A metallic sphere A of radius 1.00 cm is several centimeters away from a metallic spherical shell B of radius 2.00 cm. Charge 450 nC is placed on A, with no charge on B or anywhere nearby. Next, the two objects are joined by a long, thin, metallic wire (as shown in Fig. 25.20), and finally the wire is removed. How is the charge shared between A and B?
Question 25mH/ytD3KuUhwnIdEnrZhVrkEyHS9CEqWsnYolsGLZuOuTGNE+vXkzl4RP4SnhnoeSbvnf0whomAHYxU8WLl64KBEuiB+NEh54108tEyCDKMNP0zvS0zBggBsYBBcr+kgxBgbVBpZ6A3FaawadbXBwwNed+eCBgjByF97A4b71b9+yl73sZZycx9RVXCwvuCS4FdKN+KxQCEBxMlVEacJHnQABA0wNTonh0JnNmzfbmjUXRjYTdj+NdLSGPfXUUzZ9+gwq1RwZoq83I4xtJ3BFcwW1CTLnYOBkAbq0Fg36WoAwAOmiObhipIW0gb3gfIU7oUDzyGOPraXB95WveqXO53Bx3lwuxk0Ao5Afo14eIM+Iz87VzLgyBFwNnH/MPEbF/ek5nCZAw1RTr+3es8fmzJ5d9P4x6RQgK3vmgCBHA2egqaCSRp8dHZ1WoTh1nci5RzN3jJTHwHjiouB6N910o735zW8iANQxIqbfmUCuNscBAAAZlklEQVRwJQE0DzF2TfIQVNFc/W8YvkuFedg9e/eWA03A22kCNLMdO3aQXDCUjtloz5eYYIaI4xwrxFNyI7qeb6IK39XdZbfffjvnMy+68KJknH1hqT13LEAVP3Qm/DDZP9HXaQU0nO0futRPQsgAKu7xo6mA+zlzt3IuBe+RO0Rn8wUxfODAAfvxj39sb3nzm7X6AzAYK3BzZH8fI9lxQpYlLDpJT3cPdVnMh06k+DwNgFah4r1//wEempKU5nFJD6CM9gxAIT6fseTagQWTBBqmNoLPVmNnuvZppjg+8swTjnIgTH5h9HfjjTfZhRdeaEuXLuHcKP2BgnJQBx95KP2YXySGThDPx3H3VCg+oWYcmuBPO54GQDMq1LDIY9lzuWHH4xRqouamSsCBWSB+3NCLfZZ17mjS5l4/Q6OhPZjcp+lHHORt3qyjAWQY9T2xaZO9/vWv56wCwyfERCcol6z5rUBkitiEUriHXzYyhTlGKwd4hkhe1lY/nxbmjX379nFdPSz3YCCcQ6RJQOQGBtCjKrSUqm8jnJhIPGgRIwjOgQHaifPdDW0icdQEGMHZOInOXefZRmHniGNLw4r96ze/aa957Wts2rTpNjDYXwxcAhfR4nhHAZsBDHfUETfnpCoT3kOsF5I4OJmSxQBHq0T2H9gfOU3I/QQCrUyC0bVtpvzoEOGCkRR2CsmUQaQRbJRamLhms4S5AY2BXh6xo0UVTwCqaSDgDUklWi4EBhpU4cTlADie9BJJEmx6YRmswRmA++6/n2vLXnrNNTY0PCjuC9ucwy3CRjIETrwQWOJ4pIwCO+Mi7DIupkicgIc5BosJUF8OcHCkVrcdOnyYZg6MpD2RLKef/uMJAppaeaC/j9NFWAaNBYKwnGPeD8uWY2PGsatc4a4gfD0Oa/LRxQErYoK0F6jQYDk3C8ICcLo0HyhOoc3AiA6rPwAVozWEDa4BRgPdDSI1lvpEWgkDfFDaAwMD9u1v32jveMfbuUe0MTLCYlAsAqfiUXJzgDM//5P8wWahI3pZGDPDGcoX5Qi9CNNo2EqICX3QBkucQGtsCZwyZWIgMDG5eNV10zEE//Mv/9K+9vWvW19vHzdevOc977aNGzbad7/7Xfu1X/81+8//+X8/rp6G3eH4COu8efPZWIAOic1JaTSPwMad4aS8Gj7aQ5wNq76wic2t8I0G5y+xiykmzcMgq/SQZoOiMzhZ7o601eDgnA1yECwBWrhggV1w/vk8FRL++EfE4A9nAfRK96BZFo7gRr7wUyY+IyGjrOCnzsH6uTkjOkpwZuiKWLgJ8Gs6KjJr3X3CgQar9Mc++lH78pe/Yh/4wAfs0ssus2ee2Wpf+Osv2tNPPWnves