenndz/g6ugRSzMWKlmdJidn2aYv1nZDIZmbvvwb7icUc72uzHUusJ5UP90yL9CaV7VJ9cwJSC9kxYPxMpP1FDuS0Rnmv8hHwQwYi5jvp8N1gLS6BVFndT/ia7wTcNkuFQi91TlMU+VJvftnWF4mYGCRxicyY6LfDSGYoxeFOHyeRL1HuJtSuieio/YzuYHLiQGgsiID+Rr7rHwVQUnfLmu9MR698VPyjxzZHKR8r1DL69QS82tkWFR3Pe95M20uBZYpsoIdrtcmAwPjsDnTFsWUa6Ap+P5oE+reH7HkWT2ufHm96/Hzd9ddByYeofmcL17Gd7vHS71+e4/2CnxUKgWPbUuTLr8GZ4ARgOrouQ+x/KF9HAxzy31T8Q0ZWiBccezP2r4WZfpXPJLrV0B4DpT201PjrXBAYqA1FPoxcDF0+pD4DpZ+LOjPP7BEYqP2H0/9QvjJpRyr+TKiNuWsGujHHXIVZoSERoHwMCRd/PEQClK8hAhv2z4dq3g07QyZAAiRAAiRAAiSQOwJU/Lljz5xJgARIgARIIOsEqPizjpwZkgAJkAAJkEDuCFDx5449cyYBEiABEiCBrBOg4s86cmZIAiRAAiRAArkjQMWfO/bMmQRIgARIgASyToCKP+vImSEJkAAJkAAJ5I4AFX/u2DNnEiABEiABEsg6ASr+rCNnhiRAAiRAAiSQOwJU/Lljz5xJgARIgARIIOsEqPizjpwZkgAJkAAJkEDuCFDx5449cyYBEiABEiCBrBOg4s86cmZIAiRAAiRAArkjQMWfO/bMmQRIgARIgASyToCKP+vImSEJkAAJkAAJ5I4AFX/u2DNnEiABEiABEsg6ASr+rCNnhiRAAiRAAiSQOwJU/Lljz5xJgARIgARIIOsEqPizjpwZkgAJkAAJkEDuCFDx5449cyYBEiABEiCBrBOg4s86cmZIAiRAAiRAArkjQMWfO/bMmQRIgARIgASyToCKP+vImSEJkAAJkAAJ5I4AFX/u2DNnEiABEiABEsg6ASr+rCNnhiRAAiRAAiSQOwJU/Lljz5xJgARIgARIIOsEqPizjpwZkgAJkAAJkEDuCFDx5449cyYBEiABEiCBrBOg4s86cmZIAiQwtgnYpnq2DXlnO6/Oh/LJ2K4+a5f3BKj4876JWEASIIGCIaCa3pTW4w8g4fUgCiDh9cKypLu1VO/bySTMsKBgasaCjiECVPxjqDFZFRIggRwTsES3S7eaQNe2V/GhRA9uPGUqFnccRseGF5DsbNbvLY9HhgB8kEBOCPhykiszJQESIIExScBC9IN3cfD//hTNz6zBpe1dWAYg/ufNeOfmr6F04XxMuuErKD3/MmP9c9p/TEpBvleKij/fW4jlIwESyGMC6ev1HkR2vYld3/pbtG/aCjuRhL+sBFZlKayuCGItrWh+fh2633kPM771LZRf/t9MvWwbsGj/53Ejj7miUfGPuSZlhUiABLJKQHS/ZcHu7cAHP/5ntL/6Oiy/D1XLLkLtddcjOHUaEu1taH12FQ4/8jtEDjZizz/dj9kNpyB8yjzASh88ZLXkzGycEqDiH6cNz2qTAAmMJAELHRvWoW3tnwDLi5orL8X07/0TPEVlfZkULzwHgUl12PsvP0LP7v1o+sOjmHL7HMfhj1Z/Hyi+GXUCdO4bdcTMgARIYOwSsNRRH0ii/ZV1SHT1IlBTjrqv3uwo/SRgyzOhCGo+9TmULl6oDn4dGzcg0dHirPWPXUKsWf4RoOLPvzZhiUiABAqGgM7zA8kkoo3NkG16oemTEZg63amBDAzkabpaK1CM0jPPgMfnRWT/ESQ6ewqmpizo2CFAxT922pI1IQESyBUBR79L9sl4QqL2nLAkid5eDepjBXyQbX3mceLfnzAhfkECGRJwpS7Dy3kZCZAACYxjAqqvZX3ei+CUqbC8XvTu2oueN7Y5UFxvffOaaDuC9k1bkIwnEayfCG9pcdrvqPzHsSRltepU/FnFzcxIgATGFAHR52rdWyg77yL4KkoQb+vC3h/9s+7nN3U1Sj/Z04EDP/kxura9Actjo+KiS4wfQN/sgDtIGFOEWJk8JECv/jxsFBaJBEigUAg4ytq2UbJwMWqv/ij2/+LXaN+4Fe/echOqP/ZRhE+dj3jzYTQ/8wza1r4MOxpDyYK5qP7Ep4xjn27no9IvlBYfC+Wk4h8Lrcg6kAAJ5IZAn7VuA74Q6m66DfH2djQ+tgIdm3egc/tbsIIhdf6zEwlYXj9CDdMx7Zt3wD9xKg/syU2rjftcqfjHvQgQAAmQwIgQsJPwllVh2h33oPj0OWh84gn07NqLRK947lvwBEMQ5e+vLkf41NNHJEsmQgKZEKDiz4QaryEBEiABISAz9P188mx4ispR+8WbUPnxTyKybx/ihz5A6wtrcPiPq9T5r/vNd9Dx8lpULFuexlAS4XR/GhC+HUUCVPyjCJdJkwAJjHUCbgCf9HoaJe6rmgR5YsFiBGfMQutL6xFtakOiO4aWVStQvvQKWL6ACfAjlzNefzpEvh9FAvTqH0W4TJoESGC8EhDlbztK3Uao4RSUn/chQNb5fT60bdiI3nd3pFn5tPbHq6Tkot5U/LmgzjxJgATGDwFxAPQGUXXFR+EtCuqMfqylXa1+A+GY9YLxw4Y1zQkBKv6cYGemJEAC44KAhus1NS0560Monns67HgClser2/viTQc0nK9xEzD/jgsurGROCVDx5xQ/MycBEhj7BIxF7ymtRNVHPgLLawES4W/3PrS/+KxT/dGc6pe0B/Mc+y3BGhoCVPyUBBIgARLIEoHyD1+G4JR62ImkHtrX+OQKIB6BpY59o6H8TZotLc3486ZNWLVyJZ55+mm8+eYbiEaj6OruwtatW9De1polAswmHwjQqz8fWoFlIAESGBcEAlNnoeKC83FwzyOw/H50bH4NXa9tQvFZF8jxPmnOfiOBw0Jj4xE8/MuH8dhjf8D27dtU2SeTSVRVV+P8885DMBTCc2vW4Ft33IGvfvWrR+9NHIlCMI08JEDFn4eNwiKRAAmMRQKyhu9B5bJlaFzxJBKdESS7e9H0xGOO4h9Ji9/C++/vwm3fuA0rV67ExIkTsezyZWhomImuri689tpWPP744zrT4PP5sHPnzrEInHU6AQEq/hOA4cckQAIkMBoEis84G6UL5qP1pQ2wfH60vrgOdQd3wz9p+ghZ3BYikQi+/4MfYMWKFbj8isvx3e9+F4sWLYJlmdXdtrZW/Orhh/GDH9yHzs5OHQzYdtL5nk6Go9Hu+ZQm1/jzqTVYFhIggbFNQJRrsBiVV1wJy+cBPB5EDzWiZfXKEa33G2/swKonV2L69Om48847cdZZi/uUvmRUXl6Bm752M65evhwdHR3Yu2cPEvH4iJaBieUvgSEo/pN5heZvBVkyEiABEsg3AuUXL0V4xhQgmdA4P81PrUKyu23E1vh37XofnZ1dmD5jBk4/3T0XQCz59Cdw44034MwzF+G000+Hx8sJ4HyTk9EqzyBauv+6U2+kB5Fe44UaCoUQCASPEtbBTBPJb9yBxGhV7eTpei0P7KSNZCIJT78Y2f3re/JURvhbO8mwnSOMlMmRQP4RSMJXXY+KSy5B1zu/UCe/Lonfv/FPKL/kSkAC/mg3lHlfFA6H4fFYOHTokFrzc+fNP6qfFiq2zgQ89fRTCIdC+nszMMg/YizRyBI4ieJPCd3GjRvx7DPPYMcbO7B7924cOXwEHo8Hk+rq0NDQgCVLFuPKK6/E9OkzHOEaQPnr10kkEnHYGuo6ldfIVu/4qcnWmVg8gqJQEGXFRbAsG8lkDHbfEZvHv25UPlUW8o8Nj9cPq98gZFRyZKIkQAK5JCC3uwVUffRqHH70McQ7u5GMxNC04o8ov+gywONLU/6ZFXT+/HmYOm0a3nn7bdz6jdvwjVtvxZIlS1BRWQFvn2Vv+t2qyionE+2MMsuQVxUUActWbXd0gxuB2Pb66/jXH/9Y934ePnwYsg1ElKYofbnMffr9fsxsaMCX/upL+B9/fROKi4tP7KSio1kP3m/9AH/z4s/RE487e1izyM0CYpEYDr7/AWLRKKom1qJiQlUOB7s2gl4f/u3iv8SMiiknZpdFRMyKBEhgFAiocSEWvayyJrHzG3+Nxqee02l2X1UZTv/JTxA67cwR6AMs/PrXv8bff/Ob2LNnD4qKijBz5kzMmjULlVVVmDRxIhYsPANnnbkIp5x6qlNRY4A40w2jUHkmmRsCFh744Q/xne98BzITtHHTJhzH4jdK/7HHfo8777gTu3buhNfng0zrT548GfWT69VhJBaNqfUvMwDNzc3Yu3cvvvvdu7Bl62u4//77UVdXd1Lh7Yh244l9bwCxaG6mtyVgRlUQ8PixM3oE2HsgN20iQ3+Z4vcH8P1od47KwGxJgARGnUCfXpU+Vv7woubjy9Hy7AuwZRayuQUtTz+FOlX8wy/NZz7zGUydOgW/+MUvsWH9euzbvx/btm1HQvwKAJ3enzF9Oj57/fW4+eavobLP8h9+3kwhvwkcR/EDK1Y8gdtvux1NTU3wBwKor6/HF77wBVx99XLMnNmAcFGR1qqttRWvbn4VDz30EFavXq1r5r//3e+QSCTw05/8BCWlpcdR/mZgkYpUJX+bz7KKSu673khaljkoQ1/uDoNcFqGvLHxDAiQwKgT0Nu9/k5eceyGKTp2FzjfeVQOo5bnnUfuZL8BXU3+cvnPopbrgggshzz17duPd997Drp27cOTIETXUXv3zn7Ft+3bcf/996Onpwd133wWfzz8i+Q69pLwimwTSFL8RyPd37cQ/3PsPqvRlSn/O3Ln4x/vvw3nnS2Sp/o/yigosXXopzj77HNx777146Gc/02l+CRjx4IP/jr/933/X/wL5S7OxURksxVdOvwhROaYyF4r/2JLl6BMb8p9M9VeFynJUBmZLAiSQfQI2PEUVqLrqKnTueACWL4ieXbvR/vILqFr+2WEUx0IymUAsFkMwGNJ0pk2bDnliaSrZA/v344EfPYCf/Z+f4Xe//S2uu+5aLFwoywx8jHUCaYpfqmrjF798GDt27ICs25eVl+N737s7TemLmXzso6SkBH//zb/D66+9hvXr18Pr8eDhX/0Kn/r0pzFz5qz+I0hNIonJZRPw06USIpKPPgIy5d/n0dv3Kd+QAAmMSQLSGVqoXHYVDv3yYUSb2pCMJ9HyzDOovGK57vfPxPFIfLEeeOBHePnldbj77u9h7ty5/ftgx9Cqq6/HrbfeihdfXIu333oLb735FhX/mJSzYyvl7OM31r448D29erU674nwXHPNNWrRpy6T3x3vCZSWlePLX/kyAoEAvF4vDh44iBdeeCF1qftOs3LTcD/kqxLQgzrIggRIYNwQsG0EpjSg/OILYIujs9eLjle3onvHVgeBbYyBQQOxEI324rnnnsNjv38Mv/nNfzlXasebSlN9DKDGXXV1tTpuyywBH+ODQF8AH/HQf+edd9VhTxS3eOZfdumlGvqxp6cbAz17e3uxYP4CVFZWqre/DBxk5sCMWNOFTsYO7t8y4uUzxcAZV40P2WMtSWB8E9CuT2J3eFH9seXwFoW0b4y1tqmTX79De4aw1djj8aK8vFw9+Vc+uVIdtA1o1+ByX4HXtm6FRPmTfnvW7Nnjuz3GUe37pvrleMY9e/cgGoupxS8Oet/+9rd1yl93/A0ERZS5nUR7e3vfjEFTU7OOJEUQ+SABEiABEjiKgGMEFZ+xBCUL56Ft/auA14PWtS9hwuf3IFAvsVFkhDD4hzjoFRcV6czre++9h1u+/nXcfvttOPfcc/vW/CORXjz77LP4h3u/j/379qvz9hlnnDH4TPjLgibQp/jFYm9va0MykVDFLY4hmzdvRnyQ8ZvVhrcsBINB3ZcvZz2XlZVmf49+QTcHC08CJDD+CCRhhUpQfdVH0b5xMyyPF717PkD7S2tQc+0NZoZ00Ba/rX2uP+DXvltmb1etXImX162DKHYJuCYzru++8w62bNmCnu4e/MU1n8R37rrLGRQMbZAx/tpqbNS4T/Hr5I+MPi3xCE2iqqoKV151lW74H5TF7/JQ5zQLkyZNxOc+dz1Pe3K58JUESIAE0gmotZT6oOziyxCa/nP0vr8PclJe88qnUPXxT8FTJLt9Bq+QZav0vLnzEAwF8Ynln8C8efOw6qmn8Nabb+L111/XDMUh+8ILL8Ty5ctx/ec/j9Ljbr1OlY3vxhaBPsUfDoVRUVGpHvli7atH/z3fw7Sp04ZZ48EL7DAz4uUkQAIkUEAE+mt+/4QpqFj6YRx46JewfD50btuOrs0bUHrBMmP1D7pmtk7dz5k3F/PnzkNNbS1u+fotundfgq1Jj1xTXaPBfVLhe9lPDxrvGPhhn3OfhHScPn2aeuXL/v2DBw7odNDw6khhGh4/Xk0CJDA+CJi+suqyK+CvKtcqJ7p70bzqSSA59ONyJXjahy/5sCp9SUzW/RsaZmLx4iVYsngJZsyYkRazn/30+JCxVC0dxS+xoy3MPuUUzJ49WyPvdXd349FHfpt2cI0Ix0DPVMLmXf8R7dHf8m8SIAESIAGXgI3wnDNQtuQs2AnZ2udD28t/QmTPexls9xmor07/3s2fr+OFQJ/FLxWurqrGJz91jSp7sfqffHIF/qvfPlD1BEhj4/5tXmOxKF55ZQPuvfcefP2WWyCH/IxuOF7Z4+oEvRnCGlhaBTJ/q8427s2TeTK8kgRIgARcAlYgjMplV8ATDOhBPpGDjWh9dpX7NV9JYEQI9K3xG2vewrWf/jSeXLEC615ap05+377jTjQ1NuK6665DTU2tk2l/S37fvn1Yu3Ytnnj8cWzYsAESCKizs1P3ks5fsMBR/qIkR/rhKl4pT78xzEhndGx6x8Qi6M/k2Av4CQmQAAmcjID0ZxZKzzkfRbMb0LnjbVX+TaueQs11X4S3pHJITn4ny4nfjW8CaYpfQNiorZ2Ae++5F7fccotu92hsbMRd370Ljz7yqHqBytGO4vgn1v2hQ4c0zOOWzZvx3s6dkOUB8SiVLYCnnXYaLrjQje8/GkpfimtmGqTkbT2t6Ij3wpOVuP+mPh7LQk1RFXxyfjYfJEACJDAsAhILxYavpg4VSy9F14631cmv+6330Ll+Lco/snxYqfNiEnAJHEdj2Thz0SI8+B8P4o477sTzzz2nCn3jxo3YtGmTBoUwJ+tBfQFk659s95On7BmdMGECli1bhi9/5StYvHjx6I9Q1dC28I9bHsfDb29wTpdyqzd6r0nbRpk/hN9f/jU0VE4d/XqOXlWYMgmQQN4QMFZ/5aXLcPiRRxE70oxkPIHGx/+A8o983JnZHCVDKm8YsCCjTeA4it9kOX/+Avz85z/Hb3/7KB75zaPYvn0bOjo6dBAgUf3EByAcDkP2g1ZUVECm9C+55GJcdtllmDt33miX26SfNru+v6sNux1WiicAAA0CSURBVFsOAr7A4PNOu37ILgK2DX8whEgiNvj8+EsSIAESOBkBZwkxNHsOys9ejCNPrILH70fb+o3offt1hE5daPyaJA0ry8ubJys3vysoAidQ/GZEKfGeb7jhRlz/uevx5ltv6nnOe/fsQW9PLwLBAOonT0Z9fT0aZszQ19SeUGGQhVGpm4VlISZbXuKRwefr8QAStMLrBbq7gd7ewTec3Jx2ErG4BRs82GLw4PhLEiCBgQnYgMeHqqs+huZnn0cymkC8o0ut/im3LRxlh+mBS8dfFD6BEyh+t2KiWS0EQyE9rnHgs5pdTexen41X8eoHrj/tIpxW3QCfKPQBHxba2tvwn7/6T4gPgyxNnHvJuc5Vg6uDLG0EvT5MLKoe/GBjwHLxByRAAiRgCJSccz6K556K9j+/DsvrR8uaNZh0w1fhq5wEc4APSZFAZgQGUPyS6OAUYWbZj8RVouhtXDl9sT4Hm2L3kWas2/gjdO/YgWuWfRlfWCTrZ5k+khyFZ4qO15EACRyHgA1PuAxVl1+Bji3bzNa+vQfQtmY1qq/54nF+z49IYPAEBmMeDz61bP/SOVvArHXJAGWwT6A52o14yItkcQCdSI+MNdg00n+X7iyQbQjMjwRIYKwSqFj6EQTrJsIWJ+qkjaaVTyIZ6cr+9uWxCnic1quwFf84bTRWmwRIYDwQsOGvb0DFxRfCSiRgeb3oev0NdG/eMB4qzzqOIgEq/lGEy6RJgARIIHMCMqtooerKj8NTWqTJJLq6Tfx+nd3kTGPmbMf3lVT847v9WXsSIIG8JmCjeOFZKD1zPux4HLbHi7Y/bUBk99tOqWVwwAcJDI0AFf/QePHXJEACJJBFAjbgDaH6Yx/XY08sjweRA4fR9twzqTL0nRuS+ojvSOBkBKj4T0aH35EACZBArghoSHKTecWHL0d4+mTYiYQ6+TU/8zQSbY1pTn6c9s9VMxVivlT8hdhqLDMJkMA4ICCnj8pmpSQ8pdWouvJyIB6H5fOi+6130fnqesNAdL5a/eMACas4IgSo+EcEIxMhARIggREmoOF7U5Z81VVXw19VqoOBRE8ELaueAjRkuAU4oX5HuARMbowSoOIfow3LapEACYwBAqL3HaUemjkX5eedBzsWg+XxoW3DK+h++3UGDxsDzZztKlDxZ5s48yMBEiCBIROQ+P1edfLzhPyAx0K0sRltz64eckq8gASo+CkDJEACJFAQBGwULzkXxXNOBWJxDePb8vyLiDfup9VfEO2XP4Wk4s+ftmBJSIAESOAkBGx4xcnviqsAj+h9L7rf24X29WtT13BrX4oF352QABX/CdHwCxIgARLIJwLG0a/84qUI1k1Qb387GkfzqpWwI50pq58xffKp0fKyLFT8edksLBQJkAAJHE1A9/YhOHUWKi48H8mEbO3zo+PVLejevvXoH/NvEjghASr+E6LhFyRAAiSQTwQss1/f60PlsqvgKyuBDRux1k40r14JIKnR/UyJafbnU8vlW1mo+POtRVgeEiABEjgRAWdrX9GZS1A6f64G9PH4fGh78UXEDuxOi+R3ogT4OQmoiwgxkAAJkAAJFA4BG55wKSqXXQ7L7wU8HvTs2Y/WF9aYKqgrQCrwT+HUiyXNFgFa/NkizXxIgARIYAQJlF+0FOEZU2EnkmrpNz3xRyR7HSc/hvAdQdJjLykq/rHXpqwRCZBAXhEYDevbhr9uGiouvli9+y2fD13b30bX5g3Gu380sswrpizMcAhQ8Q+HHq8lARIggXQCYmnbYoHLQ7Svq4Hd946D3rAtcnHes1D5kSsQqCqDZdtIRGJo/MPvjJNfX75OUfhCAmkEfGnv+ZYESIAESGC4BCyvphA7/AEi7+9EvOkwPKEiBGbMQmjGTMDyy3F6xkM/48N1ZCBho2jOApSetQhNTz+v6bU8+xzq39mG4ClnmDyGWxdePyYJUPGPyWZlpUiABHJCwPIg0daIw//1MJpXrkDv7n2wI1HA64G/thoVF5yPCZ//S4RPPSM1GZBpQWXWwB9G5eVXoOX5F+CrrkXFeR8CAjKw4IMETkyAiv/EbPgNCZAACQxAQCx3d0bfg3jjAey+++/R9MwLSPZE4Qn64QmGYCfi6N21F4d2P4KOLVsw49t3oWTJhY5V7qbhLgsMkGXf1+b3ZedfgoZv34HwvIUInyaWvpkN6PsZ35DAUQSo+I8Cwj9JgARIYGgERPN7YMcj2P/gD51pd6D87DNR/YnlCJ+6AInmQ2he/SRa1qxF95s7sef792D2vz6IwOSZmU/Jq9634a2oRdUnv5hWZAbvSYPBt8chQMV/HCj8iARIgAQGR8C10i10bX4FTStXw4IHZecsxMz7/gX+uhl9yZQvvRyhn/4rDjz0c3RtfwtNf/gt6m76X8ZCd5Pp+/VQ3rhTDlT4Q6E2nn9Lr/7x3PqsOwmQwPAJqINeEm3rnke8vRPeihJM+Z+3p5S+nVBPeytQhElf+ipKFszV1YH2P72EZHebUfzD1tnDTmD4HJhCwRCg4i+YpmJBSYAE8pOADSSTiB48qMF0imZMQfj0eU5RZWufbOGTP214SqpQetaZsLxe9O49pAMF/aFFxZ2fbTs2S8Wp/rHZrqwVCZBAVgiIwk6fp7dhedLtKav/1/Jrn2z3s/SAnb4iHp1M3xd8QwIjTyBdQkc+daZIAiRAAuOBgMeDQG2tWvLdu8z+fVPt9EGBBTvSic7XtsNOJBCaVA1vcdihQ4t/PIhJvtSRij9fWoLlIAESKEACTiQ+eFD6oQvgLQkj1tKOff/xIyTam5z6iPKXp40jv/4FOl7dqtH9SpecC29phePVnz5AKEAMLHJBEeBUf0E1FwtLAiSQdwSc6HulS85H1aWX4MjvV6Dl2bWwe29G7bWfRXDGLMRbm9Hy1JNo/OPjiLV3oXjWdFR/8tPOMbpJIOMIfnlHgwUqAAJU/AXQSCwiCZBAvhOwYYWKUX/zrYgcPIy2l19B05qX0P7Kq/CVlyLZ04toS5s6+YWm12PK7bcjNHMOrf18b9YxWj4q/jHasKwWCZBAtgnYCEyehZn3P4BDDz2IptXPINHSBqu9W73+A7VVKFu8CBO/9FcoWXKJo/SzXUbmRwIAFT+lgARIgARGjEAS/tp6TPm7u1HxF9fiwXvuwXuvv4azzl6M62++GcVz5sMKlTpKn678I4adCQ2JAJ37hoSLPyYBEiCBkxEQJz3Zu+/RuPkb7SD+37sfYHNxNUoWnZem9CUNOvSdjCS/Gz0CVPyjx5YpkwAJjEsCRqEn4zH4kwkEYcGbSMC2ZUDABwnkngAVf+7bgCUgARIYwwTEYZ+2/Rhu4AKsGhV/ATYai0wCJEACJEACmRKg4s+UHK8jARIgARIggQIkQMVfgI3GIpMACZAACZBApgSo+DMlx+tIgARIgARIoAAJUPEXYKOxyCRAAiRAAiSQKQEq/kzJ8ToSIAESIAESKEACVPwF2GgsMgmQAAmQAAlkSoCKP1NyvI4ESIAESIAECpAAFX8BNhqLTAIkQAIkQAKZEqDiz5QcryMBEiABEiCBAiRAxV+AjcYikwAJkAAJkECmBKj4MyXH60iABEiABEigAAlQ8Rdgo7HIJEACJEACJJApASr+TMnxOhIgARIgARIoQAJU/AXYaCwyCZAACZAACWRKgIo/U3K8jgRIgARIgAQKkAAVfwE2GotMAiRAAiRAApkSoOLPlByvIwESIAESIIECJEDFX4CNxiKTAAmQAAmQQKYEqPgzJcfrSIAESIAESKAACVDxF2CjscgkQAIkQAIkkCkBKv5MyfE6EiABEiABEihAAlT8BdhoLDIJkAAJkAAJZEqAij9TcryOBEiABEiABAqQABV/ATYai0wCJEACJEACmRKg4s+UHK8jARIgARIggQIkQMVfgI3GIpMACZAACZBApgSo+DMlx+tIgARIgARIoAAJUPEXYKOxyCRAAiRAAiSQKQEq/kzJ8ToSIAESIAESKEACVPwF2GgsMgmQAAmQAAlkSoCKP1NyvI4ESIAESIAECpAAFX8BNhqLTAIkQAIkQAKZEqDiz5QcryMBEiABEiCBAiTgK8Ayj3KRrVFOn8mTAAmMBwKW1b8vSf3d//PxwIJ1zC8CtPgBBAKB/GoVloYESKDgCfi8Pni9Xti2Da9PbCwq/IJv1AKtgOg4kUP3MW4tfr0FLQsyCl+zZg26OjuRTCZdLnwlARIggcwJWBYSiQR27tyJYDCIbdu24Yc//KH2N0jrgDPPgFeSwOAIeDwerHt5XT8D17J1GJAaCQwuqUL/lYUP9n2Aaz99Ld55+21V+PF4vNArxfKTAAnkGQFR+j6fD7FYDNFoNM9Kx+KMFwJ+vx/ylMcrGzdi3Fr86aPudCjjRRBYTxIggdEnIDOKYluJ8pdpfz5IIB8IOBZ/PhSFZSABEiABEiABEhhtAv8fXheMJjhcJAcAAAAASUVORK5CYII= />
  1.It increases.
  2.It decreases somewhat.
  3.It does not change.
  4.It drops to zero."

Question 2

Define the term solution. Give an example.



Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

fromAlphatoOmega22

  • Sr. Member
  • ****
  • Posts: 345



 

Did you know?

Intradermal injections are somewhat difficult to correctly administer because the skin layers are so thin that it is easy to accidentally punch through to the deeper subcutaneous layer.

Did you know?

Common abbreviations that cause medication errors include U (unit), mg (milligram), QD (every day), SC (subcutaneous), TIW (three times per week), D/C (discharge or discontinue), HS (at bedtime or "hours of sleep"), cc (cubic centimeters), and AU (each ear).

Did you know?

Drug-induced pharmacodynamic effects manifested in older adults include drug-induced renal toxicity, which can be a major factor when these adults are experiencing other kidney problems.

Did you know?

The most common childhood diseases include croup, chickenpox, ear infections, flu, pneumonia, ringworm, respiratory syncytial virus, scabies, head lice, and asthma.

Did you know?

Disorders that may affect pharmacodynamics include genetic mutations, malnutrition, thyrotoxicosis, myasthenia gravis, Parkinson's disease, and certain forms of insulin-resistant diabetes mellitus.

For a complete list of videos, visit our video library