97uGXNW+A5a45d4jh1B9M5AR7qaOi66va+PxeHtXCrEwGMsABZ4mrgejiuQC3PaR8o+XhFA+UXQeSMI/iH/CXaEH7yZKz9kojG1Nhdd91tH/zgB1lWgUT9yOHmZWKBvepEayTr98hNwCrevHR08DRc1wxw8d40b4tOPmfOWR65tbcJBlrFbr/9NvvqV28wrNN67/vel2r3pje92X7urW+1F73oPD9LInn5Q5C17A4RICJCBwO3cvDgSCjseWxABGJNflUQInCQlsJLzirNFB+vkR2ZTrzAgzwzFUJAwclACoOyYEL/jjvvtNtvu51lwhGkL33Zy2zBwgXk4GJG4orsHE3HVyElhUExlC45ILgbwjKviJ/dsR6X7E6dSFNoGgCQRr6lkIs9qxUe55Aq0uKHCQaa2T333MvjM7HBVhcIWeFRTNe+5lrDFn9cmzZu5B7FxYsWs5GaG9gjUwQEw4nGAV+CIAS0IPKiMetVrEjFMmeJNKTBoxDIeQQ8hCVYOYgoczLlqYZnXICAjEecDG4A2b/867/apz71aR4iI7dOrigZGnwNkyBoYggA8FA8FuDiGWsBMQd6AlqET+DMbHo8XBKmF9EU4EpzthSjWCyAOumHabCJuiYcaAQDbVTe9bKaQvHu6KjYl770Jbvhq1+1l1zxElu37nG75uqr7Xd+93e57DoLzkfYtUQ4vEo88kQecLE6TuVpGAEGAwcaDXlzCbe4H2JJfKpxlL4AxPaQwxh/C3AJ4FpqjbNuv/iFL/KIUOznxIUy3nDDDdwkcuFFF1ptsEbVDuDhahAEcgA5dsVReaifygIxrp/rYwyfgUyEdd0QZdEWQHGybN6Wpx+JYvUGaDcxVwxMJiY3M7vqyitsz+499rUbvuZ5imvce8/ddsv3buEmjAMHD9jHP/FxcoXPfvaz9o1vfMPWrVubAapcXEAkejwVYvR2uPFc2UK0qDHROGH3QjoImTdYpBX3In7kQYCQexRhkBJEEuZccWI3FjTGBREGEf/Ek09QzCdxK4SqM+CZJUYHiTyVAjpg4ZaVNYVDeD9FkunoXBAuDoiFAexc2s8a5So6aOHSqqcJ5mgNe8UrX2nv++X32sc+9jG755677dLLLretW7fYd7/7PV8H1mEf+e2PpPrOnDmDjYNR0rEvNQ6UMuj8aDS2I8QnB3XidthFyQZt4NQL9bMwfQBAAp7CSMSOnavaE+EFtrhPnz6NO6AOHz6seVf3x2Blzpw5Voc5JMSfM07pXEU6TIsdoACy1sG5juacDm4Qk5wSy0CH+FxDR3BBTSjW2IHDnYhrwjkaDISf+aM/ss/80Wds27bt9tWvfMW2bn3G/vAP/5u94hWvGPXdpP/xR/+D+hvmBse6OIkOTsDGi4aRRZ1AC/HERpH4YUNDhFK8hgINUS6gFUCQvlO8e8M2ia2Ih2kwLCHH2n982ALmA9iqMLd4+UsuNxwrhZW2NPY6MFiGSA8VxDPKQTfnbAyrskSZ8/lW1V1cDZxNwMJ+BgDMRSg5W9Hc6iITB7oJ5mikJHeO/6f/9GuGHyarsZMc11e+8hXryHrcF77w14bjDL78lS/ToKsGZdD0ByJKwMFZFsFhdEoPzyIDgeVMXkYDLNU1bFeTvoYBgzboOvmzqSrkmUwgzFWcMhUgOKfnAeDjkJap06barbf+iF9Rueyyy+yXfukXDR+L5aF9COtAIttFRwmOFHdyOwENtkJNd2FutcE5V4lTgM9/zt2A0WqnlqDjoBmUB9wUc5zgcuni3tRCvCf3Fj2cAKChJt4qViERDh48wHNZ0fMPHzlK5fnv//7veF7F5z//V8fc/KqJdBgp1aPRmyXWoK0BUeJYmEvGYAy6cA1mEGwoaWh6hoZz5wQUmjCgxw4SEj7KO7oVJG3diIojRodHuIfzN3/zN+1d73qX4fDjmTNnEhADg5p2Kjik61UoOwFLrbIQregINZ+4B9jwzp84M865Dc4mMYrDBCvWCXB1SlwCZNgaKM4moDF/kyF5dI1a43KCgFZU5qabbrJPfOKT5Db49M3j6x63++67l7u8sUXtgtVr7J6777aly5bydMYipp4wx4meCrEF0wIaAsCBLgbDraPO6jWBjNytpgbBaBRGEB3GqPMwNCtVpV7HZsk4bClvijjvMhDB8HTADA0PmQ0bp9LgATPCSG1EI00MPDCLFKLRORjKWQBQYh1Awo9cy0V/o47P/BQckOkAcP